Pages matching './*' A Gillet-Waldhausen Theorem for chain complexes of sets Cut and paste invariants of manifolds via algebraic K-theory Derived l-adic zeta functions LitNote-Alexeev and Thompson-2019-ADE surfaces and their moduli-AT17 LitNote-Alexeev et al.-2019-Stable pair compactification of moduli of K3 surfaces of degree 2-AET19 LitNote-Alexeev-2004-Complete moduli in the presence of semiabelian group action-Ale04 LitNote-Barth et al.-2004-Compact complex surfaces-BHPV04 LitNote-Beilinson et al.-2007-Aomoto Dilogarithms, Mixed Hodge Structures and Motivic Cohomology of Pairs of Triangles on the Plane-BGSV90 LitNote-Borisov-2015-Class of the affine line is a zero divisor in the Grothendieck ring-Bor18 LitNote-Buchstaber and Panov-2014-Toric Topology-BP14 LitNote-Campbell and Zakharevich-2018-Devissage and Localization for the Grothendieck Spectrum of Varieties-CZ18 LitNote-Campbell and Zakharevich-2019-Hilbert's third problem and a conjecture of Goncharov-CZ21 LitNote-Campbell-2017-The K-Theory Spectrum of Varieties-Cam17 LitNote-Cathelineau-2003-Scissors congruences and the bar and cobar constructions-Cat03 LitNote-Cathelineau-2004-Projective configurations, homology of orthogonal groups, and Milnor $K$-theory-Cat04 LitNote-Cluckers et al.-2011-Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume 1 edited by Raf Cluckers, Johannes Nicaise, Julien Sebag. [electronic resource]-CNS11a LitNote-Cluckers et al.-2011-Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume 2 edited by Raf Cluckers, Johannes Nicaise, Julien Sebag. [electronic resource]-CNS11 LitNote-Cox et al.-2011-Toric varieties-CLS11 LitNote-Dupont and Sah-1982-Scissors congruences, II-DS82 LitNote-Dupont et al.-1988-Homology of classical Lie groups made discrete. II. H2, H3, and relations with scissors congruences-DPS88 LitNote-Dupont, Johan L.-1982-Algebra of polytopes and homology of flag complexes-Dup82 LitNote-Dupont-2001-Scissors congruences, group homology, and characteristic classes-Dup01 LitNote-Fulton-1993-Introduction to toric varieties-Ful93 LitNote-Goncharov et al.-1993-The Classical Polylogarithms, Algebraic K-Theory And zeta F(n)-Gon93 LitNote-Goncharov-1995-Geometry of Configurations, Polylogarithms, and Motivic Cohomology-Gon95 LitNote-Goncharov-1996-Volumes of hyperbolic manifolds and mixed Tate motives-Gon99 LitNote-Goodwillie-2014-Scissors Congruence with Mixed Dimensions-Goo17 LitNote-Harder and Thompson-2015-The Geometry and Moduli of K3 Surfaces-HT15 LitNote-Harris-1992-Algebraic Geometry-Har92 LitNote-Hartshorne-2008-Algebraic geometry-Har08 LitNote-Huybrechts-2016-Lectures on K3 Surfaces-Huy16 LitNote-Jessen-1968-THE ALGEBRA OF POLYHEDRA AND THE DEHN-SYDLER THEOREM-Jes68 LitNote-Laza-2014-Perspectives on the construction and compactification of moduli spaces-Laz14 LitNote-McMullen-1989-The polytope algebra-McM89 LitNote-Merkurev and Suslin-1991-THE GROUP K_3 FOR A FIELD-MS90 LitNote-Misc-2022-Hartshorne Solutions-Mis22 LitNote-Nicaise et al.-2011-The Grothendieck ring of varieties-NS11 LitNote-Quillen and Bass-1973-Finite generation of the groups Ki of rings of algebraic integers-Qui73 LitNote-Rognes-1992-A spectrum level rank filtration in algebraic K-theory-Rog92 LitNote-Rognes-2000-K4(Z) is the trivial group-Rog00 LitNote-Sah-1979-Hilbert's third problem Scissors congruence-Sah79 LitNote-Sah-1981-SCISSORS CONGRUENCES, I THE GAUSS-BONNET MAP-Sah81 LitNote-Shafarevich-2013-Basic Algebraic Geometry 1-Sha13 LitNote-Silverman-2007-The Arithmetic of Dynamical Systems-Sil07 LitNote-Sydler-1965-Conditions necessaires et suffisantes pour lequivalence des polyedres de lespace euclidien a trois dimensions-Syd65 LitNote-Waldhausen et al.-1985-Algebraic K-theory of spaces-Wal85 LitNote-Weibel-2013-The K-book An introduction to algebraic K-theory-Wei13 LitNote-Zakharevich-2012-Scissors Congruence and K-theory-Zak12a LitNote-Zakharevich-2016-The K-theory of assemblers-Zak17a Motivic Integration Talbot 2022 Syllabus The annihilator of the Lefschetz motive The standard realizations for the K-theory of varieties Note: To override the auto-generated content here, create a file named: Zotnotes.md