The standard realizations for the K-theory of varieties

Meta

  • CiteKey: “BGN21”
  • Type: report
  • Title: “The standard realizations for the K-theory of varieties,”
  • Author: “Braunling, Oliver; Groechenig, Michael; Nanavaty, Anubhav;”\
  • Publisher: “arXiv,”
  • Year: 2021
  • Collections: “Syllabus; Talbot 2022,”
  • Keywords: “Mathematics - Algebraic Geometry”; “Mathematics - Algebraic Topology”
  • URL: http://arxiv.org/abs/2107.01168
  • Open in Zotero: Zotero

Abstract

The Grothendieck ring of varieties has well-known realization maps to, say, mixed Hodge structures or compactly supported \(\ell\)-adic cohomology. Zakharevich and Campbell have developed {a spectral refinement} of the Grothendieck ring of varieties. We develop a realization map to Voevodsky mixed motives, and this lifts the standard realizations of motives to this setting, at least over perfect fields which have resolution of singularities.


Extracted Annotations

Annotations(6/8/2022, 8:26:54 PM)

File:BGN21_67YSU6XV.png (Braunling et al., 2021, p. 1)

File:BGN21_VWJTIQBM.png (Braunling et al., 2021, p. 1)

File:BGN21_X8AHI5PJ.png (Braunling et al., 2021, p. 2)

File:BGN21_Z6H9UUYB.png (Braunling et al., 2021, p. 2)

File:BGN21_YMH3LQ9B.png (Braunling et al., 2021, p. 2)

File:BGN21_XN5KKB4U.png (Braunling et al., 2021, p. 2)

File:BGN21_F8Z6WEJ8.png (Braunling et al., 2021, p. 3)

File:BGN21_X9EBPJGD.png (Braunling et al., 2021, p. 4)

File:BGN21_N8SQPGIS.png (Braunling et al., 2021, p. 4)

File:BGN21_TJUDXYCC.png (Braunling et al., 2021, p. 5)

File:BGN21_8NA4RYCR.png (Braunling et al., 2021, p. 5)

File:BGN21_VA66GRNI.png (Braunling et al., 2021, p. 5)

File:BGN21_QBP8IUU2.png (Braunling et al., 2021, p. 5)

File:BGN21_5J2UV3B7.png (Braunling et al., 2021, p. 5)

File:BGN21_8NKFDV94.png (Braunling et al., 2021, p. 6)

File:BGN21_3THG7VJM.png (Braunling et al., 2021, p. 6)

File:BGN21_9XZIEMI9.png (Braunling et al., 2021, p. 6)

File:BGN21_6QZEQBVG.png (Braunling et al., 2021, p. 6)

File:BGN21_BFI4P33H.png (Braunling et al., 2021, p. 7)

File:BGN21_JDHZWMTN.png (Braunling et al., 2021, p. 8)

File:BGN21_FQ9GR8TB.png (Braunling et al., 2021, p. 10)

File:BGN21_67E3SCXW.png (Braunling et al., 2021, p. 10)

File:BGN21_UC4ZMTGW.png (Braunling et al., 2021, p. 12)

File:BGN21_CYE4SSCB.png (Braunling et al., 2021, p. 12)

File:BGN21_V9DMUK5X.png (Braunling et al., 2021, p. 12)

File:BGN21_Q5PTIZI8.png (Braunling et al., 2021, p. 13)

File:BGN21_3H9X2PQE.png (Braunling et al., 2021, p. 13)

File:BGN21_LSLBTNAL.png (Braunling et al., 2021, p. 15)

File:BGN21_PVKJHPCH.png (Braunling et al., 2021, p. 15)

File:BGN21_6X4NUECR.png (Braunling et al., 2021, p. 16)

File:BGN21_RFG7TNMB.png (Braunling et al., 2021, p. 17)

File:BGN21_BCGAIWLJ.png (Braunling et al., 2021, p. 17)

File:BGN21_UDP6YR9C.png (Braunling et al., 2021, p. 18)

File:BGN21_DJLFPIEQ.png (Braunling et al., 2021, p. 18)