A Gillet-Waldhausen Theorem for chain complexes of sets

Meta

  • CiteKey: “SS21”
  • Type: journalArticle
  • Author: “Sarazola, Maru; Shapiro, Brandon;”\
  • Year: 2021
  • DOI: 10.48550/arXiv.2107.07701
  • Collections: “Syllabus; Talbot 2022,”
  • Original URL: https://arxiv.org/abs/2107.07701v2
  • Open in Zotero: Zotero

Abstract

The (A)CGW categories of Campbell and Zakharevich show how finite sets and varieties behave like the objects of an exact category for the purpose of algebraic \(K\)-theory. We further develop that program by defining chain complexes and quasi-isomorphisms for any category with suitably nice coproducts. In particular, chain complexes of finite sets satisfy an analogue of the Gillet–Waldhausen Theorem: their \(K\)-theory agrees with the classical \(K\)-theory of finite sets. Along the way, we define new double categorical structures that modify those of Campbell and Zakharevich to include the data of weak equivalences. These ECGW categories produce \(K\)-theory spectra which satisfy analogues of the Additivity and Fibration Theorems. The weak equivalences are determined by a subcategory of acyclic objects satisfying minimal conditions, resulting in a Localization Theorem that generalizes previous versions in the literature.


Extracted Annotations

Annotations(6/8/2022, 7:57:31 PM)

File:SS21_HVAK67WK.png (Sarazola and Shapiro, 2021, p. 2)

File:SS21_ZIICYP6U.png (Sarazola and Shapiro, 2021, p. 2)

File:SS21_6UQXSHHB.png (Sarazola and Shapiro, 2021, p. 2)

File:SS21_9KL58PLT.png (Sarazola and Shapiro, 2021, p. 3)

File:SS21_XCE8FHAF.png (Sarazola and Shapiro, 2021, p. 3)

File:SS21_HBVDD45C.png (Sarazola and Shapiro, 2021, p. 4)

File:SS21_Q4KFCD4Z.png (Sarazola and Shapiro, 2021, p. 4)

File:SS21_WPAGVM2M.png (Sarazola and Shapiro, 2021, p. 4)

File:SS21_8UUD8YNL.png (Sarazola and Shapiro, 2021, p. 5)

File:SS21_SI6DHNAU.png (Sarazola and Shapiro, 2021, p. 6)

File:SS21_EYHS3SB6.png (Sarazola and Shapiro, 2021, p. 8)

File:SS21_9HSMR6LA.png (Sarazola and Shapiro, 2021, p. 14)

File:SS21_UK7KTDEL.png (Sarazola and Shapiro, 2021, p. 19)

File:SS21_PKG5U7SY.png (Sarazola and Shapiro, 2021, p. 20)

File:SS21_PWKIDVZU.png (Sarazola and Shapiro, 2021, p. 23)

File:SS21_5Q4IQGXS.png (Sarazola and Shapiro, 2021, p. 23)

File:SS21_GUAXZXBY.png (Sarazola and Shapiro, 2021, p. 26)

File:SS21_G7QETSS4.png (Sarazola and Shapiro, 2021, p. 31)

File:SS21_CC384D85.png (Sarazola and Shapiro, 2021, p. 32)

File:SS21_ULQNURAI.png (Sarazola and Shapiro, 2021, p. 32)

File:SS21_WCW84JRZ.png (Sarazola and Shapiro, 2021, p. 35)

File:SS21_VSSMIDIP.png (Sarazola and Shapiro, 2021, p. 36)

File:SS21_IRUBEXG8.png (Sarazola and Shapiro, 2021, p. 37)

File:SS21_LKSVFJ2J.png (Sarazola and Shapiro, 2021, p. 37)

File:SS21_7UL9PZ26.png (Sarazola and Shapiro, 2021, p. 37)

File:SS21_2G3SBBVT.png (Sarazola and Shapiro, 2021, p. 37)

File:SS21_DZEZ6WKT.png (Sarazola and Shapiro, 2021, p. 38)

File:SS21_MJYXZGRF.png (Sarazola and Shapiro, 2021, p. 38)

File:SS21_BPHUQ5YR.png (Sarazola and Shapiro, 2021, p. 45)

File:SS21_EJUQJ5A6.png (Sarazola and Shapiro, 2021, p. 45)

File:SS21_YMVHF2CI.png (Sarazola and Shapiro, 2021, p. 45)

File:SS21_SJS2ITPS.png (Sarazola and Shapiro, 2021, p. 46)

File:SS21_WUZUKEFY.png (Sarazola and Shapiro, 2021, p. 47)

File:SS21_5PN5HFEZ.png (Sarazola and Shapiro, 2021, p. 47)

File:SS21_BFUMQ93R.png (Sarazola and Shapiro, 2021, p. 47)

File:SS21_Q2MR7SCT.png (Sarazola and Shapiro, 2021, p. 49)