• Index
  • Zotnotes
Home
Blog
Index
Personal Home
Learning Resources
Resource Recommendations
2022 Research 14
900_Changelog
Todos
Day Planners 6
IW-Queues 2
MOCs 3
Projects 26
Quick_Notes 102
Seminars and Talks 3
To Review 50
Unsorted 1439
Zotnotes
LitNote-Alexeev and Thompson-2019-ADE surfaces and their moduli-AT17
LitNote-Alexeev et al.-2019-Stable pair compactification of moduli of K3 surfaces of degree 2-AET19
LitNote-Alexeev-2004-Complete moduli in the presence of semiabelian group action-Ale04
LitNote-Barth et al.-2004-Compact complex surfaces-BHPV04
LitNote-Beilinson et al.-2007-Aomoto Dilogarithms, Mixed Hodge Structures and Motivic Cohomology of Pairs of Triangles on the Plane-BGSV90
LitNote-Borisov-2015-Class of the affine line is a zero divisor in the Grothendieck ring-Bor18
The standard realizations for the K-theory of varieties
LitNote-Buchstaber and Panov-2014-Toric Topology-BP14
LitNote-Campbell and Zakharevich-2018-Devissage and Localization for the Grothendieck Spectrum of Varieties-CZ18
LitNote-Campbell and Zakharevich-2019-Hilbert's third problem and a conjecture of Goncharov-CZ21
Talbot 2022 Syllabus
Derived l-adic zeta functions
LitNote-Campbell-2017-The K-Theory Spectrum of Varieties-Cam17
LitNote-Cathelineau-2003-Scissors congruences and the bar and cobar constructions-Cat03
LitNote-Cathelineau-2004-Projective configurations, homology of orthogonal groups, and Milnor $K$-theory-Cat04
Motivic Integration
LitNote-Cluckers et al.-2011-Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume 1 edited by Raf Cluckers, Johannes Nicaise, Julien Sebag. [electronic resource]-CNS11a
LitNote-Cluckers et al.-2011-Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume 2 edited by Raf Cluckers, Johannes Nicaise, Julien Sebag. [electronic resource]-CNS11
LitNote-Cox et al.-2011-Toric varieties-CLS11
LitNote-Dupont and Sah-1982-Scissors congruences, II-DS82
LitNote-Dupont et al.-1988-Homology of classical Lie groups made discrete. II. H2, H3, and relations with scissors congruences-DPS88
LitNote-Dupont, Johan L.-1982-Algebra of polytopes and homology of flag complexes-Dup82
LitNote-Dupont-2001-Scissors congruences, group homology, and characteristic classes-Dup01
LitNote-Fulton-1993-Introduction to toric varieties-Ful93
LitNote-Goncharov et al.-1993-The Classical Polylogarithms, Algebraic K-Theory And zeta F(n)-Gon93
LitNote-Goncharov-1995-Geometry of Configurations, Polylogarithms, and Motivic Cohomology-Gon95
LitNote-Goncharov-1996-Volumes of hyperbolic manifolds and mixed Tate motives-Gon99
LitNote-Goodwillie-2014-Scissors Congruence with Mixed Dimensions-Goo17
LitNote-Harder and Thompson-2015-The Geometry and Moduli of K3 Surfaces-HT15
LitNote-Harris-1992-Algebraic Geometry-Har92
LitNote-Hartshorne-2008-Algebraic geometry-Har08
Cut and paste invariants of manifolds via algebraic K-theory
LitNote-Huybrechts-2016-Lectures on K3 Surfaces-Huy16
LitNote-Jessen-1968-THE ALGEBRA OF POLYHEDRA AND THE DEHN-SYDLER THEOREM-Jes68
LitNote-Laza-2014-Perspectives on the construction and compactification of moduli spaces-Laz14
LitNote-McMullen-1989-The polytope algebra-McM89
LitNote-Merkurev and Suslin-1991-THE GROUP K_3 FOR A FIELD-MS90
LitNote-Misc-2022-Hartshorne Solutions-Mis22
LitNote-Nicaise et al.-2011-The Grothendieck ring of varieties-NS11
LitNote-Quillen and Bass-1973-Finite generation of the groups Ki of rings of algebraic integers-Qui73
LitNote-Rognes-1992-A spectrum level rank filtration in algebraic K-theory-Rog92
LitNote-Rognes-2000-K4(Z) is the trivial group-Rog00
LitNote-Sah-1979-Hilbert's third problem Scissors congruence-Sah79
LitNote-Sah-1981-SCISSORS CONGRUENCES, I THE GAUSS-BONNET MAP-Sah81
A Gillet-Waldhausen Theorem for chain complexes of sets
LitNote-Shafarevich-2013-Basic Algebraic Geometry 1-Sha13
LitNote-Silverman-2007-The Arithmetic of Dynamical Systems-Sil07
LitNote-Sydler-1965-Conditions necessaires et suffisantes pour lequivalence des polyedres de lespace euclidien a trois dimensions-Syd65
LitNote-Waldhausen et al.-1985-Algebraic K-theory of spaces-Wal85
LitNote-Weibel-2013-The K-book An introduction to algebraic K-theory-Wei13
LitNote-Zakharevich-2012-Scissors Congruence and K-theory-Zak12a
LitNote-Zakharevich-2016-The K-theory of assemblers-Zak17a
The annihilator of the Lefschetz motive
_components 1
files without tags
unlinked files output
unresolved links output
unresolved\ links\ output

Talbot 2022 Syllabus

Meta

  • CiteKey: “22TalSyl”
  • Type: journalArticle
  • Title: “Talbot 2022 Syllabus,”
  • Author: “Campbell, Jonathan A; Zakharevich, Inna;”\
  • Year: 2022
  • Collections: “Syllabus; Talbot 2022; Talbot 2022,”
  • URI: http://zotero.org/users/1049732/items/JT7H876K
  • Open in Zotero: Zotero

Abstract


Extracted Annotations

Annotations(6/8/2022, 3:03:44 PM) File:22TalSyl_5UQQNU97.png (Campbell and Zakharevich, 2022, p. 2) File:22TalSyl_NGLYTCMR.png (Campbell and Zakharevich, 2022, p. 3) File:22TalSyl_D9YTGJRL.png (Campbell and Zakharevich, 2022, p. 3) File:22TalSyl_D6J3KH2L.png (Campbell and Zakharevich, 2022, p. 3) File:22TalSyl_3V8BZPUV.png (Campbell and Zakharevich, 2022, p. 3) File:22TalSyl_HGSYWZX8.png (Campbell and Zakharevich, 2022, p. 3) File:22TalSyl_2QCFBS3N.png (Campbell and Zakharevich, 2022, p. 3) File:22TalSyl_VYUXWJME.png (Campbell and Zakharevich, 2022, p. 4)

Links to this page
  • queue

    Talbot 2022 Syllabus 42 1 1969-10-16

  • Talbot Talk Outline 1

    Tags: #projects/talbot-talk [@Zak17b] See 2022 Talbot MOC, Talbot Syllabus, and Talbot Talk Advice

  • First pass paper notes

    Tags: #projects/talbot-talk [@Zak17b] See 2022 Talbot MOC and Talbot Syllabus

  • 2022 Talbot
    List of talks: Talbot Syllabus
Generated by Emanote.