Cut and paste invariants of manifolds via algebraic K-theory

Meta

Abstract

Recent work of Inna Zakharevich and Jonathan Campbell has focused on building machinery for studying scissors congruence problems via algebraic K-theory, and applying these tools to studying the Grothendieck ring of varieties. In this paper we give a new application of their framework: we construct a K-theory space that recovers the classical SK (“schneiden und kleben,” German for “cut and paste”) groups for manifolds on π0, and we construct a derived version of the Euler characteristic.


Extracted Annotations

Annotations(6/8/2022, 6:58:06 PM)

File:HMM+21_DC84UMJ8.png (Hoekzema et al., 2022, p. 2)

File:HMM+21_4C5TQ9YU.png (Hoekzema et al., 2022, p. 2)

File:HMM+21_5PE4RNGG.png (Hoekzema et al., 2022, p. 2)

File:HMM+21_DCWX4IL7.png (Hoekzema et al., 2022, p. 3)

File:HMM+21_6AJ8EL2E.png (Hoekzema et al., 2022, p. 3)

File:HMM+21_QNTITPAS.png (Hoekzema et al., 2022, p. 4)

File:HMM+21_3RWKBK7B.png (Hoekzema et al., 2022, p. 5)

File:HMM+21_XJIGE928.png (Hoekzema et al., 2022, p. 6)

File:HMM+21_S7H8GJUJ.png (Hoekzema et al., 2022, p. 6)

File:HMM+21_WPXFW6N9.png (Hoekzema et al., 2022, p. 7)

File:HMM+21_4EZ4NMG3.png (Hoekzema et al., 2022, p. 8)

File:HMM+21_HKCKFJPC.png (Hoekzema et al., 2022, p. 8)

File:HMM+21_QIA7SKEL.png (Hoekzema et al., 2022, p. 10)

File:HMM+21_QBC66G4D.png (Hoekzema et al., 2022, p. 11)

File:HMM+21_LS44WDMP.png (Hoekzema et al., 2022, p. 11)

File:HMM+21_MPSL99GJ.png (Hoekzema et al., 2022, p. 11)

File:HMM+21_66LRB2ZW.png (Hoekzema et al., 2022, p. 12)

File:HMM+21_N2BJG3VS.png (Hoekzema et al., 2022, p. 12)

File:HMM+21_MWKEJAYP.png (Hoekzema et al., 2022, p. 15)

File:HMM+21_FCK84MLM.png (Hoekzema et al., 2022, p. 16)

File:HMM+21_26AGJZ54.png (Hoekzema et al., 2022, p. 19)

File:HMM+21_CZJ3R8AF.png (Hoekzema et al., 2022, p. 19)

File:HMM+21_K79KQRBJ.png (Hoekzema et al., 2022, p. 21)