A ROAD MAP OF MOTIVIC
HOMOTOPY AND HOMOLOGY THEORY

CHARLES WEIBEL

The parallel constructions of Motivic Homotopy and Motivic Homology are based
on the construction of stable homotopy and homology in topology. Instead of starting
with topological spaces and using the unit interval [0, 1] to define homotopy, one starts
with smooth schemes over a fixed field k and uses the affine line A’ = Spec(k[t]). The
constructions are related by certain functors from homotopy to homology which, by
analogy, we call Hurewicz functors. Here is the main diagram, or road map.
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We begin with a description of the top row of this diagram. These constructions
are due to Morel and Voevodsky (see [MV] and [V1]). In the upper left corner we
have the category Sm/k of smooth schemes over k. This is the natural home of several
important objects, such as the geometric circle S} = (Al — 0) and the geometric n-
simplex A™ = Spec(k[to, ..., tn]/(O_ti =1)).

MotTivic HomMmOoTOPY THEORY

First one embeds Sm/k into the category of presheaves (of sets) on Sm/k, via the
Yoneda embedding: to Y we associate the presheaf hy : X +— Homgy,/x(X,Y). Pass-
ing to presheaves enables us to construct arbitrary colimits, including pushouts and
quotients. In particular, the simplicial circle S = A!/{0,1} and the Tate object
T = A'/(A! — 0) exist as pointed presheaves. The smash product operation and the
geometric realization of simplicial presheaves also make sense. (Geometric realization
sends the simplicial n-simplex A[n] to A™, and X x A[n] to X x A"; see [MV, 2.3.14]).

Moving horizontally, we may sheafify with respect to the Nisnevich topology on
Sm/k. (Each hy is already a sheaf.) Morel and Voevodsky use the word space to
mean a sheaf with respect to the Nisnevich topology on Sm/k, so the category Spc
of “spaces” is just the category of Nisnevich sheaves on Sm/k. Sheafification turns a
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presheaf into a space, of course. In the category Spc, a smooth scheme X is the colimit
of any Zariski open cover, and X/U = V/(VNU) if X = UUV. Similarly, X is the
colimit of any Nisnevich cover.

A map between two spaces is called an A -weak equivalence if it belongs to the small-
est saturated class of maps which contains all maps X x A! — X, and which is also
closed under isomorphisms, colimits and pushouts along monomorphisms. The homo-
topy category Hot of schemes over £ is the category obtained from Spc by inverting the
Al-weak equivalences. Morel and Voevodsky showed in [MV] that the Al-weak equiv-
alences are the weak equivalences of a proper closed model structure on Spc whose
cofibrations are monomorphisms.

An alternative and historically more familiar approach is to move quickly to the
category of simplicial spaces and impose a proper closed model structure, replacing A!
by the simplicial space X — h (X x A®), where A® is the cosimplicial scheme n — A™.
The corresponding homotopy category of simplicial spaces is equivalent to Hot by the
geometric realization functor described above. (See [MV, 2.3.14)).

The pointed variation of this construction follows the topological paradigm. That is,
we may embed the categories of presheaves, spaces and Hot into their corresponding
pointed categories by sending X to the union X, of X with a disjoint basepoint. It is
in the pointed category Hot, that we have T ~ (P!, 00) ~ S A S}; see [MV, 3.2.15].

The stable homotopy categories SW and SHot of T-spectra are obtained from
the pointed homotopy category by the process of stabilization with respect to the
T-suspension >7X = T A X. In fact, there are two distinct constructions in play:
desuspension and stabilization. They are described in [V1] and [VW].

The Spanier- Whitehead stable homotopy category SW is the category obtained from
Hot, by inverting the T-suspension X — T'A X, or equivalently, by inverting both the
simplicial suspension X — ¥, X = S! A X and the geometric t-suspension X — ¥, X =
S! A X. Every object of SW is a finite desuspension of some pointed space X, meaning
that it is isomorphic to ¥7." X for some n > 0. In this category, Hom(X,™ X, X7"Y) is
the direct limit of the Hom(X45 ™ X, ¥4 "Y) as i — co. As in topology [SW], and pointed
out in [V1], this construction has the defect that SW is not closed under coproducts:
we need to stabilize by passing to T-spectra.

A T-spectrum E is a sequence of pointed spaces E,, together with bonding maps
T ANE,, = E,+1. There is a category of T-spectra; a morphism E — F of T-spectra is
just a sequence of maps F,, — F;,, which commute with the bonding maps. The stable
homotopy category SHot of T-spectra is obtained from the category of T-spectra by
localizing with respect to stable weak equivalences; see [V1, 5.1]. There is a functor
Y% from Hot, to SHot sending a pointed space X to the sequence of spaces X A T"™.
Clearly, this functor factors through the Spanier-Whitehead category SW. (It is faithful
when restricted to spaces of finite type by [V1, 5.3].)

Down the left side of the main diagram we have the category Corj of finite corre-
spondences and the category PST of presheaves with transfer. These constructions
were first defined in [V] and detailed in [MVW].

The additive category Cory has the same objects as Sm/k: smooth schemes over
k. The group Corg(X,Y) of morphisms from X to Y is the free abelian group on
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the elementary correspondences — subvarieties W of X XY whose projection W — X is
finite. Morphisms in Cory, are called finite correspondences. Composition of finite corre-
spondences is given by a classical “pull back, intersect and push forward” construction
originally due to Hurwitz, Lefschetz and Severi [Dieu]; the modern details are given in
[V] or  MVW].

There is a canonical embedding of the category Sm/k into Cory, sending a morphism
f + X — Y between smooth schemes to its graph Iy, considered as an elementary
correspondence from X to Y.

A presheaf with transfers F' is a contravariant additive functor from Corg to abelian
groups. That is, it is a presheaf on Sm/k equipped with transfer maps F(Y) — F(X),
one for every elementary correspondence from X to Y, subject to the composition
rules in Corg. The category Corg embeds into the category PST of presheaves with
transfer via the Yoneda embedding: to a smooth scheme Y we associate the presheaf
with transfer Z;.Y : X — Corg(X,Y). Cory is not idempotent complete, because if
(X, z) is a smooth pointed scheme, then Zy, (X, z) = ZX/Z is a direct summand of
ZX. Important example of presheaves with transfer include Z = Zg.(Speck) and
ZtTGm = ZtT(Al - 0, ].)

MoTivic HOoMOLOGY THEORY

Across the bottom of the main diagram, we find the construction of Voevodsky’s
triangulated category of motives, DM™, as described in [V] and [MVW]. Since PST is
an abelian category, we can consider the derived category D~ (PST) of bounded above
cochain complexes of presheaves with transfer. [One may equally think of this as the
category D of bounded below chain complexes.] Since Z¢. (X X Y) = Z4y X ® Zy,Y in
PST, and projective resolutions are bounded above cochain complexes, D™ (PST) has
a well-behaved total tensor product and a tensor triangulated structure; see [ MVW, 8A].
Another reason for restricting to bounded above complexes is that the chain complex
associated to a simplicial object will be bounded above when indexed as a cochain
complex. For example, a basic object is the cochain complex Z(1); its shift Z(1)[1] is
the complex associated to the simplicial object X +— Z4-G,, (X x A®) of PST.

If we sheafify with respect to the Nisnevich topology, we get Nisnevich sheaves with
transfer, and the derived category D~ = D~ (Nis. ST) of bounded above cochain com-
plexes of Nisnevich sheaves with transfer. The tensor product in D~ (PST) induces a
tensor product ®%. on D™, making it into a tensor triangulated category (see [MVW,
14.2]).

A morphism in D~ is an Al -weak equivalence if it belongs to the smallest multiplica-
tive system containing quasi-isomorphisms and the projections Z;.(X x Al) — Z;. X,
which is also closed under shifts, direct sums and cones. Inverting the Al-weak equiv-
alences yields a tensor triangulated category DM g; see [V] [MVW, 14.1]. It may be
identified with the full subcategory of D™ consisting of complexes with homotopy in-
variant cohomology sheaves; see [V, 3.2.3] [MVW, 14.10]. Since Z(1) £ Z,G,,[—1] in
DM, the Tate twist M (1) = M ®}. Z(1) of M has good properties.

The triangulated category DM™ is obtained from DM g by inverting the Tate twist
M — M(1). Thus every object in DM is isomorphic to M (—n) for some n > 0 and
some M in DM_;. By [V2], DM_; — DM is fully faithful.
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The motive M(X) of a smooth scheme X is defined to be the class in DM (or
equivalently, in DM ™) associated to the chain complex which is Z,.-(X), concentrated
in degree zero. The category DMy, of geometric motives is the smallest triangulated

subcategory containing the M (X ) which is closed under summands as well as the Tate
twist. (See p. 192 and 3.2.6 of [V]).

STABLE MoTivic COMPLEXES

The category DM ™ is sufficient for most homological considerations. However, it
is not closed under infinite direct sums. In order to correct this, we need a different
construction, paralleling the definition of T-spectra in [V1]. (Cf. [Mor]). A version
paralleling the definition of symmetric spectra has been given by Spitzweck (see [Sp,
14.7] [Hov, 7.11]).

A stable motivic complex Eq is a sequence Ey, Fq,... of bounded above complexes
of Nisnevich sheaves with transfer, together with structure maps E,(1)[2] — FEn41.
The stable motivic complex X3 X associated to a bounded above complex of Nisnevich
sheaves X is the sequence X,, = X (n)[2n] with structure maps X (n)(1)[2] = X (n+1).

A function from E, to F, is a sequence of maps E, — F, commuting with the
structure maps. Each stable motivic complex defines a cohomological functor {E*}
from DMg,, to abelian groups by:

E(M) = colim Hom pp;- (M (n)[2n], Epi)-

n—0o0

A function E, — F, is called a stable weak equivalence if the corresponding natural
transformations of functors E* — F* are isomorphisms for all 5. A useful example of a
stable weak equivalance is any function for which the E,, — F}, are Al-weak equivalences
for n > 0. In particular, £ sends Al-weak equivalences to stable weak equivalences.

Definition. The category DM is the localization of the category of stable motivic
complexes and functions, with respect to the class of stable weak equivalences.

By construction, there is a canonical functor X3 : DM_g — DM. In fact, DM is a
triangulated category and X3 is a triangulated functor. Indeed, the mapping cone of a
function f : Fq — F, is also a stable motivic complex, and E, — Fy — cone(f) — F4[1]
is the prototype of a distinguished triangle.

The T-suspension Y7 FE, and T-desuspension Zr}lE. are obtained by shifting the
sequence one to the left and right, respectively. They are inverse operations in DM;
E, = ZEIZTE. and ZTE;IE. — F, is a stable weak equivalence. The Tate twist is
invertible in DM, because X7 is, so £ induces a triangulated functor DM~ — DM.

We could have also obtained DM by restricting the definition of stable motivic
complex to negatively graded complexes. To see this, let 7 denote the (good) truncation
to cohomological degrees < 0. Then the truncation TE, = {TE,} is also a stable motivic
complex, and the canonical map 7E, — FE, is a stable weak equivalence; this fact
uses the fact that for each geometric motive M the M (n)[2n] are eventually negatively
graded. The truncation allows us to see that the direct sum of a family E¢ exists and
equals the sequence of the ®,7(ES).
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Etale analogue. It is clear that we can repeat the above construction with the étale
topology, and with Z/m coefficients, assuming 1/m € k. Remark 9.6 and theorem 9.32
in [MVW] shows that DMg.(k;Z/m) is just the full derived category D(G,Z/m) of
profinite Z/m|G]-modules, where G is the absolute Galois group of k.

THE HUREWICZ FUNCTOR

Having described the outer part of the main diagram, we now need to fill in the
middle. The category Dy (Sm/k) = D~ (Ab°™") is the derived category of bounded
above cochain complexes of presheaves of abelian groups on Sm/k, i.e., complexes of
objects in the abelian category ADLS™” of presheaves of abelian groups on Sm/k.

Consider the free functor X — ZX from presheaves of sets to the category ADbS™” of
presheaves of abelian groups; by definition, ZX (U) is the free abelian group on the set
X (U). Composing with the canonical embedding of Ab® ™ into its derived category
D~ (Ab5™”) gives the first vertical map in the second column of the main diagram.

Note that the terminal presheaf x is sent to the presheaf U — Z. If (X, %) is a pointed
presheaf of sets, Z(X, x)(U) is defined to be the cokernel of the canonical basepoint map
7 =5 7Z.X (U); these definitions are consistent since Z (X, *) = ZX.

To map downward to D~ (PST), we use the fact the abelian category Ab°™" has
enough projectives: every representable presheaf Zhy is projective and every projective
is a summand of a direct sum of representable presheaves. Since we may replace any
bounded above complex by a projective resolution, the derived category D_(AbS mop)
is equivalent to the triangulated category K of bounded above complexes of projective
presheaves (and chain homotopy equivalence classes of maps). By the Yoneda lemma,
a map Zhx — Zhy is the same as an element of Zhy (X), i.e., a Z-linear combination
of elements of Homg,, /;(X,Y). It follows that the canonical embedding Sm/k — Cory

induces a functor o
D~ (Ab°™") = K — D~ (PST),

sending Zhy to Z. Y, considered as a complex in degree zero.

Because the vertical functor from presheaves of sets to D~ (Cory) sends the presheaf
hy to Z.Y , the left rectangle in the main diagram commutes. The composite map sends
the Tate object T to the complex Z,.G,, — Z-(A!, 1), and sends the simplicial circle
S! to the complex Z — Z,.(A!,1); these complexes are concentrated in cohomological
degrees —1 and 0, and are A'-weak equivalent to Z,.G,, [1] and Z[1], respectively.

Sheafifying with respect to the Nisnevich topology immediately yields a functor H
from spaces to D~ (Nis. ST). We shall call it the Hurewicz functor, because

X (S%) = Hom(hg:, X) = Hom p- (Z4,(S?), HX) — Hom pm, (Zli], HX)

is the analogue of the Hurewicz map 7;(X) — H;(X) in ordinary homotopy theory; it is
obtained by replacing a space by a nicer space, abelianizing and passing to the associated
complex (which is well defined up to quasi-isomorphism). The birth certificate of the
Hurewicz functor ensures that the second rectangle commutes in the main diagram.
By construction, the Hurewicz functor sends X x Al — X to Z (X x Al) — Z, X,
and hence sends A'-weak equivalences of spaces to Al-weak equivalences of complexes.
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Therefore it preserves localization, i.e., it induces a Hurewicz functor from the homotopy
category Hot to DM _g;. As noted above, we have H(S;) = Z[1] and H(T) = Z(1)[2].

The extension of H : Hot — DM _; to a functor SW — DM is a formal conse-
quence of the definitions and the following lemma, which shows that H sends T'A X to
L4 (T) ®y, H(X) = H(X)(1)[2].

Lemma 1. The functor H : Hot — DM g sends the smash product X AN'Y of spaces
to the total tensor product H(X) ®Y%. H(Y) in DM .

Proof. If X and Y are unpointed presheaves, then Z(X x Y) = ZX ® ZY in Ab® m?
(where ® is the presheaf tensor product). From this, a simple calculation shows that
if X and Y are pointed presheaves then Z(X AY) = ZX ® ZY. The same is true in
D_(Absmop): if P— ZX and Q — ZY are projective resolutions, then P ® Q —
Z(X AY) is also a projective resolution (since projectives are flat in Ab5™™).

Applying the additive functor K — D~ (PST) (induced from Sm/k — Cory) sends
P,Q and PRQ to H(X), H(Y) and H(X AY), respectively. Since it sends Z(hyxv) =
Z(hy)RZ(hy) t0 Zyr(U X V) = L (U) @4y gy (V'), it also sends PRQ to H(X)®%F H(Y),
whence the result.

The fact that H extends to a functor from SHot to DM follows easily from the fol-
lowing lemma. This makes the final rectangle in the main diagram commute, completing
our description of the road map.

Lemma 2. For each T-spectrum E, the stable motivic complexr H(E) = {H(FEy,)} is
well defined up to stable weak equivalence. For each morphism f : E — F there is a well
defined morphism H(E) — H(F) in DM.

To see this, choose a projective resolutions P, — ZFE, and maps ZT ® P, = Pp11;
these choices are unique up to chain homotopy equivalence. Applying Sm/k — Cory
yields the structure maps H(FE,)(1)[2] — H(Fn+1) turning H(Ey), H(F,),... into a
stable motivic complex H(E); a different family of choices would yield a stably weak
equivalent complex.

Similarly, a choice of @, — ZF,, etc. yields a stable motivic complex H(F). A
morphism f yields a family of maps f,, : P, = Q, and H(f,) : H(E,) — H(F,), well
defined up to chain homotopy equivalence. This may not be a function because the two
maps from H(E,)(1)[2] to H(F,+1) are only chain homotopic. To repair this, we replace
() by the mapping cylinder cyl(f,) and use the structure maps from ZT ® cyl(f,) =
cyZT ® fn) to cyl(fnt+1)- Then the desired morphism in DM is the composite of the
function H(E) — cyl(f) and the inverse of the stable weak equivalence H(F) — cyl(f).
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