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Foreword

These are course notes for a one-semester third-year course on cat-
egories and modules taught at the University of Amsterdam.

Prerequisites

Linear algebra, groups, elementary point-set topology, and the ba-
sics of rings and fields. Several exercises and examples in the parts
about categories refer to basic concepts in algebraic topology, Galois
theory, or representation theory. Although in principle these can be
skipped, developing a rich vocabulary of natural examples is probably
the most important aspect of becoming acquainted with categories.

Other sources

Excellent alternative sources for much of the material in this course
are the concise but clear and well-written Atiyah & MacDonald [1], the
more lengthy Lang [2], the course notes by Moerdijk [3] and (in Dutch)
the Algebra 2 course notes by Stevenhagen [4]. A good introduction
in the language of categories and functors containing much more than
these notes is [5].
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van Duin, Eline Filius, Pepijn Hoefgeest, Tycho van Hoof, Juultje Kok,
Christopher Spelt, Tijn de Vos, for their many corrections and sugges-
tions to the first drafts of these course notes.
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CHAPTER 1

Modules over a ring

1. Left and right modules

Let R be a ring. Recall that this means R is a set equipped with
an addition (s, t) 7→ s+ t, multiplication (s, t) 7→ st, and distinguished
elements 0 ∈ R and 1 ∈ R satisfying

(R1) (R,+, 0) is an abelian group,
(R2) for all r, s, t ∈ R we have (rs)t = r(st),
(R3) for all r, s, t ∈ R we have r(s+t) = rs+rt and (r+s)t = rt+st,
(R4) for all r ∈ R we have 1r = r1 = r.

Definition 1.1. A left module over a ring R is an abelian group
M equipped with an operation

R×M →M, (r, x) 7→ rx

satisfying for all r, s ∈ R and x, y ∈M the following identities:
(M1) r(x+ y) = rx+ ry,
(M2) (r + s)x = rx+ sx,
(M3) (rs)x = r(sx),
(M4) 1x = x.

One also says that ‘R acts on M ’, so that axiom (M3) for example
expresses that acting by rs is the same as first acting by s, and then
by r.

We use the same symbol 0 to denote the elements 0 ∈M and 0 ∈ R.
This should not lead to confusion, see Exercise 1.1.

A right module over R is defined similarly: the action is written on
the right: M ×R→M, (x, r) 7→ xr, and must satisfy
(M1’) (x+ y)r = xr + yr,
(M2’) x(r + s) = xr + xs,
(M3’) x(rs) = (xr)s,
(M4’) x1 = x.

9



10 1. MODULES OVER A RING

If R is commutative, then the difference between a left and a right
module is purely a matter of notation, but over a non-commutative ring
the axioms (M3) and (M3’) give genuinely different conditions.

We will mostly work with left modules, and simply call them mod-
ules over R or R-modules.

There is another way to describe (left) modules, using the endomor-
phism ring of an abelian group. Let A be an abelian group. Denote by
End(A) the set of group homomorphisms A → A. This forms a ring
with addition and multiplication of f, g ∈ End(A) defined by pointwise
addition

f + g : A→ A, a 7→ f(a) + g(a)

and composition
fg : A→ A, a 7→ f(g(a)).

The zero element of this ring is the constant map 0: a 7→ 0, and the
unit element is the identity map idA : a 7→ a.

Lemma 1.2. Let M be an R-module. Then the map

R→ End(M), r 7→ (x 7→ rx)

is a ring homomorphism. Conversely, let M be an abelian group and
φ : R→ End(M) be a ring homomorphism. Then the operation

R×M →M, (r, x) 7→ rx := φ(r)(x)

gives M the structure of an R-module.

Proof. See Exercise 1.3. �

In other words, a (left) R-module is the same as an abelian group
M together with a ring homomorphism R→ End(M).

2. First examples

Example 1.3. Let R be a ring. Then the trivial group {0} is an
R-module with r0 := 0 for all r ∈ R. We denote this module by 0, and
call it the zero module.

Example 1.4. Let R be a ring and n ≥ 0. Then M := Rn is an
R-module with addition

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn)

and R-action
r · (x1, . . . , xn) := (rx1, . . . , rxn).
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For n = 0 we obtain the zero module R0 = 0 and for n = 1 we obtain
the R-module R.

Example 1.5. For every abelian group A there is a unique ring
homomorphism Z → End(A). It follows that a Z-module is the same
as an abelian group. For r ∈ Z and x ∈ A we have

r · x =

{
x+ · · ·+ x (r terms) r ≥ 0

−(x+ · · ·+ x) (−r terms) r ≤ 0

Example 1.6. Let K be a field. Then a K-module is the same
as a K-vector space.

Example 1.7. Let K be a field and n ≥ 0. Let Matn(K) be the
ring of n by n matrices over K. Then Kn is a left Matn(K)-module via

Matn(K)×Kn 7→ Kn, (A, v) 7→ A · v,

where we interpret vectors v ∈ Kn as column matrices.

Example 1.8. Let R be a ring and I ⊂ R an ideal. Then I is an
R-module.

Example 1.9. Let K be a field. Let V be a K-vector space, and
α : V → V be a K-linear endomorphism of V . Then there is a unique
ring homomorphism

ρ : K[X]→ End(V )

such that
(1) ρ(λ)(v) = λv for all λ ∈ K and v ∈ V,
(2) ρ(X) = α.

This homomorphism is given by

(1) ρ :
∑

λiX
i 7→

(
v 7→

∑
λiα

i(v)
)
,

where αi denotes the iterated composition α ◦ · · · ◦ α. In particular, V
obtains the structure of a K[X]-module.

Conversely, given a K[X]-module V , the restriction of the action of
K[X] to K makes V into a K-vector space, and the map

α : V → V, v 7→ X · v

isK-linear. We conclude that aK[X]-module is the same as aK-vector
space equipped with an endomorphism (namely the action of X).
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We will see in Chapter 3 that the ‘Jordan normal form’ of complex
square matrices (C-linear endomorphisms of Cn), is really a theorem
about the structure of C[X]-modules, and that it is most naturally
explained in terms of ideals in C[X].

Example 1.10 (The group algebra and representations). Let K
be a field and G a group. Let K[G] be the group algebra of G over K.
Elements of K[G] are formal expressions∑

g∈G
agg (ag ∈ K)

with ag = 0 for all but finitely many g (this is automatic if G is a
finite group). Addition is defined in the obvious way. Multiplication is
defined by extending the multiplication in G. We have∑

g∈G
agg

 ·(∑
h∈G

bhh

)
=
∑
t∈G

ctt

with
ct =

∑
gh=t

agbh.

A K[G]-module is the same as a K-vector space V , together with a
group homomorphism

G→ GLK(V ) = EndK(V )×.

In other words, a K[G]-module is a K-linear representation of G.

3. Homomorphisms, submodules and quotient modules

Definition 1.11. Let M and N be R-modules. An R-module
homomorphism from M to N is a map f : M → N such that for all
r ∈ R and x, y ∈M we have

f(x+ y) = f(x) + f(y)

and
f(rx) = rf(x).

We also say that the map f : M → N is R-linear. The set of R-module
homomorphisms from M to N is denoted HomR(M,N). An isomor-
phism of R-modules is a bijective R-module homomorphism. Two R-
modules are called isomorphic if there exists an isomorphism between
them.
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A submodule of an R-moduleM is a subgroup N ⊂M such that for
all r ∈ R and x ∈ N we have rx ∈ N . A submodule of an R-module is
itself an R-module. If N ⊂ M is a submodule, then the abelian group
M/N has the structure of an R-module, via

r(x+N) := rx+N.

We call M/N the quotient module.
To a module homomorphism f : M → N are associated three im-

portant modules. The kernel

ker f := {x ∈M | f(x) = 0} ⊂M,

which is a submodule of M , the image

im f := f(M) ⊂ N,

which is a submodule of N , and the cokernel

coker f := N/(im f),

which is a quotient module of N . A homomorphism f is injective if
and only if ker f is trivial, and it is surjective if and only if coker f is
trivial.

As with groups or vector spaces, we have the natural isomorphism

M/(ker f)
∼→ im f, x̄ 7→ f(x).

4. Products, direct sums and free modules

Let R be a ring and let M and N be R-modules. The cartesian
product M × N is naturally an R-module with (x1, x2) + (y1, y2) =
(x1 +y1, x2 +y2) and r(x1, x2) = (rx1, rx2). We call this R-module the
product or direct product of the R-modules M and N . More generally,
if (Mi)i∈I is a family of R-modules indexed by a set I, then the product∏
i∈IMi is naturally an R-module with

(xi)i∈I + (yi)i∈I = (xi + yi)i∈I , r(xi)i∈I = (rxi)i∈I ,

for all (xi)i∈I , (yi)i∈I in
∏
i∈IMi and r ∈ R. The empty product gives

the zero module.
The direct sum of a collection (Mi)i∈I of R-modules indexed by a

set I, denoted
⊕

i∈IMi is the R-submodule of
∏
i∈IMi defined as⊕

i∈I
Mi :=

{
(xi)i∈I ∈

∏
i∈I

Mi | {i ∈ I : xi 6= 0} is finite
}
.
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Note that this is indeed a submodule: if (xi)i∈I and (yi)i∈I have only
finitely many non-zero terms, then so do (xi + yi)i∈I and (rxi)i∈I .

One sometimes phrases the condition on (xi)i∈I as ‘xi is zero for
all but finitely many i’. Of course, if I is finite then the condition is
vacuous and we have

⊕
i∈IMi =

∏
i∈IMi.

We have natural ‘inclusion’ maps

ιj : Mj →
⊕
i∈I

Mi, x 7→ ιj(x), ιj(x)i =

{
x i = j

0 i 6= j

and ‘projection’ maps

πj :
∏
i∈I

Mi →Mj , (xi)i∈I 7→ xj .

If we have Mi = M for all i, then we write M I :=
∏
i∈IM and

M (I) := ⊕i∈IM , so that we have

M I = {(xi)i∈I | xi ∈M}
and

M (I) =
{

(xi)i∈I | xi ∈M, and xi = 0 for all but finitely many i
}
.

If I is a finite set of cardinality n, then we have M I = M (I) ∼= Mn.

Let (xi)i∈I be a family of elements of an R-module M . Then we
call the intersection of all submodules N ⊂ M that contain all xi the
submodule generated by (xi)i∈I . We denote it by 〈xi〉i∈I . It is the
smallest submodule of M containing all the xi. It consists of all finite
R-linear combinations of the xi.

We say that M is finitely generated if there exists a finite family
(xi)i∈I with M = 〈xi〉.

Example 1.12. Let R be a ring and I a set. Consider the module

R(I) =
{

(ri)i∈I ∈ RI | ri = 0 for all but finitely many i ∈ I
}
.

For an index i ∈ I we denote by ei ∈ R(I) the element ei := ιi(1). One
may think of ei as the ‘standard basis’ element

ei = (. . . , 0, 0, 1, 0, 0, . . .)

with a 1 at position i. Clearly, every element of R(I) is a finite R-linear
combination of ei’s, so the family (ei)i∈I generates R(I). Note that if I
is infinite, then the ei do not generate the direct product RI .
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Proposition 1.13. Let R be a ring, M an R-module, and (xi)i∈I
a family of elements of M . Then there exists a unique R-linear map
ϕ : R(I) →M with ϕ(ei) = xi for every i ∈ I.

Moreover, ϕ is surjective if and only if M is generated by (xi)i∈I .

This generalises the basic fact from linear algebra that giving a
linear map Rn → V is the same as giving the images of the standard
basis vectors.

Proof of Proposition 1.13. The map ϕ is given by

ϕ : R(I) →M, (ri)i∈I 7→
∑
i∈I

rixi

(note that in the sum only finitely many terms are non-zero). This map
is surjective if and only if every element of M can be written as a finite
R-linear combination of elements xi. �

Definition 1.14. Let M be an R-module and (xi)i∈I a family
of elements of M . Let ϕ : R(I) → M be the unique R-linear map with
ϕ(ei) = xi for all i ∈ I. We say that (xi)i∈I is a basis of M if ϕ is an
isomorphism. We say that an R-module M is free if it has a basis. If
it has a basis of cardinality n, then we say that M is free of rank n.

In contrast with the case of vector spaces (modules over a field), a
finitely generated R-module need not have a basis. For example: for
m > 1 the Z-module Z/mZ does not have a basis, and hence is not
free.

Proposition 1.15. Let M be an R-module and (xi)i∈I a family
of elements of M . Then (xi)i∈I is a basis of M if and only if for every
x ∈M there is a unique family (ri)i∈I of elements in R with

(1) ri = 0 for all but finitely many i, and
(2) x =

∑
i∈I rixi.

Note that the condition in (1) guarantees that only finitely many
terms in the sum in (2) are non-zero.

Proof of Proposition 1.15. This is a direct translation of the
definition: existence of (ri) is equivalent with x being in the image of
ϕ : R(I) → M , and uniqueness is equivalent with ϕ : R(I) → M being
injective. �
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Example 1.16. Let U be an open subset of Rn. Then the space
of 1-forms Ω1(U) on U forms a module over the ring C∞(U) of C∞
functions on U . This module is free of rank n, with basis dx1, . . . ,dxn.

Proposition 1.17. Let R be a commutative ring with 0 6= 1. If
Rn and Rm are isomorphic R-modules, then n = m.

In other words: an R-module over a non-zero commutative ring
which is free of finite rank has a well-defined rank. We already know
this if R is a field (any two bases of a vector space have the same
cardinality), and the proof of the proposition will be by reduction to
the case of a field.

Proof of Proposition 1.17. Let M = Rm, N = Rn and let

ϕ : M → N

be an isomorphism. Let I ⊂ R be a maximal ideal (which exists in
every non-zero commutative ring). Then ϕ induces an isomorphism

ϕ̄ : M/IM → N/IN

of R/I-modules (see also Exercise 1.11). We have M/IM = (R/I)m

and N/IN = (R/I)n. But R/I is a field, so using the fact that a vector
space has a well-defined dimension we find

m = dimR/IM/IM = dimR/I N/IN = n,

which is what we had to prove. �
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Exercises

Exercise 1.1. LetM be an R-module. Show that for every r ∈ R
and x ∈M the following identities in M hold:

(1) r0 = 0,
(2) 0x = 0,
(3) (−r)x = r(−x) = −(rx).

Exercise 1.2. Let R = {0} be the zero ring. Show that every
R-module is the zero module.

Exercise 1.3. Prove Lemma 1.2.

Exercise 1.4. Let R = (R, 0, 1,+, ·) be a ring. Consider the
opposite ring Ropp = (R, 0, 1,+, ·opp) where multiplication is defined
by

r ·opp s := s · r.
Show that a right module over R is the same as an abelian group M
equipped with a ring homomorphism Ropp → End(M).

Exercise 1.5. Let M be an R-module, and let x1, . . . , xn be
elements of M . Verify that the map

Rn →M, (r1, . . . , rn) 7→ r1x1 + · · ·+ rnxn

is a homomorphism of R-modules.

Exercise 1.6. Let R be a domain and I ⊂ R a non-zero principal
ideal. Show that I, as an R-module, is isomorphic to the R-module R.

Exercise 1.7. Let R be a ring, and let M and N be R-modules.
Show that point-wise addition makes HomR(M,N) into an abelian
group. Show that if R is commutative, then HomR(M,N) has a natural
structure of R-module.

Exercise 1.8. Let R be a ring. Show HomR(R,M) ∼= M as
abelian groups (and if R is commutative, as R-modules).

Exercise 1.9. Verify that the map (1) in Example 1.9 is indeed
a ring homomorphism.

Exercise 1.10. LetK be a field and n a positive integer. Let V be
a K-vector space, and let α1, α2, . . . , αn be pairwise commuting linear
endomorphisms of V . Show that there is a unique ring homomorphism

ρ : K[X1, . . . , Xn]→ End(V )
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such that for all λ ∈ K and v ∈ V we have ρ(λ)(v) = λv and for all i
we have ρ(Xi)(v) = αi(v).

Convince yourself that a K[X1, . . . , Xn]-module is the same thing
as a vector space together with n pairwise commuting linear endomor-
phisms.

Exercise 1.11. Let R be a ring and I ⊂ R a (two-sided) ideal.
Let M be an R-module. Show that

IM := {
∑

rixi | ri ∈ I, xi ∈M}

is a sub-R-module of M , and show that M/IM is an R/I-module.
Show that if M is free of rank n as R-module, then M/IM is free of
rank n as R/I-module.

Exercise 1.12. Let R be a ring and let M be a left R-module.
Show that

AnnR(M) := {r ∈ R | rx = 0 for all x ∈M }
is a (two-sided) ideal in R.

Exercise 1.13. Show thatQ is not a finitely generated Z-module.

Exercise 1.14. Let K be a field and I a countably infinite set.
Show that the K-module KI does not have a countable generating set.

Exercise 1.15. Show that Q is not a free Z-module.

Exercise 1.16. Prove the following generalisation of Proposition
1.13: Let R be a ring and let (Mi)i∈I be a collection of R-modules
indexed by a set I. Let N be an R-module, and let (fi : Mi → N)i be
a collection of R-linear maps. Then there exists a unique R-linear map

f :
⊕
i∈I

Mi → N

such that for all i ∈ I and x ∈Mi we have f(ιi(x)) = fi(x).

Exercise 1.17. Let R be a ring, (Mi)i∈I a family of R-modules,
and N an R-module. Show that there are isomorphisms

HomR(
⊕
i∈I

Mi, N)
∼−→
∏
i∈I

HomR(Mi, N)

and
HomR(N,

∏
i∈I

Mi)
∼−→
∏
i∈I

HomR(N,Mi)
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of abelian groups.

Exercise 1.18 (?). Let K be a field. Let R be the set of ∞ by
∞ matrices  a11 a12 · · ·

a21 a22 · · ·
...

...


with aij ∈ K, and with the property that every column contains only
finitely many non-zero elements. Verify that R (with the usual rule
for matrix multiplication) is a ring. Show that the left R-modules R
and R ⊕ R are isomorphic. Conclude that the condition that R is
commutative cannot be dropped from Proposition 1.17.





CHAPTER 2

Exact sequences

Exact sequences form a useful and extensively used notational tool
in algebra. They allow to replace tedious and verbose arguments in-
volving kernels and quotients by quick and intuitive ‘diagram chases’.

1. Exact sequences

If f : M1 → M2 and g : M2 → M3 are R-module homomorphisms,
then we say that the sequence

M1
f−→M2

g−→M3

is exact if and only if the image of f is the kernel of g, as submodules
of M2. For example: the sequence

0 −→M −→ N

is exact if and only if M → N is injective, and the sequence

M −→ N −→ 0

is exact if and only if M → N is surjective.
A general sequence

· · · −→Mi−1
fi−1−→Mi

fi−→Mi+1 −→ · · ·
is called exact if for every i we have ker fi = im fi−1 as submodules of
Mi.

An exact sequence of the form

0 −→M1
f−→M2

g−→M3 −→ 0

is called a short exact sequence. Note that f induces an isomorphism

M1
∼= ker g

and g induces an isomorphism

coker f ∼= M3.

21
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We will often interpret the injective map f as the inclusion of a sub-
module M1 into M2, and M3 as the quotient of M2 by the submodule
M1, so that we can think of any short exact sequence as a sequence of
the type

0 −→M1 −→M2 −→M2/M1 −→ 0.

2. The Five Lemma and the Snake Lemma

The Five Lemma and Snake Lemma are powerful and often-used
lemmas about modules that are hard to state (and even harder to prove)
without the language of commutative diagrams and exact sequences.
The proofs are classic examples of ‘diagram chasing’. Such arguments
are often fairly easy to verify by tracing elements around the diagram
on the blackboard or a piece of paper, but are sometimes headache-
provokingly resistant to being rendered or read in prose.

Theorem 2.1 (Five Lemma). Let R be a ring. Consider a com-
mutative diagram of R-modules

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

f1 f2 f3 f4 f5

with exact rows. If f1, f2, f4, f5 are isomorphisms, then so is f3.

In fact, the proof will show that it suffices to assume that f1 is
surjective, f5 is injective, and f2 and f4 are isomorphisms.

Proof. The proof consists of two parts, one showing that f3 is
injective, the other that it is surjective. Both parts require only part of
the hypotheses in the theorem.

Claim. If f1 is surjective, and f2 and f4 are injective, then f3 is
injective.

Indeed, assume f3(x) = 0 for some x ∈ M3. We need to show that
x = 0. Let x′ ∈ M4 be the image of x. By the commutativity of the
diagram, f4(x′) = 0. But f4 was injective, hence x′ = 0. It follows that
x ∈M3 is the image of some element y ∈M2. By commutativity, f2(y)
maps to zero in N3, hence f2(y) is the image of some element z ∈ N1.
By the assumption on f1, there is a z̃ ∈M1 with f1(z̃) = z.

Consider the image y′ of z̃ in M2. By commutativity, we have
f2(y′) = f2(y), but since f2 is injective, this implies y′ = y. We see that
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x ∈M3 is the image of some element z̃ in M1, and hence by exactness
we conclude x = 0.

Claim. If f5 is injective, and f2 and f4 are surjective, then f3 is
surjective. The proof of this second claim is left to the reader, see
Exercise 2.3.

The theorem follows immediately from the above two claims. �

Theorem 2.2 (Snake Lemma). Let R be a ring. Let

0 M1 M2 M3 0

0 N1 N2 N3 0

α

f1

β

f2 f3

α′ β′

be a commutative diagram in which both horizontal rows are short exact
sequences. Then there is a commutative diagram

0 ker f1 ker f2 ker f3

0 M1 M2 M3 0

0 N1 N2 N3 0

coker f1 coker f2 coker f3 0

α

f1

β

f2 f3

α′ β′

of R-modules in which the maps ker fi →Mi and Ni → coker fi are the
natural inclusions and projections, and in which the sequence

0→ ker f1 → ker f2 → ker f3 → coker f1 → coker f2 → coker f3 → 0

is exact.

Sketch of proof. We only give the most interesting part of the
proof: the construction of the ‘snake’ map

d : ker f3 → coker f1.

Let x ∈ ker f3 ⊂ M3. Since the map β : M2 → M3 is surjective,
there is a y ∈ M2 with β(y) = x. By the commutativity of the right
square, we have

β′(f2(y)) = f3(β(y)) = f3(x) = 0.
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So f2(y) ∈ kerβ′ = imα′, hence there is a z ∈ N1 with α′(z) = f2(y).
Note that z is unique, as the map α′ is injective. We defined d(x) as
the element z̄ ∈ coker f1 = N1/f1(M1).

We must check that this is well-defined, since our construction de-
pended on the choice of y ∈ M2 with β(y) = x. Let y′ ∈ M2 be
another element with β(y′) = x, leading to a z′ ∈ N1 as above. Since
β(y′ − y) = x − x = 0 there is a unique δ ∈ M1 with y′ − y = α(δ).
Now the commutativity of the diagram shows z′− z = f1(δ) in N1, and
hence z̄′ = z̄ in N1/f1(M1), as we had to show. �

3. Split short exact sequences

LetM and N be R-modules. Then their direct sum fits into a short
exact sequence

0 −→M
i−→M ⊕N p−→ N −→ 0

where the maps are the natural inclusion i : x 7→ (x, 0), and projection
p : (x, y) 7→ y. It is often convenient to be able to recognize if a given
short exact sequence is of the above special form.

Theorem 2.3 (Splitting lemma). Let

0 −→M1
f−→M2

g−→M3 −→ 0

be an exact sequence of R-modules. Then the following are equivalent:
(1) there is a homomorphism h : M2 →M1 such that hf = idM1

(2) there is a homomorphism s : M3 →M2 such that gs = idM3

(3) there is an isomorphism ϕ : M2
∼→ M1 ⊕ M3 such that the

diagram

0 M1 M2 M3 0

0 M1 M1 ⊕M3 M3 0

f

id

g

ϕ id

i p

commutes (where i(x) = (x, 0) and p(x, y) = y.)

If these conditions hold, we say that the sequence is split or split
exact. The map h is called a retraction of f , and the map s a section
of g. See Exercise 2.12 for examples of short exact sequences that are
not split.
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Proof of Theorem 2.3. We first show that (3) implies (2). In-
deed, the map

M3 →M2, y 7→ ϕ−1(0, y)

is a section of g.
Next, we show that (2) implies (1), so assume that s : M3 →M2 is

a section. We will construct a retraction h : M2 → M1. Let x ∈ M2.
Consider the element

y := x− s(g(x)) ∈M2.

Then, since gs = id we have

g(y) = g(x)− g(s(g(x))) = g(x)− g(x) = 0.

So y ∈ ker g = im f , and since f is injective, there is a unique z ∈ M1

with f(z) = y. Define h(x) := z. One checks that h is indeed a
retraction.

Finally, to show that (1) implies (3), assume that h : M2 → M1 is
a retraction. Then consider the map

ϕ : M2 →M1 ⊕M3, x 7→ (h(x), g(x)).

Note that this map is an R-module homomorphism. We verify that
it makes the diagram commute. We start with the left square. Take
an x ∈ M1 in the left-top corner of this square. Going down and
then right, it gets mapped to i(id(x)) = (x, 0) ∈ M1 ⊕M3. Following
the other path, we end up with ϕ(f(x)) = (h(f(x)), g(f(x))). But
now, h(f(x)) = x because h is a retraction, and g(f(x)) = 0 because
im f = ker g by the hypothesis that the sequence is exact. We conclude
that ϕ(f(x)) = (x, 0) and that the left square indeed commutes. For the
right-hand square, take x ∈M2. Then one path yields id(g(x)) = g(x),
and following the other path, we obtain p(ϕ(x)) = p(h(x), g(x)) =
g(x). These agree, so we conclude that the diagram indeed commutes.
Finally, by Exercise 2.5 we see that the map ϕ is automatically an
isomorphism, which shows that (3) indeed follows from (1). �
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Exercises

Exercise 2.1. Show that

0 −→M −→ 0

is exact if and only if M is the zero module.

Exercise 2.2. Let f : M → N be an R-module homomorphism.
Show that there is an exact sequence

0 −→ ker f −→M
f−→ N −→ coker f −→ 0

of R-modules.

Exercise 2.3. Complete the proof of the Five Lemma (Theorem
2.1): show that if f2 and f4 are surjective, and if f5 is injective, then
f3 is surjective.

Exercise 2.4. Let

M1 M2 M3 0

N1 N2 N3 0

f1 f2

be a commutative diagram of R-modules with exact rows. Show that
there exists a unique R-linear map f3 : M3 → N3 making the resulting
diagram commute.

Exercise 2.5. Consider a commutative diagram of R-modules

0 M E N 0

0 M E′ N 0

α

idM f idN

in which both rows are short exact sequences. Deduce from the snake
or five lemma that f must be an isomorphism. Show that f is an iso-
morphism without using the snake or five lemma. (Hint for surjectivity:
given y ∈ E′ choose an x ∈ E with same image as y in N . Show that
there is an z ∈M with f(α(z) + x) = y.)

Exercise 2.6. Give an example of a diagram as in Theorem 2.2,
for which the ‘snake map’ d : ker f3 → coker f1 is non-zero.
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Exercise 2.7. Let R be a ring and let

M1 M2

N1 N2

α1 α2

be a commutative diagram of R-modules, in which the two horizontal
maps are injective. Show that there exists an R-module E and an exact
sequence

0 −→ kerα1 −→ kerα2 −→ E −→ cokerα1 −→ cokerα2

of R-modules.

Exercise 2.8. Let R be a ring, let

(2) 0 −→M1 −→M2 −→M3

be an exact sequence of R-modules, and let N be an R-module. Show
that there is an exact sequence of abelian groups

0 −→ HomR(N,M1) −→ HomR(N,M2) −→ HomR(N,M3).

Give an example to show that the exactness of 0 → M1 → M2 →
M3 → 0 need not imply that the map HomR(N,M2)→ HomR(N,M3)
is surjective.

Exercise 2.9. Let R be a ring, let

M1 −→M2 −→M3 −→ 0

be an exact sequence of R-modules, and let N be an R-module. Show
that there is an exact sequence of abelian groups

0 −→ HomR(M3, N) −→ HomR(M2, N) −→ HomR(M1, N).

Give an example to show that the exactness of 0 → M1 → M2 →
M3 → 0 need not imply that the map HomR(M2, N)→ HomR(M1, N)
is surjective.

Exercise 2.10. Let I and J be left ideals in a ring R. Show that
there are exact sequences

0→ I ∩ J → I ⊕ J → I + J → 0

and
0→ R/(I ∩ J)→ R/I ⊕R/J → R/(I + J)→ 0

of R-modules.
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Exercise 2.11. Let R be a commutative ring and let

0 −→M −→ E −→ N −→ 0

be a short exact sequence of R-modules. Let I := AnnRM and J :=
AnnRN (see Exercise 1.12). Show that

IJ ⊂ AnnRE ⊂ I ∩ J

as ideals in R.

Exercise 2.12. Show that the short exact sequences of Z-modules

0 −→ Z
2−→ Z −→ Z/2Z −→ 0

and
0 −→ Z/2Z

2−→ Z/4Z −→ Z/2Z −→ 0

are not split. (Here the ‘2’ above the arrows are shorthand for the maps
x 7→ 2x and x̄ 7→ 2x.)

Exercise 2.13. Let K be a field. Show that every short exact
sequence of K-modules is split exact.

Exercise 2.14. Let G be a finite group, and K a field of charac-
teristic zero. Maschke’s theorem asserts that for every representation
V of G over K, and for every G-stable subspace W ⊂ V there exists a
G-stable complement U ⊂ V . Show that every short exact sequence of
K[G]-modules is split.

Exercise 2.15 (?). Let G be the cyclic group of 2 elements. Con-
sider the group ring R := F2[G]. Give an example of a non-split short
exact sequence of R-modules. Show that not every representation of the
group G over the field F2 is isomorphic to a direct sum of irreducible
representations.

Exercise 2.16. Let K be a field. Consider the subring

R :=

{(
a b
0 c

)
| a, b, c ∈ K

}
of the ring Mat(2,K) of two-by-two matrices over K. Let M be the
module of column vectors

(
x
y

)
on which R acts by the usual matrix

multiplication: (
a b
0 c

)(
x
y

)
=

(
ax+ by
cy

)
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Show that N := {
(
x
0

)
| x ∈ K} ⊂ M is a sub-R-module, and that the

short exact sequence of R-modules

0 −→ N −→M −→M/N −→ 0

does not split.

Exercise 2.17. Let R be a ring and let M and N be R-modules.
Show that any short exact sequence of the form

0 −→M −→ N −→ Rn −→ 0

is split.

Exercise 2.18. Let R be a ring and let I ⊂ R be a left ideal.
Show that a short exact sequence of left R-modules of the form

0 −→M −→ N
π−→ R/I −→ 0

splits if and only if there exists an x ∈ N with π(x) = 1 + I and rx = 0
for all r ∈ I.

Exercise 2.19. Let

0 −→M1 −→M2 −→M3 −→ 0

be a split short exact sequence ofR-modules, and letN be anR-module.
Show that the induced sequences

0 −→ HomR(N,M1) −→ HomR(N,M2) −→ HomR(N,M3) −→ 0

and

0 −→ HomR(M3, N) −→ HomR(M2, N) −→ HomR(M1, N) −→ 0

are exact.

Exercise 2.20. Let R be a ring and let

0 −→M1 −→M2 −→M3 −→ 0

be a short exact sequence of R-modules. Show that ifM1 is free of rank
n1 and M3 is free of rank n3, then M2 is free of rank n1 + n3.





CHAPTER 3

Finitely generated modules over a PID

1. Introduction

The classification of finite abelian groups states that for every finite
abelian group A there are prime numbers pi (not necessarily distinct)
and exponents ei ≥ 1 such that

A ∼= (Z/pe11 Z)× · · · × (Z/penn Z).

The existence of Jordan normal forms states that for every square
matrix P over C there exist complex numbers λi (not necessarily dis-
tinct) and integers ei ≥ 1 so that P is conjugate to a block diagonal
matrix with blocks 

λi 0 · · · 0 0
1 λi · · · 0 0
...

...
...

...
0 0 · · · λi 0
0 0 · · · 1 λi


of size ei.

In this chapter, we will see that these two theorems are just two
instances of one and the same theorem about finitely generated modules
over a principal ideal domain. In the first case, the PID will be Z, in
the second case it will be C[X].

2. Review of principal ideal domains

Let R be a PID (principal ideal domain). Recall that this means
that R is a domain (a nonzero commutative ring without zero divisors),
and that for every ideal I ⊂ R there is an r ∈ R with I = (r) = Rr. For
our purposes, the most important examples are R = Z and R = K[X]
with K a field. Other important examples are the ring of power series
K[[X]], the ring of p-adic integers Zp, and the ring of Gaussian integers
Z[i]. Also a field K is a PID, but of a rather trivial kind.

31
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PID’s are unique factorization domains. This means that every
non-zero element r in a principal ideal domain R can be written as

r = upe11 · · · p
en
n

with u ∈ R×, with the pi ∈ R irreducible, and with ei non-negative
integers. Moreover, such factorization is unique up to multiplying u
and the pi’s by units, and up to permuting the factors.

Using this prime factorization, we can define greatest common divi-
sors gcd(r, s) of two non-zero elements of R. They are uniquely deter-
mined up to units (for example both 2 and −2 are a gcd of 4 and 6 in
Z). Similarly, we can define gcds of any sequence r1, . . . , rn of elements
of R which is not identically zero (ignoring the zeroes in the sequence).

An element d ∈ R is a gcd of r1, . . . , rn if and only if d generates
the ideal (r1, . . . , rn) of R. In particular, there are a1, . . . , an in R with
d = a1r1 + · · · + anrn. For example, if r and s are coprime (have no
common prime factor), then there are a and b in R with ar + bs = 1.

3. Free modules of finite rank over a PID

Proposition 3.1. Let R be a PID and M ⊂ Rn a submodule.
Then M ∼= Rk for some k ≤ n.

Hence over a PID a submodule of a free module of finite rank is
itself free of finite rank. The condition that R be a PID cannot be
dropped from the proposition, see Exercise 3.3.

Proof of Proposition 3.1. We use induction on n. For n = 0
we have M = Rn = 0, and M is indeed free of rank 0. Assume that the
proposition has been shown to hold for submodules of Rn−1. Consider
the projection

π : Rn → R, (r1, . . . , rn)→ rn

with kernel Rn−1 × {0}. Then we have a short exact sequence

0 −→M ∩ kerπ −→M −→ π(M) −→ 0.

By the induction hypothesis, we have that the submodule M ∩ kerπ of
Rn−1 × {0} is free of rank k ≤ n − 1. If π(M) = 0, then we are done.
If π(M) 6= 0, then π(M) is an ideal in R, hence a principal ideal, hence
π(M) ∼= R as R-module. By Exercise 2.17 any short exact sequence of
R-modules of the form

0 −→ N −→M −→ R −→ 0
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splits, and we find M ∼= R⊕ (M ∩ kerπ) ∼= Rk+1 with k + 1 ≤ n. �

Corollary 3.2. Let R be a PID and M a finitely generated R-
module. Then there exists an exact sequence

0 −→ F1 −→ F2 −→M −→ 0

with F1 and F2 free R-modules of finite rank.

Proof. Since M is finitely generated, by Proposition 1.13 there is
a surjection F2 → M with F2 a free module of finite rank. The kernel
F1 ⊂ F2 is also free of finite rank, thanks to Proposition 3.1. �

4. Structure of finitely generated modules over a PID

The main theorem of this chapter is the following structure theorem.

Theorem 3.3. Let R be a principal ideal domain and M a finitely
generated R-module. Then there exists an integer n and non-zero ideals
I1, . . . , Ik of R such that

M ∼= Rn ⊕R/I1 ⊕ · · · ⊕R/Ik
as R-modules.

For the proof we need the notion of content of an element of a
module. Let R be a commutative ring and let M be a an R-module.
An element x ∈M determines a map

(3) HomR(M,R)→ R, f 7→ f(x).

This map is R-linear, hence the image is an ideal. We denote it by
cM (x), and call it the content of x.

Lemma 3.4. If M is free of finite rank, and x ∈ M is non-zero,
then cM (x) is a non-zero ideal in R.

Proof. Without loss of generality, we may assume M = Rn and
x = (x1, . . . , xn). Since x is non-zero, there exists an i with xi 6= 0.
Consider the map

pri : R
n → R, (y1, . . . , yn) 7→ yi.

We have pri ∈ HomR(M,R) and pri(x) 6= 0, hence cM (x) 6= 0. �

Note that the coordinates xi of x ∈M ∼= Rn depend on the choice
of basis of M , but that the content ideal cM (x) is independent of such
choice!



34 3. FINITELY GENERATED MODULES OVER A PID

Lemma 3.5. Let R be a principal ideal domain,M a free R-module
of finite rank, and x ∈ M a non-zero element. Then there is a surjec-
tive R-linear map f : M → R such that f(x) ∈ R generates the ideal
cM (x) ⊂ R.

Proof. Since R is a principle ideal domain, there exists an f ∈
HomR(M,R) such that f(x) generates the ideal cM (x). Moreover, by
Lemma 3.4 we have f(x) 6= 0.

Consider the image of f : M → R. This is an ideal I ⊂ R, and it
suffices to show that I = R. As R is a PID, the ideal I is generated by
some element r ∈ R. For every y ∈ M we have f(y) ∈ I and (since R
is a domain) there exists a unique g(y) ∈ R such that

f(y) = g(y) · r.

Now consider the element g(x) ∈ R. By definition of cM (x) we have
g(x) ∈ cM (x). Since f(x) generates cM (x) there is an s ∈ R with
g(x) = sf(x). But we also have f(x) = rg(x), hence rs = 1, hence
I = R and f is surjective. �

Proof of Theorem 3.3. By Corollary 3.2 every finitely gener-
ated R-module M sits in a short exact sequence

0 −→ F1 −→ F2 −→M −→ 0

with the Fi free R-modules of finite rank. We will interpret F1 as a
submodule of F2.

The proof goes by induction on the rank of F1. If F1 is zero, then
M ∼= F2

∼= Rn for some n, and the theorem holds.
Otherwise, let x ∈ F1 be a non-zero element whose content I :=

cF2(x) with respect to F2 is maximal (amongst all the ideals in R of the
form cF2(x) with x ∈ F1).

By Lemma 3.5 there is a surjective map f : F2 → R such that f(x)
generates I.

Claim. f(F1) = I ⊂ R. Indeed, since f(x) generates I we certainly
have f(F1) ⊃ I. Conversely, for z ∈ F1, let d be a gcd of f(z) and
f(x). Then there exists r, s ∈ R with rf(z) + sf(x) = d, and hence
f(rz + sx) = d. By the maximality of the content of x we have that d
must equal f(x) up to a unit, hence f(z) must be divisible by f(x) and
hence f(z) ∈ I.
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Denote the kernel of f : F2 → R by F ′2 (note that by Proposition
3.1, this is also a free module). We have a short exact sequence

0 −→ F ′2 −→ F2
f−→ R −→ 0.

Similarly, let F ′1 be the kernel of the restriction f : F1 → R. We find a
short exact ‘sub-sequence’

0 −→ F ′1 −→ F1
f−→ I −→ 0.

The first sequence splits by the section R → F2, 1 7→ x/f(x), and this
section restricts to a section I → F1 in the second short exact sequence.

We find M ∼= M ′⊕R/I with M ′ given by the short exact sequence

0 −→ F ′1 −→ F ′2 −→M ′ −→ 0.

Since F ′2 has lower rank, the induction hypothesis guarantees

M ′ ∼= Rn
′ ⊕R/I1 ⊕ · · · ⊕R/Ik,

which finishes the proof. �

5. Application to Jordan normal form

Theorem 3.3 has the following corollary.

Corollary 3.6. Let R be a PID and M a finitely generated R-
module. Then there exists an integer n, irreducible elements p1, . . . , pk
of R and positive integers e1, . . . , ek such that

M ∼= Rn ⊕R/pe11 R⊕ · · · ⊕R/p
ek
k R

as R-modules.

Proof. By Theorem 3.3 it suffices to show that for every non-zero
ideal I the R-module R/I can be written in the desired form. Let x be
a generator of I, and consider its prime factorization

x = upe11 · · · p
ek
k

with pi pairwise non-associated primes. Then by the Chinese Remain-
der Theorem, we have

R/I ∼= R/pe11 R⊕ · · · ⊕R/p
ek
k R,

as we had to show. �

We now consider two special cases of this corollary. The first one is
a structure theorem for finitely generated and finite abelian groups.
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Theorem 3.7 (Classification of finitely generated abelian groups).
Let A be a finitely generated abelian group. Then there exists an integer
n, prime numbers p1, . . . , pk, and positive integers e1, . . . , ek such that

A ∼= Zn × Z/pe11 Z× · · · × Z/pekk Z.

If A is a finite abelian group then

A ∼= Z/pe11 Z× · · · × Z/pekk Z.

Proof. Apply Corollary 3.6 to the case R = Z. �

The second special case is a structure theorem for endomorphisms of
finite-dimensional vector spaces over C (or over an algebraically closed
field).

Theorem 3.8. Let K be an algebraically closed field. Let V be a
finite-dimensional vector space over K. Let α : V → V be an endomor-
phism. Then there exist λ1, . . . , λk in K, positive integers e1, . . . , ek,
and a decomposition

V = V1 ⊕ · · · ⊕ Vk
such that α(Vi) ⊂ Vi, and such that each Vi has a basis on which α is
expressed as the standard Jordan matrix

λi 0 · · · 0 0
1 λi · · · 0 0
...

...
...

...
0 0 · · · λi 0
0 0 · · · 1 λi


of size ei.

Proof. As in Example 1.9, we turn the vector space V into a
K[X]-module, withX acting via the endomorphism α. Since V is finite-
dimensional, it is finitely generated as a K-module, hence a fortiori also
as a K[X]-module.

Since K is algebraically closed, the irreducible elements of K[X] are
(up to units) the linear polynomials X − λ with λ ∈ K. By Corollary
3.6, we have

V ∼= K[X]n ⊕ K[X]

(X − λ1)e1K[X]
⊕ · · · ⊕ K[X]

(X − λk)ekK[X]
.

Note that K[X] is infinite-dimensional as a K-vector space, so we nec-
essarily must have n = 0.
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Without loss of generality, we may assume

V = K[X]/(X − λ)eK[X]

for some λ ∈ K and e > 0. Consider the elements

vj := (X̄ − λ)j ∈ V j ∈ {0, . . . , e− 1}.
Note that the vj form a K-basis of V . The action of α on this basis is
given by

α(vj) = X · (X̄ − λ)j = (X̄ − λ)j+1 + λ(X̄ − λ)j

hence

α(vj) =

{
vj+1 + λvj j < e− 1

λvj j = e− 1.

and we see that the matrix of α with respect to this basis is the standard
Jordan block of eigenvalue λ and size e. �
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Exercises

Exercise 3.1. Let R be a commutative ring and m ⊂ R a maxi-
mal ideal. LetM be an R-module. Show thatM/mM is a vector space
over R/m. Show that if M is generated by x1, . . . , xn then M/mM has
dimension at most n over R/m.

Exercise 3.2. Let R be a commutative ring andM an R-module.
An element x ∈M is called a torsion element if there exists a non-zero
r ∈ R with rx = 0.

Assume that R is a domain. Show that the torsion elements of an
R-module M form a submodule of M .

Give an example to show that the condition that R is a domain
cannot be dropped.

Exercise 3.3. Let R be an integral domain. Show that the fol-
lowing are equivalent:

(1) every submodule of a free module of finite rank is free of finite
rank,

(2) R is a principal ideal domain.

Exercise 3.4. Let R be a PID and let M be an R-module which
can be generated by n elements. Show that every submodule N ⊂ M
can be generated by n elements. Show that the condition that R is a
PID cannot be dropped.

Exercise 3.5. Let R be a PID and let M be a finitely generated
R-module such that for all r ∈ R and x ∈ M we have that rx = 0
implies r = 0 or x = 0. Show that M is free of finite rank.

Exercise 3.6. Let R be a ring and let

0 −→M−→E−→N −→ 0

be a short exact sequence of R-modules. Assume that M can be gener-
ated by m elements, and that N can be generated by n elements. Show
that E can be generated by m+ n elements.

Exercise 3.7. Let R be a PID, and let p1 and p2 be irreducible
elements with (p1) 6= (p2). Let e1, e2 be non-negative integers. Show
that the only R-module homomorphism

R/pe11 R→ R/pe22 R

is the zero homomorphism.
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Exercise 3.8. Let R be a PID and let p ∈ R be irreducible. Let
e1, e2 be non-negative integers. Show that there is an isomorphism of
R-modules

HomR(R/pe1R,R/pe2R) ∼= R/peR

with e = min(e1, e2).

Exercise 3.9. Describe all Z[i]-modules with at most 10 ele-
ments, up to isomorphism.

Exercise 3.10. Let R be a PID and let p ∈ R be an irreducible
element. Let E be an R-module contained in a short exact sequence

0 −→ R/pR
f−→ E

g−→ R/pR −→ 0.

Show that either E ∼= R/pR⊕R/pR or E ∼= R/p2R, that both options
occur, and that R/pR⊕R/pR 6∼= R/p2R.

Exercise 3.11 (?). Let

0 −→ A1 −→ A2 −→ A3 −→ · · · −→ An −→ 0

be an exact sequence of finite abelian groups. Show that the equality∏
i

|Ai|(−1)i = 1

holds.

Exercise 3.12. Let K be a field and let f1, . . . , fn ∈ K[X] be
monic polynomials. Consider the K[X]-module

V := K[X]/(f1)⊕ · · · ⊕K[X]/(fn).

Show that the characteristic polynomial of the endomorphism v 7→ X ·v
of the K-vector space V equals

∏
i fi.

Exercise 3.13. Let K be a field and let V be a finite-dimensional
vector space over K. Let α be an endomorphism of V . Assume that
the characteristic polynomial of α is irreducible. Show that there is no
proper non-zero subspace W ⊂ V with α(W ) ⊂W .

Exercise 3.14. Let K be a field and let V be a finite-dimensional
vector space over K. Let α be an endomorphism of V . Assume that
the characteristic polynomial of α is separable. Show that there are
subspaces W1, . . . ,Wn of V , such that the following hold:

(1) V = W1 ⊕W2 ⊕ · · · ⊕Wn,
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(2) α(Wi) ⊂Wi for every i,
(3) the characteristic polynomial of α|Wi

is irreducible for every i.
Give an example to show that the condition that the characteristic
polynomial is separable cannot be dropped.

Exercise 3.15 (??). Let R be a PID. An R-module M is called
torsion if for every x ∈ M there is a non-zero r ∈ R with rx = 0. For
a finitely generated torsion R-module

M ∼= R/I1 ⊕ · · · ⊕R/Ik
denote by F (M) the ideal I1I2 · · · Ik. Show that F (M) is independent
of the chosen decomposition. Show that if

0 −→M1 −→M2 −→M3 −→ 0

is a short exact sequence of R-modules, and if M1 and M3 are finitely
generated torsion R-modules, then M2 is a finitely generated torsion
R-module and F (M2) = F (M1)F (M3).



CHAPTER 4

Categories

1. Definition

Definition 4.1. A category C consists of the data of

(1) a class of objects ob C,
(2) for every X,Y ∈ ob C a class HomC(X,Y )
(3) for every X ∈ ob C an element idX ∈ HomC(X,X)
(4) for every X,Y, Z ∈ ob C a map

HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z), (f, g) 7→ gf,

called composition, subject to the conditions

(C1) for every X,Y, Z, T ∈ ob C and for every f ∈ HomC(X,Y ), g ∈
HomC(Y, Z) and h ∈ HomC(Z, T ) the identity h(gf) = (hg)f
holds

(C2) for every X,Y ∈ C and for every f ∈ HomC(X,Y ) the identi-
ties f idX = f and idY f = f hold.

We often write f : X → Y instead of f ∈ HomC(X,Y ), and think
of f as being a ‘map from X to Y ’. However, the objects X and Y
need not be sets, and expressions such as ‘x ∈ X’ or ‘f(x) ∈ Y ’ can be
completely meaningless.

Remark 4.2. The use of the word ‘class’ is to avoid set-theoretical
problems. We want to consider examples such as the category of all sets,
but must be careful to avoid paradoxes. The class of all sets does not
form a set itself, otherwise one could consider the subset of all the sets
that are not contained in itself, leading to Russell’s paradox.

This subtlety in the definition of a category is mostly harmless, and
in almost all applications of categories one can safely pretend the class
of objects form a set. In fact, one can often restrict the objects to a
suitable chosen sub-set of the given class without losing much.

41



42 4. CATEGORIES

2. Big examples

The notion of a category is modeled on the properties of the col-
lection of all objects of a certain kind (sets, rings, spaces) together
with the collection of all structure-preserving maps (functions, ring ho-
momorphisms, continuous maps) between them. The most important
examples are of this kind.

Example 4.3 (The category of sets). The category Set with
obSet the class of all sets, HomSet(X,Y ) the set of all maps from
X to Y , idX the identity map and the usual composition gf := g ◦ f
forms a category.

Example 4.4 (The category of topological spaces). The category
Top with obTop the class of all topological spaces, HomTop(X,Y ) the
set of continuous maps from X to Y and the usual identity and compo-
sition form a category. (Note that the composition of two continuous
maps is continuous!).

Example 4.5 (The categories of left and right R-modules). If R
is a ring, we denote by RMod the category whose objects are the left
R-modules, and whose morphisms are the R-module homomorphisms.
So for M,N ∈ obRMod we have

Hom
RMod(M,N) := HomR(M,N).

Similarly, we denote by ModR the category of right R-modules.

In the same style as the above examples, we have the category Ring
of rings and ring homomorphisms, the category CRing of commuta-
tive rings and ring homomorphisms, the category Grp of groups and
group homomorphisms, the category Ab of abelian groups and group
homomorphisms, etcetera. Note that in all these examples the objects
of the categories are sets equipped with some extra structure, and the
morphisms are functions that are compatible with the structure. This
is the case for many, but certainly not all, commonly used categories.

3. Small examples

A category is also a mathematical object in its own right, and one
can write down explicit examples by specifying the objects and maps,
in the same way one can specify say a ring by giving its elements, the
addition, and multiplication.
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Example 4.6 (One arrow). Consider the category C consisting of
precisely two objects, X and Y , and with precisely three maps: idX ,
idY , and a map f : X → Y . We can render this category in a picture:

X Y
idX

f
idY

Example 4.7 (A group as a category). Let G be a group. Con-
sider the category BG with one object ? (so ob BG = {?}), and with
HomBG(?, ?) := G, id? := 1 ∈ G, and where composition is defined by
multiplication in G. Note that axiom (C1) follows from the associa-
tivity of the group operation, and axiom (C2) from the axiom for the
neutral element 1 ∈ G.

Example 4.8 (Discrete category). If S is a set, then S defines a
category C with ob C := S and with

HomC(x, y) :=

{
{id} if x = y

∅ if x 6= y

for all x, y ∈ S.

Example 4.9 (Pre-ordered set). A pre-ordered set is a set S
equipped with a relation ≤ that is reflexive (x ≤ x) and transitive
(x ≤ y and y ≤ z implies x ≤ z). A pre-ordered set defines a category
C with C := S and with

HomC(x, y) :=

{
{?} if x ≤ y
∅ if x 6≤ y

where {?} denotes any singleton.

Example 4.10 (The category of matrices). Let R be a ring. Then
we can form a category C with ob C := {0, 1, 2, . . .}, with

HomC(n,m) := Matm,n(R) := {m× n matrices over R},

and with composition being matrix multiplication

Mat`,k×Matm,` → Matm,k, (A,B) 7→ BA.

The identity element idn : n → n is the n × n identity matrix. Axiom
(C1) corresponds to the associativity of matrix multiplication.
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Definition 4.11. A category is called locally small if for every
X and Y in ob C the class HomC(X,Y ) is a set. It is called small if
moreover the class of objects ob C is itself a set.

Examples 4.12. All the examples in sections 2 and 3 are locally
small. The examples in 3 are in fact small. However, the examples in
2 are not small, essentially because the class of all sets is not a set.

Finally, we discuss two ways of constructing new categories out
of old ones. The first is the opposite category, which is obtained by
formally reversing all the arrows in a given category:

Definition 4.13. The opposite or dual of a category C is the
category Copp with ob Copp := ob C and with

HomCopp(X,Y ) := HomC(Y,X).

Composition is done ‘the other way around’:

HomCopp(X,Y )×HomCopp(Y, Z)→ HomCopp(X,Z), (f, g) 7→ fg

where f : Y → X and g : Z → Y and fg : Z → X are maps in C.

Definition 4.14. If C and D are categories, then the product
category C × D is the category whose objects are pairs (X,Y ) with
X ∈ ob C and Y ∈ obD, and whose morphisms are pairs of morphisms:

HomC×D((X,Y ), (X ′, Y ′)) := HomC(X,X
′)×HomD(Y, Y ′).

4. Isomorphisms, monomorphisms, epimorphisms

In general it makes no sense to ask if a morphism f : X → Y in
a category C is bijective, injective, or surjective. The objects X and
Y are just elements of some class ob C, and the morphism f is just an
element of some class HomC(X,Y ). It makes no sense to talk about
elements of X or Y .

However, there are special classes of morphisms that in many ways
behave like bijective, injective, or surjective maps.

Definition 4.15. Let f : X → Y be a morphism in a category C.
We say that f is an isomorphism if there exists a morphism g : Y → X
such that fg = idY and gf = idX .

Example 4.16. An isomorphism in Set is a bijection. An iso-
morphism in Grp is a group isomorphism. An isomorphism in Top is
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a homeomorphism (note that this is stronger than being a bijective con-
tinuous map!). An isomorphism in the category of matrices (Example
4.10) is an invertible square matrix.

Definition 4.17. A morphism f : X → Y in a category C is
called a monomorphism if for every object T and for every pair of maps
g1, g2 : T → X with fg1 = fg2 we have g1 = g2.

Example 4.18. We claim that the monomorphisms in Set are
precisely the injective functions. Indeed, if f is injective, then clearly
fg1 = fg2 implies g1 = g2. Conversely, let f : X → Y be a monomor-
phism. Let x1, x2 ∈ X with f(x1) = f(x2). Consider the one-element
set T = {?} and the maps gi : T → X, ? 7→ xi. Then fg1 = fg2, hence
g1 = g2, and therefore x1 = x2.

Example 4.19. By a similar argument one shows that the monomor-
phisms in Grp are precisely the injective group homomorphisms, see
Exercise 4.5.

Definition 4.20. A morphism f : X → Y in a category C is
called an epimorphism if for every T ∈ ob C and for every pair of maps
g1, g2 from Y to T with g1f = g2f we have g1 = g2.

Example 4.21. We claim that the epimorphisms in Set are pre-
cisely the surjective functions. Indeed, if f is surjective and g1f = g2f ,
then certainly g1 = g2. Conversely, let f : X → Y be an epimorphism.
Assume that f is not surjective, and pick an element z ∈ Y not in the
image of f . Consider the set T := {0, 1} and maps

g1 : Y → T, y 7→ 0

and

g2 : Y → T, y 7→

{
0 y 6= z

1 y = z

Then g1f = g2f , but g1 6= g2, a contradiction.

5. Initial and final objects

Some categories have special objects, called initial (or cofinal) and
final objects.

Definition 4.22. Let C be a category. An object X ∈ ob C
is called final in C if for every Y ∈ ob C there is a unique morphism
Y → X.
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Definition 4.23. Let C be a category. An object X ∈ ob C is
called initial or cofinal in C if for every Y ∈ ob C there is a unique
morphism X → Y .

Examples 4.24. In Top the empty space ∅ is an initial object,
and a one-point space {?} is final. In RMod the zero module 0 is both
initial and final. In Ring the ring Z is initial and the zero ring 0 is
final. In Grp the trivial group {1} is both initial and final.

Proposition 4.25. If it exists, a final object in a category C is
unique up to unique isomorphism.

Proof. Assume X1 and X2 are final. We need to show that there
exists a unique isomorphism f : X1 → X2.

Since X2 is final, there exists a map f : X1 → X2. Since X1 is final,
there exists a map g : X2 → X1. Consider the composite fg : X2 → X2.
Since X2 is final, there is a unique map X2 → X2, so fg = idX2 .
Similarly gf = idX1 . So we see that f is an isomorphism X1 → X2.

Now assume that there are two isomorphisms f1, f2 : X1 → X2.
Then again, because X2 is final, we must have f1 = f2, which shows
that f is unique. �

Like so many statements about categories, this proposition has a
co-proposition:

Proposition 4.26. If it exists, an initial object in a category C
is unique up to unique isomorphism.

Proof. Reverse the arrows in the proof of Proposition 4.25. �
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Exercises

Exercise 4.1 (Automorphism group of an object). Let C be a
(locally small) category and X an object in C. Show that

AutC(X) := {f : X → X | f is an isomorphism}
forms a group under composition.

Exercise 4.2. Let C be a (locally small) category and X and
Y objects in C. Assume that X and Y are isomorphic. Show that
AutC(X) and AutC(Y ) are isomorphic groups.

Exercise 4.3. Let f : X → Y be morphism in a category C. Show
that f has at most one two-sided inverse.

Exercise 4.4. Let C be a category. Define ob C× := ob C and

HomC×(X,Y ) := {f ∈ HomC(X,Y ) | f is an isomorphism}.
Show that C× (with composition and identity maps inherited from C)
is a category.

Exercise 4.5. Show that the monomorphisms in Grp are pre-
cisely the injective group homomorphisms. (Hint: given x ∈ G there is
a group homomorphism Z→ G which maps 1 to x).

Exercise 4.6. Let R be a ring. Show that the monomorphisms
in RMod are precisely the injective R-module homomorphisms.

Exercise 4.7. Show that the epimorphisms in RMod are pre-
cisely the surjective homomorphisms. (Hint: given f : M → N non-
surjective, consider the module coker f .)

Exercise 4.8. Show that the map Z→ Q in the category of rings
is an epimorphism. Conclude that there exist morphisms that are both
mono and epi, but not isomorphisms.

Exercise 4.9. Let Haus be the category of Hausdorff topological
spaces and continuous maps. Let f : X → Y be a continuous map of
Hausdorff spaces with dense image, show that f is an epimorphism.
(Hint: Let g, h : Y → T be continuous maps of topological spaces, with
T Hausdorff, show that {x ∈ Y | g(x) = h(x)} is closed).

Exercise 4.10 (?). Show that the converse holds: if f : X → Y
in Haus is an epimorphism, then the image of f is dense in Y .
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Exercise 4.11 (??). Show that the epimorphisms in Grp are
precisely the surjective group homomorphisms.

Exercise 4.12. What are the isomorphisms, monomorphisms
and epimorphisms in the matrix category over a field K? (See Example
4.10).

Exercise 4.13. Show that the category of fields has neither ini-
tial nor final object. Show that the category of fields of a given fixed
characteristic does have an initial object.

Exercise 4.14 (Split monomorphisms). Let f : X → Y be a
morphism in C. Assume that there exists a morphism g : Y → X with
gf = idX . Show that f is a monomorphism. Such f is called a split
monomorphism. Give an example of a monomorphism that is not a
split monomorphism.

Exercise 4.15 (Split epimorphisms). Let f : X → Y be a mor-
phism in C. Assume that there exists a morphism g : Y → X with
fg = idY . Show that f is an epimorphism. Such f is called a split
epimorphism. Give an example of an epimorphism that is not a split
epimorphism.

Exercise 4.16 (The category of G-sets). Let G be a group. A
G-set is a set S together with a left action of G on S, that is, a map
G × S → S, (g, s) 7→ gs satisfying 1s = s and g(hs) = (gh)s for all
g, h ∈ G and s ∈ S. A morphism of G-sets is a map f : S → T
satisfying f(gs) = gf(s) for every s ∈ S and g ∈ G. The category of
G-sets is denoted GSet.

What are the final and cofinal objects of GSet? What are the
monomorphisms and epimorphisms in GSet?

Exercise 4.17 (Homotopy category). Let hTop be the homotopy
category of topological spaces. Its objects are topological spaces, and
its morphisms are homotopy classes of continuous maps:

HomhTop(X,Y ) := {f : X → Y | f continuous}/ ∼

(Note that composition is compatible with homotopy, so that composi-
tion in hTop is well-defined). Show that two topological spaces X and
Y are homotopy-equivalent if and only if X and Y are isomorphic in
the category hTop.
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Exercise 4.18 (?). Let f : X → Y be a morphism in C. Show
that f is an isomorphism if and only if for all objects T in C the map

HomC(T,X)→ HomC(T, Y ), h 7→ fh

is a bijection. (Hint, for the hard direction: use T = Y to find a
g : Y → X with fg = idY , and use T = X to deduce that gf = idX .)





CHAPTER 5

Functors

If in order to study groups, modules or topological spaces, one
should study the homomorphisms or continuous maps between them,
then to study categories one should study ‘morphisms of categories’.
Such morphisms of categories are called functors.

1. Definition of a functor

Definition 5.1. Let C and D be categories. A functor F from C
to D, consists of the data of

(1) for every object X in C an object F (X) in D,
(2) for every morphism f : X → Y in C a morphism F (f) : F (X)→

F (Y ) in D
subject to the conditions

(F1) for every X in C we have F (idX) = idF (X)

(F2) for every f : X → Y and g : Y → Z in C we have F (gf) =
F (g)F (f).

We will write F : C → D to denote that F is a functor from C to D.
Note that if F : C → D and G : D → E are functors, then the com-

posite GF : C → E defined by (GF )(X) := G(F (X)) and (GF )(f) :=
G(F (f)) is also a functor.

To avoid overloading notation, we will often write FX and Ff
instead of F (X) and F (f).

2. Many examples

Example 5.2 (Identity). For every category C there is an identity
functor idC : C → C with idC(X) = X and idC(f) = f .

Example 5.3 (Forgetful functors). Let R be a ring. Then we
have a functor

F : RMod→ Ab

51
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defined by F (M) := M (as an abelian group) and F (f) := f . An
R-module M is an abelian group equipped with extra structure, and
this functor ‘forgets’ the extra structure. Other examples of forgetful
functors are the obvious functors Top→ Set (forgetting the topology),
Ab → Set (forgetting the addition), and Ring → Ab (forgetting the
multiplication).

Example 5.4 (Hom functor). Let C be a category in which the
Hom classes are sets, and let X be an object of C. Then we define a
functor F : C → Set as follows. For an object Y in C we define

F (Y ) := HomC(X,Y ),

and for a morphism f : Y1 → Y2 in C we define

F (f) : HomC(X,Y1)→ HomC(X,Y2), g 7→ fg.

One easily checks that F is a functor. We will denote it by HomC(X,−).

Example 5.5 (Abelianization of a group). If G is a group then we
denote by [G,G] its commutator subgroup. This is the subgroup gen-
erated by the elements sts−1t−1 with s, t ∈ G. It is a normal subgroup,
and the quotient group

Gab := G/[G,G]

is abelian. It is called the abelianization of G. If f : G→ H is a group
homomorphism, then f([G,G]) ⊂ [H,H], hence f induces a group ho-
momorphism

fab : Gab → Hab.

Together, these constructions define a functor (−)ab : Grp→ Ab.

Example 5.6 (Free module). Let I be a set and R be a ring.
Then the set

R(I) := {ϕ : I → R | ϕ(i) = 0 for all but finitely many i}
forms a left R-module with (ϕ + ψ)(i) := ϕ(i) + ψ(i) and (rϕ)(i) :=
rϕ(i). It is called the free R-module on I.

Note that if I is finite, then R(I) is free of rank the cardinality of I.
If f : I → J is a map of sets, then we have an induced map

R(I) → R(J), ϕ 7→
(
j 7→

∑
i∈f−1(j)

ϕ(i)
)
,

and this construction defines a functor Set→ RMod.
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Example 5.7 (Units in a ring). If f : R→ S is a ring homomor-
phism, then f restricts to a group homomorphism R× → S×, and we
obtain a functor Ring→ Grp.

Example 5.8 (The fundamental group of a pointed space). Let
Top? be the category of pointed topological spaces. Objects in Top? are
pairs (X,x) with X a topological space and x ∈ X. A morphism from
(X,x) to (Y, y) is a continuous map f : X → Y such that f(x) = y.

Then the fundamental group defines a functor

π1 : Top? → Grp.

On the level of objects it is simply defined by mapping a pair (X,x) to
the fundamental group π1(X,x). On the level of morphisms it is defined
as follows. Let (X,x) and (Y, y) be pointed spaces, and let f : X → Y
be a continuous map such that f(x) = y. Then we defined π1(f) by

π1(f) : π1(X,x)→ π1(Y, y), [γ] 7→ [f ◦ γ],

where [γ] denotes the class of a loop γ : [0, 1] 7→ X based at x.

Note that the definition of fundamental group requires a base point.
Although for a path-connected space X and points x, y ∈ X the funda-
mental groups π1(X,x) and π1(X, y) are isomorphic, the isomorphism
is not unique, as it depends on the choice of a path.

Example 5.9 (Solutions to polynomial equations). Let f1, . . . , fm ∈
Z[X1, . . . , Xn]. Then we can consider solutions to the system of poly-
nomial equations f1 = f2 = · · · = fm = 0 in arbitrary commutative
rings. Varying the commutative ring, one obtains a functor

F : CRing→ Set

defined on the level of objects by

R 7→ {x = (x1, . . . , xn) ∈ Rn | f1(x) = f2(x) = · · · = fm(x) = 0}.

and on the level of morphisms by[
ϕ : R→ S

]
7→
[
(x1, . . . , xn) 7→ (ϕ(x1), . . . , ϕ(xn))

]
.

Indeed, if ϕ : R → S is a ring homomorphism, and if x ∈ Rn is a
solution to the system of equations, then also (ϕ(x1), . . . , ϕ(xn)) ∈ Sn
is a solution to the system of equations.



54 5. FUNCTORS

Example 5.10 (Commutative diagrams as functors). Let C be
the small category

x y

z

f

g
h

with f = hg (and where we omitted idx, idy and idz from the picture).
Let D be any category. Then a functor F : C → D consists of objects
X := F (x), Y := F (y), Z := F (z) together with morphisms F (f),
F (g) and F (h) between them, such that F (f) = F (h)F (g). In other
words, a functor F : C → D is the same as a triangular commutative
diagram

X Y

Z

in the category D. With a similar construction, a commutative diagram
in D of any shape can be thought of as a functor from some small
category C to D.

3. Contravariant functors

Definition 5.11. Let C and D be categories. A contravariant
functor from C to D consists of the data of

(1) for every object X in C an object F (X) in D,
(2) for every morphism f : X → Y in C a morphism F (f) : F (Y )→

F (X) in D
subject to the conditions

(F1) for every X in C we have F (idX) = idF (X)

(F2’) for every f : X → Y and g : Y → Z in C we have F (gf) =
F (f)F (g).

To stress the difference, one sometimes calls an ordinary functor a
covariant functor.

Remark 5.12. The only difference with the notion of a functor is
that F reverses the order of composition. In other words, a contravari-
ant functor F from C to D is the same as a functor F : Copp → D.
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To avoid clashing notation, we will reserve the notation F : C → D
for a functor from C to D, and will write F : Copp → D for a contravari-
ant functor from C to D.

Example 5.13 (Contravariant Hom functor). Let C be a category
and X an object of C. If f : Y1 → Y2 is a morphism in C, then we have
an induced map of sets

HomC(Y2, X)→ HomC(Y1, X), g 7→ gf,

and varying Y we obtain a contravariant functor from C to Set given
by

HomC(−, X) : Copp → Set, Y 7→ HomC(Y,X).

This is a contravariant variation on Example 5.4.

Example 5.14. Another (related) example of a contravariant
functor is the ‘dual vector space’

(−)∨ : Vecopp
K → VecK

which maps a K-vector space V to its dual V ∨ := HomK(V,K) and a
linear map f : V →W to the induced map

f∨ : W∨ → V ∨, ϕ 7→ ϕ ◦ f.

Example 5.15 (Ring of functions on a space). Yet another (re-
lated) example is the functor

C : Topopp → CRing, X 7→ C(X) = {ϕ : X → R | f continuous},

mapping a topological space X to the ring of continuous R-valued func-
tions on X (with point-wise addition and multiplication). On the level
of maps it is defined as follows: if f : X → Y is continuous, then we
have an induced map

C(f) : C(Y )→ C(X), ϕ 7→ ϕ ◦ f,

which is clearly a ring homomorphism.

4. Functors with multiple arguments

It is sometimes useful to consider functors with multiple arguments,
living in various categories. This can easily be formalized using the
notion of product category (see Definition 4.14). For example, a functor

F : C1 × C2 → D
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assigns to any pair of objects (X1, X2) with Xi ∈ ob Ci an object
F (X1, X2) in D, and to any pair of morphisms (f1, f2) with fi : Xi → Yi
in Ci a morphism F (f1, f2) : F (X1, X2)→ F (Y1, Y2) in D.

This can be combined with the notion of a contravariant functor.

Example 5.16. A typical example is the functor

Hom(−,−) : Copp × C → Set,

which can be defined for any locally small category C. If f : X ′ → X
and g : Y → Y ′ are morphisms in C (take note of the directions of the
arrows), then we have an induced morphism

Hom(f, g) : Hom(X,Y )→ HomR(X ′, Y ′),

which is given by α 7→ gαf . One says that Hom(−,−) is contravariant
in the first, and covariant in the second argument.

5. Morphisms of functors

Definition 5.17. Let C and D be categories, and let F : C → D
and G : C → D be functors. A morphism or natural transformation η
from F to G consists of the data of

(1) for every object X in C a morphism ηX : FX → GX in D
subject to the condition

(N1) for every morphism f : X → Y in C the square

FX FY

GX GY

Ff

ηX ηY

Gf

in D commutes.
An isomorphism from F to G is a morphism of functors η such that ηX
is an isomorphism in D for every X in C.

We will write η : F → G to denote that η is a morphism from the
functor F to the functor G.

Example 5.18 (double dual). Let K be a field and V a K-vector-
space. Then we have a natural map

ηV : V → V ∨∨ = HomK(HomK(V,K),K), v 7→ (ϕ 7→ ϕ(v)) .
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The word ‘natural’ is usually used in an informal sense, meaning ‘not
depending on the choice of a basis’. But it also has a precise math-
ematical meaning, namely that the collection of maps (ηV )V with V
running over all the vector spaces forms a morphism

η : idVecK → (−)∨∨

between functors from VecK to VecK .

Example 5.19. Consider the forgetful functor F : Grp → Set.
Let n be an integer. Then we have a morphism of functors η : F → F
defined by

ηG : G→ G, g 7→ gn.

Note that g 7→ gn is a morphism of sets, but in general not a morphism
of groups.

Remark 5.20. Note that the world of categories has three layers:
(0) categories
(1) functors between categories
(2) morphisms (natural transformations) between functors

A similar picture arises in topology, where one distinguishes
(0) topological spaces
(1) continuous maps between spaces
(2) homotopies between continuous maps

There is more to this than just an analogy. A fundamental construction
in homotopy theory associates to a category a topological space called
the classifying space of the category, to a functor an induced continu-
ous map between classifying spaces, and to a natural transformation a
homotopy between maps.

6. Equivalences of categories

Definition 5.21. An functor F : C → D is called an equivalence
or an equivalence of categories if there exists a functor G : D → C and
isomorphisms of functors

ε : FG
∼→ idD, η : GF

∼→ idC .

A functor G with this property is called a quasi-inverse of F . If there
exists an equivalence from C to D then C and D are called equivalent
categories.
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Remark 5.22. Note that this is formally very similar to the no-
tion of a homotopy equivalence in topology. See also Remark 5.20.

Equivalent categories tend to be ‘indistinguishable’ from the point
of view of category theory. See Exercises 5.17 and 5.20 for two examples.
It is however often difficult to decide if a functor F is an equivalence
from the definition, since it can be hard to construct a quasi-inverse
functor. We end this chapter with a powerful criterion for testing if a
functor F is an equivalence.

Definition 5.23. Let F : C → D be a functor. We say that F is
(1) full if for every X,Y in C the map

HomC(X,Y )→ HomD(FX,FY ), f 7→ Ff

is surjective;
(2) faithful if for every X,Y in C the map

HomC(X,Y )→ HomD(FX,FY ), f 7→ Ff

is injective;
(3) essentially surjective if for every object Z in D there is an X

in C such that FX and Z are isomorphic in D.

Theorem 5.24. A functor F : C → D is an equivalence of cate-
gories if and only if it is full, faithful and essentially surjective.

Proof. Assume F is an equivalence of categories, with quasi-inverse
G and isomorphisms

ε : FG→ idD, η : GF → idC .

Then for every Y in D the object X := GY satisfies FX = FGY ∼= Y
(via εY ), hence F is essentially surjective.

To see that F is faithful, let f : X → Y , then we have

fηX = ηY (GFf)

and since ηX is an isomorphism we also have

f = ηY (GFf)η−1
X ,

hence clearly f is determined by Ff and f 7→ Ff is injective.
To see that F is full, let g : FX → FY be a morphism in D. Then

consider the morphism

f : X
η−1
X−→ GFX

Gg−→ GFY
ηY−→ Y
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satisfies Ff = g. This concludes the proof that F is full, faithful, and
essentially surjective.

Conversely, assume that F is full, faithful and essentially surjective.
Choose for every object X in D an object GX in C and an isomorphism
αY : FGX → X. This is possible because of the assumption that F is
essentially surjective, assuming a suitable form of the axiom of choice.

We want to make the construction X 7→ GX into a functor (which
will be a quasi-inverse to F ). For this, we need to define for every
f : X → Y a map Gf : GX → GY . Note that the map f induces a
map

α−1
Y fαX : FGX → FGY.

But since the functor F is full and faithful the map

HomC(GX,GY )→ HomD(FGX,FGY ), g 7→ Fg

is a bijection. Hence there exists a unique g : GX → GY with Fg =
α−1
Y fαX , and we define Gf := g. One verifies that this G defines indeed

satisfies the axioms for a functor from D to C.
Finally, to see that G is a quasi-inverse to F , note that the αX define

an isomorphism of functors α : FG→ idD. In the other direction, given
an object X in C we define

βX : GFX → X

to be the pre-image of αFX under the bijection

HomC(GFX,X)→ HomD(FGFX,FX).

Then one verifies that the βX define an isomorphism of functors GF →
idC , and we conclude that F is an equivalence of categories. �

Example 5.25. Let K be a field, let FVecK be the category of
finite-dimensional K-vector spaces. Let C be the category of matrices
over K, see Example 4.10. Consider the functor

F : MatK → FVecK

that maps an object n of C to the vector space Kn and a matrix

A ∈ HomC(n,m) = Matm,n(K)

to the corresponding linear map Kn → Km. We claim that F is an
equivalence of categories.

Indeed, using Theorem 5.24 it suffices to observe that the functor
is essentially surjective, since every finite-dimensional vector space is
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isomorphic to Kn for some n, and that the functor is full and faithful,
since for every m and n the map

Matm,n(K)→ HomK(Kn,Km)

is a bijection.
Note that C and FVecK are not isomorphic as categories. The

category FVecK is much bigger than C since for every n there are
infinitely many n-dimensional vector spaces (all isomorphic, but not
equal). In fact, C is a small category, whereas FVecK is not.
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Exercises

Exercise 5.1. Let C and D be categories, let F : C → D be a
functor. Let f be an isomorphism in C. Show that F (f) is an isomor-
phism in D. Similarly, show that F maps split monomorphisms to split
monomorphisms and split epimorphisms to split epimorphisms. (See
Exercises 4.14 and 4.15).

Give examples to show that F does not necessarily map monomor-
phisms to monomorphisms or epimorphisms to epimorphisms.

Exercise 5.2. Verify the claims in Example 5.5.

Exercise 5.3 (Center is not a functor. . . ). Show that there is
a split monomorphism S2 → S3 in Grp. Conclude that there is no
functor F : Grp → Ab such that for every group G we have that FG
is isomorphic with the center of G.

Exercise 5.4 (. . . but it is when we restrict to isomorphisms). Let
Grp× be the category whose objects are groups, and whose morphisms
are isomorphisms of groups (see also Exercise 4.4). Show that there is
a functor Z : Grp× → Ab× that maps a group G to its center.

Exercise 5.5 (Abelianized fundamental group without base point
(?)). Let C be the category of path connected topological spaces. Let
P be the functor from Top? to C that maps a pair (X,x) the the path
component of x ∈ X. Show that there is a functor F : C → Ab and an
isomorphism between the functors

πab
1 : Top? → Ab, (X,x) 7→ π1(X,x)ab

and F ◦P . Bonus question: show that there is no functor F : C → Grp
and an isomorhpism between F ◦ P and π1.

Exercise 5.6 (Fundamental groupoid). Let X be a topological
space. Let Π1(X) be the category with

(1) objects: ob Π1(X) = X
(2) morphisms: HomΠ1(X)(x, y) the set of homotopy classes of

paths from x to y
(3) composition: composition of paths

Verify that this indeed defines a category. It is called the fundamental
groupoid of X.

Assume that X is path connected, and let x ∈ X. Show that Π1(X)
is equivalent with the category Bπ1(X,x). (See Example 4.7).
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Exercise 5.7 (Endomorphisms of identity functor on Ab). Let
η : idAb → idAb be a morphism of functors. Show that there is an
integer n such that for every A ∈ obAb and for every x ∈ A the
identity ηA(x) = nx holds.

Exercise 5.8. For a non-negative integer n we denote by GLn(R)
the group of invertible n by nmatrices with entries in R. In other words,
the group of units in the ring Matn(R), so for example GL1(R) = R×.

Show that GLn defines a functor from the category of commutative
rings CRing to the category of groups Grp. Show that taking deter-
minants defines a morphism det : GLn → GL1 between functors from
CRing to Grp.

Exercise 5.9. Let G and H be groups, and BG and BH the
corresponding one-object categories (see Example 4.7). Show that a
functor F : BG → BH is the same as a group homomorphism f : G →
H, and a morphism of functors η : F1 → F2 is the same as an element
h ∈ H such that hf1h

−1 = f2.

Exercise 5.10. Let R be a ring. Recall that the center of a ring
is the subring

Z(R) = {z ∈ R | zr = rz for all r ∈ R}.
Denote by C the category of left R-modules.

(1) Let z ∈ Z(R). Show that ηz,M : M → M, x 7→ zx defines a
morphism of functors ηz : idC → idC .

(2) Let η : idC → idC be a morphism of functors. Show that there
is a z ∈ Z(R) with η = ηz.

Exercise 5.11. Show that there are precisely two morphisms of
functors idGrp → idGrp.

Exercise 5.12 (Equivalence is an equivalence relation). Let F : C →
D and G : D → E be equivalences of categories. Show that GF : C → E
is an equivalence of categories.

Exercise 5.13. Let F : C → D be a full and faithful functor. Let
X and Y be objects in C. Let f : X → Y be a morphism. Show that f
is an isomorphism if and only if Ff is an isomorphism.

Exercise 5.14. For a category C, we denote by [C] the class of
isomorphism classes of objects in C. Let F : C → D be a functor.
Show that F induces a map [F ] : [C] → [D]. Show that if F is fully
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faithful, then [F ] is injective, and if F is essentially surjective, then [F ]
is surjective.

Exercise 5.15. Let C be a locally small category in which all
objects are isomorphic and in which every morphism is an isomorphism.
Show that there is a group G and an equivalence of categories BG→ C.

Exercise 5.16. Give for every n ∈ N a category Cn so that Cn
has exactly n objects, and all the Cn are equivalent.

Exercise 5.17. Let F : C → D be an equivalence of categories.
Show that C has a final object if and only if D has a final object.

Exercise 5.18. Let R and S be rings. Show that the categories
RMod× SMod and R×SMod are equivalent.

Exercise 5.19 (Morita equivalence (?)). Let R be a ring and n
a positive integer. If M is an R-module, then we can consider elements
of Mn as length n column matrices with entries in M . In this way, we
have an action

Matn(R)×Mn →Mn, (A,


x1

x2
...
xn

) 7→ A ·


x1

x2
...
xn


This makes Mn into a left Matn(R)-module. Verify that this defines a
functor

RMod→ Matn(R)Mod, M 7→Mn.

Show that this functor is an equivalence of categories.

Exercise 5.20 (?). Let F : C → D be an equivalence of categories.
Let f : X → Y be a morphism in C. Show that f is a monomorphism
(epimorphism) if and only if F (f) is a monomorphism (epimorphism).





CHAPTER 6

Tensor product

1. Tensor product of a right and a left module

Definition 6.1. Let R be a ring, M a right R-module, and N a
left R-module. Let A be an abelian group. A map

f : M ×N → A

is said to be R-bilinear if for all x, x′ ∈ M , y, y′ ∈ N and r ∈ R the
following hold:

(1) f(x+ x′, y) = f(x, y) + f(x′, y)
(2) f(x, y + y′) = f(x, y) + f(x, y′)
(3) f(xr, y) = f(x, ry)

Note that if f : M ×N → A is bilinear, and h : A → B is a homo-
morphism of abelian groups, then the composition hf : M × N → B
is also a bilinear map. The following theorem states that there is a
‘universal’ bilinear map, from which all others can be obtained by a
unique composition with a homomorphism of abelian groups.

Theorem 6.2. Let R be a ring and letM a right R-module and N
a left R-module. Then there exists an abelian group T and an R-bilinear
map

g : M ×N → T

such that for every abelian group A and every R-bilinear map f : M ×
N → A there is a unique group homomorphism h : T → A with f = hg:

M ×N T

A

g

f
h

Moreover, the pair (T, g) is unique up to unique isomorphism in the
following sense: if both (T1, g1) and (T2, g2) satisfy the above property,
then there is a unique isomorphism h : T1 → T2 such that g2 = hg1.

65



66 6. TENSOR PRODUCT

Definition 6.3. We will call the abelian group T (unique up to
unique isomorphism) the tensor product of M and N , and denote it by
M ⊗R N := T . For x ∈M and y ∈ N we denote the image of (x, y) in
M ⊗R N by x⊗ y := g(x, y).

Proof of Theorem 6.2. Uniqueness. This is purely formal: ev-
erything defined by a universal property is unique up to unique iso-
morphism, by an argument that is basically the same as the proof of
Proposition 4.25: Assume (T1, g1) and (T2, g2) both satisfy the required
property. Since g1 : M × N → T1 is bilinear there is a unique map
h1 : T2 → T1 with g1 = h1g2. Reversing the roles of T1 and T2, we get
a unique map h2 : T1 → T2. Moreover, both the compositions h′1h′2 and
h′2h

′
1 must be the identity, so we conclude that h′1 is an isomorphism.
Existence. This part is certainly not formal! The proof is a bit

messy, but in a way very natural: we just construct an abelian group
T (and a map g) with all the desired properties built-in.

Let F := Z(M×N) be the free Z-module on the setM×N . Elements
of F are finite integral combinations of symbols (x, y) with x ∈M and
y ∈ N , that is, expressions of the form

n∑
i=1

ni(xi, yi)

with ni ∈ Z. There is a canonical map of sets

M ×N → F, (x, y) 7→ (x, y).

This map has no reason to be bilinear. We will force it to become
bilinear by dividing out the necessary relations. Let G ⊂ F be the
subgroup generated by the elements

(x1 + x2, y)− (x1, y)− (x2, y),

(x, y1 + y2)− (x, y1)− (x, y2),

(xr, y)− (x, ry),

for all x1, x2, x ∈M and y1, y2, y ∈ N and r ∈ R. Let T be the quotient
group F/G, and consider the composition

M ×N F

T

g
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Then the map g is bilinear by construction.
We now show that (T, g) is a tensor product. Let f : M ×N → A

be a homomorphism. Then f induces a homomorphism

f ′ : F → A,
∑

ni(xi, yi) 7→
∑

nif(xi, yi).

Since f is bilinear, we have that f ′ vanishes on all the generators of
G, and therefore that f ′(G) = 0. Hence f ′ induces a homomorphism
h : T → A with f = hg. To see that a map h with this property is
unique, note that T is generated by the images of the elements (x, y) ∈
M ×N , and that h must send the image of (x, y) to f(x, y). �

Remark 6.4. In practice it is often easier not to use the actual
construction of the tensor product in the proof of Theorem 6.2, but
only the defining universal property in the statement of Theorem 6.2,
together with the fact that the the tensor product is generated by the
elements of the form x⊗ y with x ∈M and y ∈ N .

Remark 6.5. Elements of M ⊗RN are finite sums of elements of
the form x⊗ y, but these are not independent. In fact, the map

M ×N →M ⊗R N, (x, y) 7→ x⊗ y

isR-bilinear (by definition of the tensor product), so that for all x, x1, x2 ∈
M , y, y1, y2 ∈ N and r ∈ R the identities

x⊗ 0 = 0

0⊗ y = 0

x⊗ (y1 + y2) = (x⊗ y1) + (x⊗ y2)

(x1 + x2)⊗ y = (x1 ⊗ y) + (x2 ⊗ y)

(xr)⊗ y = x⊗ (ry)

hold in M ⊗R N .

We end this section with a few examples of tensor products.

Example 6.6. Let M be a right R-module, then we claim M ⊗R
{0} ∼= {0}. Indeed, the tensor product is generated as an abelian group
by the elements x⊗ 0, but these all are equal to 0 in M ⊗R {0}.

Example 6.7. We claim that for any left R-module M there is a
unique isomorphism

f : R⊗RM
∼→M
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satisfying
r ⊗ x 7→ rx.

Indeed, the map R ×M → M, (r, x) 7→ rx is R-bilinear, and hence
induces an R-linear homomorphism f : R⊗RM →M with f(r ⊗ x) =
rx. Conversely, the map M → R⊗RM given by x 7→ 1⊗x is R-linear,
and is a two-sided inverse to the map f .

Of course, in the same way one can produce an isomorhpism

M ⊗R R
∼→M, x⊗ r 7→ xr

for every right R-module M .

Example 6.8. The tensor product of two non-zero modules can
be zero. For example, we have

(Z/2Z)⊗Z (Z/3Z) = 0.

Indeed, the tensor product is generated by elements of the form x ⊗ y
with x ∈ Z/2Z and y ∈ Z/3Z. But since 3x = x for all x ∈ Z/2Z we
find

x⊗ y = (3x)⊗ y = x⊗ (3y) = x⊗ 0 = 0.

Similarly we have (Z/nZ) ⊗Z (Z/mZ) = 0 whenever n and m are co-
prime. See also Exercise 6.5.

2. Tensor products and bimodules

In many cases, the tensor product of two modules is not just an
abelian group, but itself again a module.

Definition 6.9. Let R and S be rings. An (R,S)-bimodule is an
abelian group M equipped with operations

R×M →M, (r, x) 7→ rx

and
M × S →M, (x, s) 7→ xs

such that
(B1) the first operation makes M into a left R-module
(B2) the second operation makes M into a right S-module
(B3) for all r ∈ R, s ∈ S and x ∈ M the identity r(xs) = (rx)s

holds in M .
A map f : M → N is called a morphism of (R,S)-bimodules if it is both
a morphism of left R-modules and a morphism of right S-modules. We
denote the category of (R,S)-bimodules by RModS .
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Because of axiom (B3), we can simply write rxs for r(xs) = (rx)s,
and we will frequently describe the structure of an (R,S)-bimodule by
the map

R×M × S →M, (r, x, s) 7→ rxs,

simultaneously encoding the left and right module structures.

Example 6.10. An abelian group A has a unique structure of
(Z,Z)-bimodule, which is given by nam := (nm)a for all n,m ∈ Z and
a ∈ A. It follows that a (Z,Z)-bimodule is the same thing as an abelian
group. Similarly, an (R,Z)-bimodule is the same as a left R-module,
and a (Z, R)-bimodule is the same as a right R-module.

Example 6.11. R be a commutative ring and M an R-module.
Then M also is an (R,R)-bimodule by setting

rxs := rsx

for all r, s ∈ R and x ∈M .

Example 6.12. Let R be a ring and n a non-negative integer.
Then Rn becomes an (R,R)-bimodule with

r(x1, . . . , xn)s := (rx1s, . . . , rxns).

Example 6.13. Let R be a commutative ring and n and m non-
negative integers. Then the additive group M = Matm,n(R) of n by m
matrices is a (Matn(R),Matm(R))-bimodule where for A ∈ Matn(R),
B ∈ Matm(R) and X ∈M the element AXB ofM is defined by matrix
multiplication.

Example 6.14. LetM a left S-module and N be a left R-module.
Consider the group Hom(M,N) of homomorphisms of abelian groups.
This group carries a natural structure of (R,S)-bimodule with

rfs :=
[
M → N, x 7→ rf(sx)

]
for all r ∈ R, f ∈ Hom(M,N) and s ∈ S.

Proposition 6.15. Let R, S, and T be rings. Let M be an
(R,S)-bimodule, and let N be an (S, T )-bimodule. Then the tensor
product M⊗SN has a unique structure of an (R, T )-bimodule satisfying

r(x⊗ y)t = (rx)⊗ (yt)

for all r ∈ R, x ∈M , y ∈ N and t ∈ T .
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If R is a commutative ring then any R-module is canonically an
(R,R)-bimodule, and we find that the tensor product of two R-modules
over R is naturally an R-module. When dealing with commutative
rings, there is no essential distinction between left and right modules,
and we will usually treat the tensor product as an operation that pro-
duces a left R-module out of two left R-modules.

3. Tensor product as a functor

Let R be a ring and let f : M1 → M2 be a morphism of right R-
modules, and let g : N1 → N2 be a morphism of left R-modules. Then
the map

M1 ×N1 →M2 ⊗R N2, (x, y) 7→ f(x)⊗ g(y)

is R-bilinear. Hence, by the universal property of the tensor product,
there exists a unique homomorphism of abelian groups

f ⊗ g : M1 ⊗R N1 →M2 ⊗R N2

that maps an element x ⊗ y to f(x) ⊗ g(y). This upgrades the tensor
product from being just a construction on pairs of modules to a functor

−⊗R − : ModR × RMod→ Ab.

Similarly, if R, S and T are rings, then we have a functor

−⊗S − : RModS × SModT → RModT .

Proposition 6.16. Let R be a ring and let N be a left R-module.
If

(4) M1
f−→M2

g−→M3 −→ 0

is an exact sequence of right R-modules, then the induced sequence

(5) M1 ⊗R N
f⊗id−→ M2 ⊗R N

g⊗id−→ M3 ⊗R N −→ 0

of abelian groups is exact. Similarly, if

N1 −→ N2 −→ N3 −→ 0

is an exact sequence of left R-modules, and M a right R-module, then
the induced sequence

M ⊗R N1 −→M ⊗R N2 −→M ⊗R N3 −→ 0

is exact.
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The functor − ⊗R N in general does not preserve short exact se-
quences: even if

0→M1 →M2 →M3 → 0

is a short exact sequence, then we only obtain a partial exact sequence

M1 ⊗R N →M2 ⊗R N →M3 ⊗R N → 0.

See Exercise 6.13.

Proof of Proposition 6.16. For all x ∈M1 and y ∈ N we have
gf(x) ⊗ y = 0, hence im(f ⊗ id) ⊂ ker(g ⊗ id). In particular, we have
an induced map

(6) Φ:
M2 ⊗R N
im(f ⊗ id)

−→M3 ⊗R N.

To show that the sequence (5) is exact, it suffices to show that the
above map is an isomorphism. We will verify this by constructing an
inverse map.

For every x ∈M3 choose an x′ ∈M2 with g(x′) = x (note that g is
surjective). We define a map

M3 ×N →
M2 ⊗R N
im(f ⊗ id)

, (x, y) 7→ x′ ⊗ y.

This is well-defined, since if x′′ is another element with g(x′′) = x, then

(x′′ ⊗ y)− (x′ ⊗ y) = (x′′ − x′)⊗ y ∈ im(f ⊗ id),

using the exactness of the original sequence (4). Moreover, the map is
bilinear, so it induces a homomorphism

M3 ⊗R N →
M2 ⊗R N
im(f ⊗ id)

and one verifies that this is a two-sided inverse to the map Φ. �

Example 6.17. Proposition 6.16 can be a powerful tool in com-
puting tensor products. As an example, let us use it to compute
M ⊗Z (Z/nZ) for any Z-module M . We have an exact sequence

Z
n−→ Z −→ Z/nZ −→ 0

of Z-modules, which induces an exact sequence

Z⊗Z M
n⊗id−→ Z⊗Z M −→ Z/nZ⊗Z M −→ 0.
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We have Z⊗ZM ∼= M (see Example 6.7), and the above exact sequence
is isomorphic with the exact sequence

M
n−→M −→ Z/nZ⊗Z M −→ 0,

from which we conclude that Z/nZ⊗Z M is isomorphic with M/nM .

4. The adjunction

Let R and S be rings. If N is an (R,S)-bimodule, and P a right
S-module, then HomS(N,P ) is naturally a right R-module, with the
action of R defined by:

rf : N → P, x 7→ f(rx).

See Exercise 6.2.

Theorem 6.18 (Tensor-Hom adjunction). Let R and S be rings.
Let M be a right R-module, N an (R,S)-bimodule, and P be a right
S-module. Then the map of abelian groups

HomS(M ⊗R N,P )→ HomR(M,HomS(N,P ))

given by

f 7→
(
x 7→ (y 7→ f(x⊗ y))

)
is an isomorphism.

Proof. Given an R-linear map f : M → HomS(N,P ) we obtain a
map

M ×N → P, (x, y) 7→ f(x)(y)

which is R-bilinear, hence it defines a homomorphism

f ′ : M ⊗R N → P

with the property that it maps x⊗ y to f(x)(y). This map is S-linear.
This construction defines a homomorphism

HomR(M,HomS(N,P ))→ HomS(M ⊗R N,P ), f 7→ f ′.

We leave it to the reader to verify that this is a two-sided inverse to the
map in the theorem. �
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5. Restriction and extension of scalars

Let f : R → S be a morphism of rings. If M is an S-module, then
M also has the structure of an R-module, by rx := f(r)x. We obtain
a functor

SMod→ RMod, M 7→M

which is called restriction of scalars.

Example 6.19. If f : R → C is the inclusion, then the corre-
sponding restriction of scalars functor maps an n-dimensional complex
vector space V , to the 2n-dimensional real vector space V .

Example 6.20. If f : Z→ R is the canonical ring morphism from
Z to a commutative ring, then the restriction of scalars functor coincides
with the forgetful functor

RMod→ Ab, M 7→M

which maps a module to the underlying abelian group.

There is also a construction in the other direction. Let M be a
(left) R-module. Note that S is an (S,R)-bimodule where s ∈ S acts
by left multiplication on S, and r ∈ R by right multiplication with f(r).
Hence the tensor product S ⊗RM is a left S-module and we obtain a
functor

RMod→ SMod, M 7→ S ⊗RM

called extension of scalars.

Example 6.21. If M is free with basis x1, . . . , xn, then S ⊗RM
is free with basis 1⊗ x1, . . . , 1⊗ xn. That is, very element y ∈ S ⊗RM
can be uniquely written as

y = s1 ⊗ x1 + · · ·+ sn ⊗ xn

with si ∈ S. For example, if f : R → C is the inclusion and V = Rn

then we have C⊗R V ∼= Cn as complex vector spaces.

Proposition 6.22 (Universal property of extension of scalars).
Let f : R → S be a ring homomorphism. Let M be a left R-module
and let N be a left S-module. Let ϕ : M → N be an R-linear map.
Then there exists a unique S-linear map ϕ̃ : S⊗RM → N such that the
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triangle

S ⊗RM N

M

ϕ̃

x 7→1⊗x ϕ

commutes.

Proof. We first prove uniqueness. For all x ∈M we must have

ϕ̃(s⊗ x) = sϕ̃(1⊗ x) = sϕ(x),

and since S⊗RM is generated by elements s⊗ x we see that there can
be at most one ϕ̃. To show existence, note that

S ×M → N, (s, x) 7→ sϕ(x)

is R-bilinear and hence defines a map

ϕ̃ : S ⊗RM → N

satisfying ϕ̃(s⊗ x) = sϕ(x). For all s, s′ ∈ S and x ∈M we have

ϕ̃(s′(s⊗ x)) = ϕ̃(s′s⊗ x) = s′sϕ(x) = s′(sϕ(x)),

which shows that ϕ̃ is indeed S-linear. �

A useful reformulation of the above proposition is the following
corollary, which can also be seen as a special case of Theorem 6.18,
using the canonical isomorphism HomS(S,N) = N .

Corollary 6.23 (Adjunction between extension and restriction
of scalars). Let f : R → S be a ring homomorphism. Let M be an
R-module and let N be an S-module. Then the map

HomS(S ⊗RM,N)→ HomR(M,N), f 7→ (x 7→ f(1⊗ x))

is a bijection. �
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Exercises

Exercise 6.1. Verify that the bi-module in Example 6.14 indeed
satisfies the bi-module axioms.

Exercise 6.2. Let R and S be rings. Let M be a left R-module
and N an (R,S)-bimodule. Show that HomR(M,N) is naturally a right
S-module and that HomR(N,M) is naturally a left S-module.

Exercise 6.3. Let R be a ring, let M be a left R-module and let
n be a non-negative integer. Show that Rn⊗RM is isomorphic to Mn.

Exercise 6.4. Let R be a commutative ring. Show that Rn⊗RRm
is isomorphic to Rnm as R-module.

Exercise 6.5. Let n and m be positive integers with greatest
common divisor d. Show that

(1) (Z/nZ)⊗Z (Z/mZ) ∼= Z/dZ;
(2) Q⊗Z (Z/mZ) ∼= 0;
(3) Q⊗Z Q ∼= Q.

Exercise 6.6. Let K be a field and R := Matn(K) the ring of
n by n matrices. Let M = Kn be the right R-module of length n row
vectors, and N = Kn the left R-module of length n column vectors.
Show that the abelian group M ⊗R N is isomorphic to K.

Exercise 6.7. Let R be a commutative ring and f, g ∈ R. Show
that

R/(f)⊗R R/(g) ∼= R/(f, g)

as R-modules.

Exercise 6.8. Let R be a ring, let I ⊂ R be a (two-sided) ideal
and let M be a left R-module. Show that (R/I) ⊗R M is isomorphic
to M/IM .

Exercise 6.9. Let R and S be rings, letM1 be a right R-module,
M2 an (R,S)-bimodule, and M3 a left S-module. Show that there is a
unique isomorphism

(M1 ⊗RM2)⊗S M3 →M1 ⊗R (M2 ⊗S M3)

such that
(x⊗ y)⊗ z 7→ x⊗ (y ⊗ z)

for all x ∈M1, y ∈M2 and z ∈M3.
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Exercise 6.10. Let R be a ring and let M1, M2 be right R-
modules and N a left R-module. Show that there is a unique isomor-
phism

(M1 ⊕M2)⊗R N → (M1 ⊗R N)⊕ (M2 ⊗R N)

such that
(x, y)⊗ z 7→ (x⊗ z, y ⊗ z)

for all x ∈M1, y ∈M2 and z ∈ N .

Exercise 6.11. Let R be an integral domain with fraction field
K. Let M be an R-module. Show that every element of K ⊗RM is of
the form λ⊗ x with λ ∈ K and x ∈M .

Exercise 6.12. Let R be a ring,M a right andN a left R-module.
Show that there is a surjective morphism of abelian groups

M ⊗Z N →M ⊗R N
which maps x⊗ y to x⊗ y.

Exercise 6.13. Consider the short exact sequence of Z-modules

0 −→ Z
2−→ Z −→ Z/2Z −→ 0.

Show that the sequence obtained by applying the functor − ⊗Z Z/2Z
is not a short exact sequence.

Exercise 6.14. Let R be a ring and let 0→M1 →M2 →M3 →
0 be a short exact sequence of right R-modules. Let N be a free left
R-module. Show that the induced sequence

0→M1 ⊗R N →M2 ⊗R N →M3 ⊗R N → 0

is a short exact sequence.

Exercise 6.15. Let R be a ring and let 0→M1 →M2 →M3 →
0 be a split short exact sequence of right R-modules. Let N be a left
R-module. Show that the induced sequence

0→M1 ⊗R N →M2 ⊗R N →M3 ⊗R N → 0

is a short exact sequence.

Exercise 6.16. Let R be a principal ideal domain and let

M ∼= Rm ⊕R/pe11 R⊕ · · · ⊕R/p
en
n R

be a finitely generated R-module (with the notation of Corollary 3.6).
(1) Let K be the fraction field of R. Compute dimK(K ⊗RM).
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(2) Let p ∈ R be irreducible. Compute dimR/pR(R/pR⊗RM).

Exercise 6.17. Deduce the universal property of extension of
scalars (Proposition 6.22) from the tensor-hom adjunction (Theorem
6.18).

Exercise 6.18 (Extension of scalars preserves finite generation).
Let f : R → S be a morphism of rings. Let M be a finitely generated
R-module. Show that S ⊗RM is a finitely generated S-module.

Exercise 6.19 (Restriction of scalars does not preserve finite
generation). Give an example of a morphism f : R→ S of commutative
rings, and a finitely generated S-module M such that M is not finitely
generated as an R-module.

Exercise 6.20. Let f : R → R′ and g : R′ → R′′ be morphisms
of rings, and consider the extension of scalar functors

RMod→ R′Mod→ R′′Mod.

Show that the composite of these functors is isomorphic to the extension
of scalar functor

RMod→ R′′Mod

for the ring morphism gf : R→ R′′.

Exercise 6.21. Let f : R→ S be a surjective morphism of rings.
Show that the restriction of scalars functor

SMod→ RMod, M 7→M

is full and faithful. Give an example to show that it need not be essen-
tially surjective.





CHAPTER 7

Adjoint functors

1. Adjoint pairs of functors

Definition 7.1. Let F : C → D and G : D → C be functors
between locally small categories. An adjunction between F and G is
an isomorphism

α : HomD(F (−),−)
∼−→ HomC(−, G(−))

of functors Copp ×D → Set (see Example 5.16). If such an adjunction
exists, we say F is left adjoint to G, and G is right adjoint to F .

In other words, an adjunction from F to G consists of the data of
a bijection

(7) αX,Y : HomD(FX, Y )
∼−→ HomC(X,GY ),

for every X in C and Y in D, such that for every f : X1 → X2 the
square

HomD(FX1, Y ) HomC(X1, GY )

HomD(FX2, Y ) HomC(X2, GY )

αX1,Y

αX2,Y

−◦Ff −◦f

commutes, and for every g : Y1 → Y2 the square

HomD(FX, Y1) HomC(X,GY1)

HomD(FX, Y2) HomC(X,GY2)

αX,Y1

g◦− Gg◦−
αX,Y2

commutes. In practice, the adjunction (7) is often a canonical bijection
whose functoriality is clear from the definition.

Remark 7.2. The terminology comes from an analogy with linear
algebra: if V and W are vector spaces equipped with inner products,

79
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then linear maps f : V → W and g : W → V are called adjoint if we
have

〈f(v), w〉W = 〈v, g(w)〉V
for all v ∈ V and w ∈W .

Assume that F : C → D is a left adjoint of G : D → C, with an
adjunction

(8) α : HomD(FX, Y )
∼−→ HomC(X,GY ).

Taking Y = FX, we obtain a bijection

αX,FX : HomD(FX,FX)
∼−→ HomC(X,GFX).

The image of idFX under this map gives a map

ηX : X → GFX

in C, which by the functoriality of the adjunction (8) defines a morphism
of functors

η : idC → GF.

Similarly, taking X = GY in (8) we obtain a morphism of functors

ε : FG→ idD.

The morphisms of functors η and ε are called the unit and co-unit of
the adjunction between F and G.

2. Many examples

The main reason that adjunctions between functors are interesting,
is that they are ubiquitous: they arise surprisingly often in multiple
branches of mathematics. Here is a short list of examples.

Example 7.3 (Cartesian product and set of maps). Fix a set A.
Then for all sets X and Y we we have a canonical bijection

αX,Y : Hom(X ×A, Y )
∼→ Hom(X,Hom(A, Y ))

given by mapping a function f : X ×A→ Y to the function

X → Hom(A, Y ), x 7→ (a 7→ f(x, a)) .

An inverse is given by mapping a function g : X → Hom(A, Y ) to

X ×A→ Y, (x, a) 7→ g(x)(a).

It is easy to check that α defines an adjunction, making the functor

Set→ Set, X 7→ X ×A
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into a left adjoint to the functor

Set→ Set, Y 7→ Hom(A, Y ).

The unit η : id→ Hom(A,−×A) of this adjunction is given by

ηX : X → Hom(A,X ×A), x 7→ (a 7→ (x, a))

and the co-unit ε : Hom(A,−)×A→ id is given by

εX : Hom(A,X)×A→ X, (f, a) 7→ f(a).

Example 7.4 (Tensor product and Hom). This is a variation on
the previous example. Let R and S be rings, and let A be an (R,S)-
bimodule. Then the functor

ModR →ModS , M 7→M ⊗R A
is left adjoint to the functor

ModS →ModR, N 7→ HomS(A,N),

which comes down to the functorial isomorphism

αM,N : HomS(M ⊗R A, N)
∼−→ HomR(M, HomS(A,N))

of Theorem 6.18.

Example 7.5 (Free module and forgetful functor). Let R be a
ring. Let M be an R-module and let R(I) be the free R-module on a
set I (see Example 5.6). Then we have a canonical map

αI,M : Hom
RMod(R(I),M) −→ HomSet(I,M),

given by restricting a module homomorphism ϕ : R(I) → M to the set
of basis vectors {δi : i ∈ I}. This map is a bijection, since a module
homomorphism R(I) →M is uniquely determined by the images of the
basis vectors δi, and conversely, given a map of sets f : I → M we
obtain an R-module homomorphism

R(I) →M, ϕ 7→
∑
i∈I

ϕ(i)f(i).

This is just a reformulation of the familiar fact from linear algebra: to
give a linear map from V to W is the same as to give the images of the
vectors in a basis of V .

If we denote by

G : RMod→ Set, M 7→M
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the forgetful functor (see Example 5.3) and by

F : Set→ RMod, I 7→ R(I)

be the free module functor, then α defines a bijection

αI,M : Hom
RMod(FI,M)

∼→ HomSet(I,GM),

and one can verify directly that this defines an adjunction, making the
free module functor F into a left adjoint to the forgetful functor G.
The unit of this adjunction is the morphism η : id → GF given by the
function

ηI : I → R(I), i 7→ δi,

for every set I.

Example 7.6 (Discrete topology, forgetful functor, trivial topol-
ogy). Any function from a discrete topological space is automatically
continuous. Likewise, any function to a trivial topological space is au-
tomatically continuous. That is, we have

HomTop(Xdisc, Y ) = HomSet(X,Y )

and
HomSet(X,Y ) = HomTop(X,Ytriv),

and we see that the discrete topology functor

Set→ Top, X 7→ Xdisc

is left adjoint to the forgetful functor Top→ Set, and that the trivial
topology functor

Set→ Top, Y 7→ Ytriv

is right adjoint to the forgetful functor.

Example 7.7 (Frobenius reciprocity). Let k be a field, let G be
a group and let H ⊂ G be a subgroup. Then Frobenius reciprocity
gives for every k-linear representation V of H and W of G a canonical
isomorphism

Homk[G](IndGH V, W )
∼→ Homk[H](V, ResGHW ),

which makes the functor IndGH into a left adjoint to ResGH .
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3. Yoneda and uniqueness of adjoints

If X is an object in C, then we have a functor

hX := HomC(−, X) : Copp → Set.

It maps an object Y to Hom(Y,X), and if f : Y1 → Y2 is a morphism
in C, then we obtain a morphism of sets

hX(f) : HomC(Y2, X)→ HomC(Y1, X), g 7→ gf.

Now the functors from C to Set form themselves a category Fun(C,Set),
in which the morphisms are the natural transformations between func-
tors. The above construction defines a functor

h : C → Fun(Copp,Set), X 7→ hX

On the level of morphisms it is given by sending a map f : X → Y to
the natural transformation hf : hX → hY given by

hf,T : HomC(T,X)→ HomC(T, Y ), g 7→ fg

for every T in C.

Theorem 7.8 (Yoneda’s Lemma). The functor

C → Fun(Copp,Set), X 7→ hX

is fully faithful.

Proof. In other words, we need to show that for all pairs of objects
X, Y in C the map

(9) HomC(X,Y )→ HomFun(Copp,Set)(hX , hY )

is a bijection. It is easy to define a map in the other way: Let ϕ : hX →
hY be a morphism of functors. Then for every T we have a map
ϕT : hX(T ) → hY (T ), and in particular, taking T = X, we find a
map

ϕX : HomC(X,X)→ HomC(X,Y ).

The image of idX now gives a canonical element

f := ϕX(idX) ∈ HomC(X,Y )

a morphism f : X → Y in C.
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To see that this construction is a two-sided inverse to (9), note that
for every g : T → X the square

HomC(X,X) HomC(X,Y )

HomC(T,X) HomC(T, Y )

f◦−

−◦g −◦g
f◦−

commutes. Tracing the element idX we find

idX ϕX(idX)

g ϕT (g)

f◦−

−◦g −◦g
f◦−

and hence that ϕT (g) is completely determined by f := ϕX(idX). �

Corollary 7.9. If hX and hY are isomorphic functors, then X
and Y are isomorphic objects in C. �

Corollary 7.10 (Uniqueness of right adjoints). If both G1 : D →
C and G2 : D → C are right adjoints to a functor F : C → D, then G1

and G2 are isomorphic functors.

Proof. Choose adjunctions between F and G1 and between F and
G2. Then we obtain isomorphisms

HomC(X,G1Y )
∼←− HomD(FX, Y )

∼−→ HomC(X,G2Y ),

functorial in X and Y . Composing these, we find for all X in C and Y
in D an isomorphism

HomC(X,G1Y )→ HomC(X,G2Y ).

Functoriality in X implies that for every Y in D we find an isomorphism

HomC(−, G1Y )
∼−→ HomC(−, G2Y )

of functors Copp → Set, which by Yoneda’s Lemma and Exercise 5.13
comes from a unique isomorphism

γY : G1Y
∼−→ G2Y

in C. Functoriality in Y implies that the collection (γY )Y defines an
isomorphism of functors

γ : G1
∼−→ G2
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which finishes the proof. �

There is (of course) a dual of Yoneda’s lemma. Given an object X
in C, consider the functor

hX := HomC(X,−) : C → Set.

We have a functor

Copp → Fun(C,Set), X 7→ hX

On the level of morphisms it is given by sending a map f : X → Y to
the natural transformation hf : hY → hX given by

hfT : HomC(Y, T )→ HomC(X,T ), g 7→ gf

for every T in C.

Theorem 7.11 (co-Yoneda’s Lemma). The functor

Copp → Fun(C,Set), X 7→ hX

is fully faithful. �

Corollary 7.12 (Uniqueness of left adjoints). If both F1 : C → D
and F2 : C → D are left adjoints to a functor G : D → C, then F1 and
F2 are isomorphic functors. �
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Exercises

Exercise 7.1. Verify that the unit η and the co-unit ε of an
adjunction are indeed morphisms of functors.

Exercise 7.2. Let F : C → D be an equivalence with quasi-inverse
G : D → C. Show that F is both left and right adjoint to G.

Exercise 7.3. Show that the abelianization functor G 7→ Gab

(see Example 5.5) is a left adjoint to the inclusion functor Ab→ Grp.
What are the unit and co-unit of this adjunction?

Exercise 7.4. Let R be the category with obR = R and

HomR(x, y) =

{
{?} x ≤ y
∅ x > y

for all x, y ∈ R (see also Example 4.9). Let Z be the full subcategory
with obZ = Z and let F : Z → R be the inclusion functor. Does this
functor have a left adjoint? And a right adjoint?

Exercise 7.5. Assume F : C1 → C2 is left adjoint to G : C2 → C1

and F ′ : C2 → C3 is left adjoint to G′ : C3 → C2. Show that F ′F is left
adjoint to GG′.

Exercise 7.6. Let {?} be the ‘one-point category’ consisting of
a unique object ? and a unique morphism id?. Let C be an arbitrary
category. When does the (unique) functor C → {?} have a left adjoint?
And a right adjoint?

Exercise 7.7. For a set I denote by Z[Xi | i ∈ I] the polynomial
ring in variables (Xi) indexed by I. Elements of Z[Xi | i ∈ I] are finite
Z-linear combinations of monomials in finitely many of the variables.
Verify that I 7→ Z[Xi | i ∈ I] defines a functor Set→ CRing which is
left adjoint to the forgetful functor CRing→ Set.

Exercise 7.8. Let F : C → D be left adjoint to G : D → C. Let
X be a co-final object in C, show that FX is cofinal in D. Similarly, if
Y is final in D, show that GY is final in C.

Exercise 7.9. Show that the forgetful functor Top? → Top has
a left adjoint but not a right adjoint.

Exercise 7.10. Look up the definition of Stone-Čech compacti-
fication, and verify that it gives a left adjoint to the inclusion functor
from the category of compact Hausdorff spaces to Top.
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Exercise 7.11. Let G be a group and let R be a ring. Show that
restriction defines a bijection between the sets of

(1) ring homomorphisms f : Z[G]→ R
(2) group homomorphisms G→ R×.

Interpret this bijection as an adjunction between functors between the
categories of groups and rings.

Exercise 7.12 (Triangle identities (?)). Let F : C → D be a left
adjoint to G : D → C, with unit η : idC → GF and co-unit ε : FG→ idD.
Show that the diagrams

FX FGFX GY GFGY

FX GY

FηX

id
εFX

ηGY

id
GεY

commute for every X in C and Y in D.

Exercise 7.13. A functor F : C → Set is called co-representable
if there exists an object X in C with hX ∼= F . We say that F is
co-represented by X. Let f1, . . . , fm ∈ Z[X1, . . . , Xn]. Show that the
functor

CRing→ Set, R 7→ {x ∈ Rn | f1(x) = · · · = fm(x) = 0}

of Example 5.9 is co-representable.

Exercise 7.14 (?). Show that the functor

GLn : CRing→ Set, R 7→ GLn(R)

of Exercise 5.8 is co-representable. (Hint: first show that the functor
GL1 : R 7→ R× is isomorphic to hR1 with R1 = Z[X,Y ]/(XY −1).) Let
Rn be the commutative ring such that GLn ∼= hRn . By the co-Yoneda
lemma there is a unique ring homomorphism R1 → Rn inducing the
natural transformation det : GLn → GL1. Describe this ring homomor-
phism explicitly.

Exercise 7.15 (?). For topological spacesA and Y define C(A, Y )
to be the set of continuous maps fromA to Y . For every compactK ⊂ A
and open U ⊂ Y let CK,U ⊂ C(A, Y ) be the subset consisting of those
f : A → Y with f(K) ⊂ U . We give C(A, Y ) the topology generated
by the subsets CK,U . (It is known as the compact-open topology).
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Show that if A is compact and Hausdorff, then the functor

Top→ Top : X 7→ X ×A
(giving X ×A the product topology) is left adjoint to the functor

Top→ Top : Y 7→ C(A, Y ).



CHAPTER 8

Limits and colimits

1. Product and coproduct

Definition 8.1. Let C be a category, let X and Y be objects in
C. A product of X and Y consists of the data of

(1) an object P
(2) morphisms πX : P → X and πY : P → Y

such that for all objects T in C, and for all f : T → X and g : T → Y
there is a unique map h : T → P making the following diagram commute

X

T P

Y

f

g

h
πX

πY

A product need not exist, but if it does, it is unique up to unique
isomorphism. In particular, we will refer to any product of X and Y as
the product of X and Y . We will usually denote it by X × Y , omitting
the morphisms πX and πY . The proof of uniqueness is formal, and
essentially identical to the proofs of Proposition 4.25 and the uniqueness
part of Theorem 6.2. We repeat the argument for the last time.

Proposition 8.2. Let (P, πX , πY ) and (P ′, π′X , π
′
Y ) be products

of X and Y . Then there exists a unique isomorphism h : P → P ′ such

89
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that the diagram
X

P P ′

Y

πX

πY

h

π′X

π′Y

commutes.

Proof of Proposition 8.2. Since P ′ is a product, there exists
a unique h : P → P ′ making the diagram commute. Likewise, since
P is a product, there exists a unique h′ : P ′ → P making the diagram
commute. By the same reasoning, there are unique maps i and i′ making
the diagrams

X X

P P P ′ P ′

Y Y

πX

πY

i

πX

πY

π′X

π′Y

i

π′X

π′Y

commute. Combining both parts, we see that both i = idP and i = h′h
make the first diagram commute, and that both i = idP ′ and i = hh′

make the second diagram commute. By unicity we have h′h = idP and
hh′ = idP ′ , hence h is an isomorphism. �

Examples 8.3. In Set the product is the cartesian product, to-
gether with the usual projections. In Top the product is the cartesian
product equipped the product topology, together with the usual pro-
jections. The product of two rings R and S in Ring is the product ring
R× S. The product of two modules in RMod is the cartesian product
M ×N .

The dual notion of a product is a coproduct (sometimes called sum).

Definition 8.4. Let C be a category, let X and Y be objects in
C. A coproduct of X and Y consists of the data of

(1) an object S
(2) morphisms ιX : X → S and ιY : Y → S
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such that for all objects T in C, and for all f : X → T and g : Y → T
there is a unique map h : S → T making the diagram

X

S T

Y

ιX

f

h

ιY
g

commute.

By the same argument as before, a coproduct, if it exists, is unique
up to isomorphism. We talk about the coproduct, and denote it with
X q Y .

Example 8.5. Let X and Y be sets. Then the coproduct of X
and Y in Set is the disjoint union X q Y , together with the canonical
inclusions ιX : X → X q Y and ιY : Y → X q Y .

Similarly, the coproduct in Top of topological spaces X and Y is
the disjoint union X q Y , with the natural topology (in which X and
Y are both open and closed).

Example 8.6. Let R be a ring. Then the coproduct of R-modules
M and N is the direct sum M ⊕N , and hence in this case the product
and the coproduct coincide (although the former is considered together
with the projections, and the latter with the inclusions).

More generally one can define products and coproducts of arbitrary
(possibly infinite) families of objects.

Definition 8.7. The product of a family (Xi)i∈I of objects in C
is an object

∏
i∈I Xi together with maps πn :

∏
i∈I Xi → Xn such that

for every T and for every collection of morphisms fi : T → Xi there is
a unique h : T →

∏
i∈I Xi such that fi = πih for all i ∈ I.

Definition 8.8. The coproduct of a family (Xi)i∈I of objects in
C is an object qi∈IXi together with maps ιn : Xn → qi∈IXi such that
for every T and for every collection of morphisms fi : Xi → T there is
a unique h : qi∈I Xi → T such that fi = hιi for all i ∈ I.

Again, products and coproducts of arbitrary families need not exist,
but if they do they are unique up to unique isomorphism.
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Example 8.9 (Product and coproduct of modules). Let R be a
ring and (Mi)i∈I a collection of R-modules. Then the product of (Mi)
is the R-module ∏

i∈I
Mi = {(xi)i∈I | xi ∈Mi}

together with the projection maps πn :
∏
i∈IMi → Mn. The universal

property of products gives a natural (i.e. functorial) bijection

HomR(N,
∏
i∈I

Mi)
∼−→
∏
i∈I

HomR(N,Mi).

The coproduct of (Mi)i is the direct sum
⊕

i∈IMi together with the
inclusion maps ιn : Mn →

⊕
i∈IMi given by

ιn(x)i =

{
x i = n

0 i 6= n

for all x ∈Mn and i ∈ I. Indeed, the natural bijection

HomR(
⊕
i∈I

Mi, N)
∼−→
∏
i∈I

HomR(Mi, N)

of Exercise 1.17 shows that for every collection of morphisms (fi : Mi →
N)i there is a unique morphism h :

⊕
i∈IMi → N with hιi = fi.

2. Pushout and pullback

Definition 8.10. Let C be a category and let f : X → Z and
g : Y → Z be morphisms in C. The pull-back or fibered product of f
and g consists of

(1) an object P in C
(2) morphisms πX : P → X and πY : P → Y

such that fπX = gπY as maps P → Z, and such that for every object
T and for every pair of maps s : T → X, t : T → Y with fs = gt there
is a unique morphism h : T → P making the diagram

X

T P Z

Y

f

s

t

h

πX

πY

g
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commute.

If it exists, the pull-back is unique up to unique isomorphism. It is
usually denoted by P = X ×Z Y , but care should be taken since the
pull-back does depend on the maps f and g. Alternatively, one says
that the square

P Y

X Z

πY

πX g

f

is cartesian if (P, πX , πY ) is the fibered product of f and g.

Example 8.11. In the category of sets, the fiber product of any
pair of maps f : X → Z and g : Y → Z exists. It is given by

X ×Z Y = {(x, y) ∈ X × Y | f(x) = g(y)},
together with the projection maps. Indeed, if s : T → X and t : T → Y
satisfy fs = gt, then the map

h : T → X ×Z Y, u 7→ (s(u), t(u)).

is the unique map making the diagram of the definition commute.
In the case that X = {?} and f the map ? 7→ z, then we find

{?} ×Z Y = g−1(z),

the fiber of Y over z.
In the case thatX,Y are subsets of Z and f and g are the respective

inclusions we find X ×Z Y = X ∩ Y .

Example 8.12. Similarly, in Top we have

X ×Z Y = {(x, y) ∈ X × Y | f(x) = g(y)}
with the induced topology from the product topology on X × Y .

Example 8.13. Similarly, if f1 : M1 → N and f2 : M2 → N are
R-module homomorphisms, then

{(x1, x2) ∈M1 ×M2 | f1(x1) = f2(x2)}
is a sub-R-module of M1×M2, and one verifies that it is the pull-back
of f1 and f2.

The dual notion of pullback/fibered product is pushout/fibered co-
product. The definition is obtained by reversing all the arrows.
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Definition 8.14. Let C be a category and let f : Z → X and
g : Z → Y be morphisms in C. The pushout or fiber coproduct or fiber
sum of f and g consists of

(1) an object S in C
(2) morphisms ιX : X → S and ιY : Y → S

such that ιXf = ιY g as maps Z → S, and such that for every object T
and for every pair of maps s : X → T , t : Y → T with sf = tg there is
a unique morphism h : S → T making the diagram

X

Z S T

Y

ιX

s
f

g

h

ιY
t

commute.

If it exists, the pushout is unique up to unique isomorphism.

Example 8.15. Pushouts exist in Set, and can be constructed
as follows. Let f : Z → X and g : Z → Y be functions. Consider
the equivalence relation ∼ on the disjoint union X q Y generated by
f(z) ∼ g(z). Let S be the quotient (X qY )/ ∼. Then we claim that S
is the pushout of f and g. Indeed, assume that we have a commutative
diagram

X

Z S T

Y

ιX

s
f

g

h

ιY

t

Then there is only one possibility for the map h:

h : S → T,

{
[x] 7→ s(x) x ∈ X
[y] 7→ t(y) y ∈ Y

This is indeed well-defined, since for any z ∈ Z we have s(f(z)) =
t(g(z)).
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Example 8.16 (Glueing). The same construction as in Set de-
fines a pushout in Top, it suffices to put the quotient topology on
X q Y/ ∼. This construction is particularly useful in topology when
both f : Z → X and g : Z → Y are injective. In this case it constructs
a space S by ‘gluing’ X and Y along their common subspace Z.

Conversely, if S is a topological space and X and Y subspaces with
S = X ∪ Y , then S is the pushout of the inclusion maps X ∩ Y → X
and X ∩ Y → Y .

3. Equalizer and co-equalizer

Definition 8.17. Let C be a category, let X and Y be objects in
C and let f : X → Y and g : X → Y be morphisms in C. The equalizer
of f and g is a pair (E, ι) consisting of

(1) an object E in C,
(2) a morphism ι : E → X in C,

such that fι = gι, and such that for every morphism t : T → X with
ft = gt there is a unique h : T → E making the diagram

T

E X Y

h
t

ι f

g

commute.

The equalizer of f and g, if it exists, is unique up to unique isomor-
phism.

Example 8.18. In Set the equalizer of f, g : X → Y is given by
E = {x ∈ X | f(x) = g(x)} and ι : E → X the inclusion. Also in Ring,
CRing, Top, Grp, RMod equalizers exist, and are given by the same
recipe. For example, the equalizer of a pair of ring homomorhpisms
f, g : R→ S is the subring

{r ∈ R | f(r) = g(r)} ⊂ R,
together with its inclusion in R.

Example 8.19. In RMod the equalizer of f, g : M → N is noth-
ing but ker(f − g). In particular, taking g = 0 we see that a kernel of
an R-module homomorphism is a special case of an equalizer.

The dual notion of equalizer is co-equalizer.
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Definition 8.20. Let C be a category, let X and Y be objects
in C and let f : X → Y and g : X → Y be morphisms in C. The
co-equalizer of f and g is a pair (C, π) consisting of

(1) an object C in C,
(2) a morphism π : Y → C in C,

such that πf = πg, and such that for every morphism t : Y → T with
tf = tg there is a unique h : C → T making the diagram

X Y C

T

f

g

π

t
h

commute.

The co-equalizer of f and g, if it exists, is unique up to unique
isomorphism.

Example 8.21. In Set, the co-equalizer of f, g : X → Y is the
quotient E = Y/∼ of Y by the equivalence relation generated by f(x) ∼
g(x) for all x ∈ X.

Example 8.22. In RMod the co-equalizer of f, g : M → N is
coker(f − g). In particular, taking g = 0 we see that cokernels of
R-linear maps are examples of co-equalizers.

4. Limits and colimits

The above six constructions are examples of two dual general classes
of categorical constructions called limits and colimits.

Let I be a small category (see Definition 4.11), let C be a category,
and let X : I → C be a functor. We will often denote the image of an
object i ∈ I by Xi.

It is useful to think of the functorX : I → C informally as a diagram
in C, indexed by I. For example, if I is the three-object category

1

2

3

ϕ

ψ
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then a functor X : I → C can be thought of as a diagram

X1

X2

X3

X(ϕ)

X(ψ)

of objects and morphisms in C. See also Example 5.10.

Definition 8.23. The limit of a functor X : I → C consists of
(1) an object limI X in C
(2) for every object i in I a morphism πi : limI X → Xi

such that
(1) for every ϕ : i→ j in I we have πj = X(ϕ) ◦ πi
(2) for every T in C and for every collection of morphisms ti : T →

Xi satisfying tj = X(ϕ) ◦ ti for all ϕ : i→ j, there is a unique
h : T → limI X with ti = πih for all i.

Of course, the limit of I → C, if it exists, is unique up to unique
isomorphism. The limit is sometimes written limiXi or limI Xi, but
one should be careful to remember that it depends on the full functor
X, and not just on the objects (Xi)i∈ob I .

Examples 8.24. Taking for I the three categories

1

1 2, 2, 1 2

3

recovers the notions of product, fibered product and equalizer. If we
take for I the empty category, then the limit (of the unique functor
∅ → C) is the final object of C (if it exists).

There is no surprise in the definition of colimit:

Definition 8.25. The colimit of a functor X : I → C consists of
(1) an object colimI X in C,
(2) for every object i in I a morphism ιi : Xi → colimI X

such that
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(1) for every ϕ : i→ j in I we have ιj ◦X(ϕ) = ιi,
(2) for every T in C and for every collection of morphisms ti : Xi →

T satisfying tj ◦X(ϕ) = ti for all ϕ : i → j, there is a unique
h : colimI X → T with ti = hιi for all i.

If it exists, it is unique up to unique isomorphism.

Examples 8.26. Taking for I the opposites of the three categories
in 8.24 one recovers the notions of coproduct, fibered coproduct and co-
equalizer. If we take for I the empty category, then the colimit (of the
unique functor ∅ → C) is the cofinal object of C (if it exists).

We end with an example of an infinite diagram in Set and its limit
and colimit.

Example 8.27. Let I be the category with ob I = N and such
that for all i < j we have Hom(i, j) = ∅, and for all i ≥ j we have
Hom(i, j) = {?}. In a picture:

0←− 1←− 2←− 3←− · · · .

Let S0 ⊃ S1 ⊃ S2 ⊃ · · · be a decreasing chain of sets. Then this defines
a functor

S : I → Set, i 7→ Si

which for i ≥ j maps the unique map i→ j to the inclusion Si ↪→ Sj .
To give a collection of maps ti : T → Si such that for all i ≥ j the

diagram

T

Sj Si

tj
ti

commutes, is the same as to give a map t : T → ∩iSi. From this it
follows easily that limi Si = ∩iSi.

For the colimit, note that a collection of maps ti : Si → T such that
for all i ≥ j the diagram

Sj Si

T

tj
ti
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commutes is completely determined by t0 : S0 → T (since ti must be
the restriction of t0 to the subset Si ⊂ S0), and one easily verifies that
colimi Si = S0.

5. Yoneda and limits and colimits of sets

The category Set has all limits and colimits.

Proposition 8.28. Let I be a small category and let X : I →
Set, i 7→ Xi be a functor. Then limI Xi exists, and is given by{

(xi)i ∈
∏
i∈ob I

Xi | X(ϕ)(xi) = xj for all ϕ : i→ j
}

together with the projection maps to the sets Xi.

Proof. The proof is a straightforward verification that the set L :=
{(xi)i ∈

∏
iXi | · · · } described in the proposition, with the projection

maps
πn : L→ Xn, (xi)i 7→ xn

satisfies the definition of a limit. The first property holds by construc-
tion: for every x ∈ L and ϕ : i→ j in I we have

πj(x) = xj = Xϕ(xi) = (Xϕ ◦ πi)(x),

hence πj = Xϕ ◦ πi. For the second property, assume that (T, (ti : T →
Xi)i) satisfies tj = Xϕ ◦ ti for every ϕ : i→ j. Then the map

h : T → L, x 7→ (ti(x))i

is well-defined (that is, h(x) lands in L ⊂
∏
iXi), and clearly is the

unique map such that ti = πih for every i. �

Proposition 8.29. Let I be a small category and let X : I →
Set, i 7→ Xi be a functor. Consider on the disjoint union qi∈ob IXi the
equivalence relation ∼ generated by xi ∼ X(ϕ)(xi) for all ϕ : i→ j and
all xi ∈ Xi. Then colimI Xi exists and is given by

colimI X =
( ∐
i∈ob I

Xi

)
/∼

together with the compositions

ιi : XI ↪−→
∐
i∈ob I

Xi −� colimI X.
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Proof. This is shown by a direct verification, somewhat similar to
the proof of Proposition 8.28. See also Exercise 8.19. �

Using the explicit descriptions of limits of sets, we can now rephrase
the universal property for limits and colimits in an arbitrary category:

Theorem 8.30. Let I be a small category and let X : I → C be a
functor. Let L be an object of C. Then limI X exists and is isomorphic
to L if and only if there is an isomorphism

HomC(−, L)
∼→ limI HomC(−, Xi),

of functors Copp → Set.

Note that by Yoneda (Theorem 7.8) the above theorem completely
characterizes limI X.

Proof of Theorem 8.30. Let T be an object in C. Then by the
universal property of the limit in C we have a natural bijection

HomC(T, limiXi)
∼−→
{

(ti : T → Xi)i | ∀ϕ : i→ j, X(ϕ) ◦ ti = tj
}
,

and by the explicit description of limit of sets in Proposition 8.28 the
latter equals limi HomC(T,Xi). The bijection is functorial in T , and
hence defines an isomorphism of functors. Conversely, if there is a
functorial bijection

HomC(T, L)
∼−→
{

(ti : T → Xi)i | ∀ϕ : i→ j, X(ϕ) ◦ ti = tj
}
,

then L satisfies the universal property of the limit. �

Theorem 8.31. Let I be a small category and let X : I → C
be a functor. Let L be an object of C. Then colimI X exists and is
isomorphic to C if and only if there is an isomorphism

HomC(C,−) = limIopp HomC(Xi,−)

of functors C → Set. �

Note that by co-Yoneda (Theorem 7.11) the above theorem com-
pletely characterizes colimI X.
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6. Adjoint functors and limits

Theorem 8.32 (Left adjoints commute with colimits). Let F : C →
D be a left adjoint to G : D → C. Let X : I → C be a functor, and sup-
pose that colimI X exists in D. Then colimI(FX) exists and

colimI(FX) ∼= F (colimI X)

in D.

Informally, we say that ‘F commutes with colimits’.

Proof of Theorem 8.32. Using Theorem 8.31 and the definition
of adjoint functors we find for every T in D a chain of isomorphisms

HomD(F (colimI Xi), T ) ∼= HomC(colimI Xi, GT )

∼= limIopp HomC(Xi, GT )

∼= limIopp HomD(FXi, T ),

functorial in T , and hence an isomorphism of functors

HomD(F (colimI Xi),−) ∼= limIopp HomD(FXi,−)

which by Theorem 8.31 shows that F (colimI Xi) is the colimit of the
diagram I → D, i 7→ FXi. �

The co-theorem states that right adjoints commute with limits:

Theorem 8.33 (Right adjoints commute with limits). Let F : C →
D be a left adjoint to G : D → C. Let X : I → D be a functor, and sup-
pose that limI X exists in D. Then limI(GX) exists and

limI(GX) ∼= G(limI X)

in C. �

Example 8.34. Let R be a ring and let A be an (S,R)-bimodule.
By Theorem 6.18 the functor

RMod→ SMod, M 7→ A⊗RM
is left adjoint (to the functor HomS(A,−)), and hence by Theorem 8.32
it commutes with colimits. In particular, it commutes with coproducts:

A⊗R (⊕i∈IMi) = ⊕i∈I(A⊗RMi)

and with cokernels:

coker(id⊗ f : A⊗RM → A⊗R N) = A⊗R coker(f : M → N).
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(Note that the latter gives a one-line proof of Proposition 6.16!).
There is a priori no reason for the functor to commute with limits,

and indeed in general A ⊗R − does not respect kernels (see Exercise
6.13) or (infinite) products (see Exercise 8.11).

Example 8.35. The forgetful functor RMod → Set is right ad-
joint to the free module functor (see Example 7.5) and hence by The-
orem 8.33 it commutes with limits. For example, this implies that the
underlying set of a product of modules is the product of the underlying
sets of the modules.

On the other side of the adjunction, we see that the free mod-
ule functor I 7→ R(I) must commute with colimits. For example, this
contains the (trivial) statement that a basis for the direct sum of free
modules is given by the disjoint union of their bases, that is

R(I) ⊕R(J) ∼= R(IqJ)

as R-modules.

Example 8.36. We have seen in Example 7.6 that the forgetful
functor Top → Set is both right adjoint (to the discrete topology
functor) and left adjoint (to the trivial topology functor). It therefore
commutes with both limits and colimits, and hence any limit or colimit
of topological spaces can be constructed by putting a suitable topology
on the limit or colimit of the underlying sets.



EXERCISES 103

Exercises

Exercise 8.1. Let X and Y be topological spaces. Show that the
cartesian product X × Y with the product topology is the product of
X and Y in the category Top.

Exercise 8.2. Does the category of pointed topological spaces
Top? have products and/or coproducts? And if so, what are they?
Does the forgetful functorTop? → Top commute with products and/or
coproducts?

Exercise 8.3. Let C be a category and let X and Y be objects in
C. Find a category P in which the products of X and Y are precisely
the final objects. Conclude that Proposition 8.2 can be deduced directly
from Proposition 4.25.

Exercise 8.4. Show that the co-equalizer of the constant maps
0, 1: {?} → [0, 1] in Top is the circle.

Exercise 8.5. Let C be a category. Consider the diagonal functor

∆: C → C × C
defined by X 7→ (X,X) and f 7→ (f, f). When does ∆ have a left
adjoint? And a right adjoint?

Exercise 8.6 (Coproduct of commutative rings). Let R and S
be commutative rings.

(1) Show that there is a unique ring structure on the Z-module
R⊗Z S such that

(r1 ⊗ s1)(r2 ⊗ s2) = r1r2 ⊗ s1s2.

(2) Show that R→ R⊗ZS, r 7→ r⊗1 and S → R⊗ZS, s 7→ 1⊗s
are ring homomorphisms.

(3) Show that R⊗Z S is the coproduct of R and S in CRing.

Exercise 8.7. Let f : C → A and g : C → B be morphisms in
Ab. Show that their fibered coproduct exists.

Exercise 8.8. Let R be a ring and let

M P

Q N

f

g ϕ

ψ
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be a commutative square of R-modules.

(1) Show that M (with the maps f and g) is the pull-back of
P → N and Q→ N if and only if the sequence

0 −→M
(f,g)−→ P ⊕Q ϕ−ψ−→ N

is exact.
(2) Show that N (with the maps ϕ and ψ) is the push-out of

M → P and M → Q if and only if the sequence

M
(f,g)−→ P ⊕Q ϕ−ψ−→ N −→ 0

is exact.

Exercise 8.9. Let f, g : X → Y be morphisms in a category C.
Show that the equalizer ι : E → X of f and g is a monomorphism (if it
exists).

Exercise 8.10. Let C be a category which has both products and
fibered products. Show that C has equalizers. (Hint: given f, g : X → Y
consider their fibered product Z := X×Y X. Show that there are maps
Z → X ×X and X → X ×X whose fibered product is an equalizer of
f and g.)

Exercise 8.11. Show that the element

1⊗ (1, 1, . . .)

of the module Q⊗Z

(∏
n>0 Z/nZ

)
is non-zero. Conclude that the func-

tor Q⊗Z − from Ab to Ab does not commute with infinite products.

Exercise 8.12. Let X,Y : I → C be functors, and let η : X → Y
be a morphism of functors. Assume that limI X and limI Y exist. Show
that α induces a morphism limI X → limI Y in C. Formulate and prove
the analogous statement for colimits.

Exercise 8.13. Show that the lim and colim in Example 8.27
coincide with those described by Propositions 8.28 and 8.29.

Exercise 8.14. Let S0 ⊂ S1 ⊂ S2 · · · be an infinite sequence of
inclusions of sets. Show that the union ∪iSi is the colimit of a suitably
chosen diagram I → Set.



EXERCISES 105

Exercise 8.15. Let K be a field. Let I be the category with
ob I = N and

HomI(i, j) =

{
{?} j ≤ i
∅ j > i

Consider the diagram

R : I → CRing, i 7→ Ri := K[X]/(Xi),

(where for j ≤ i the map K[X]/(Xi) → K[X]/(Xj) is the quotient
map). Show that limI Ri exists in CRing, and is isomorphic to the
power series ring K[[X]].

Exercise 8.16. Let G be a group and let BG the category of
Example 4.7. Let F : BG→ Set be a functor.

(1) Show that F (?) is a set X equipped with an action of G.
(2) Show that limF is the set of fixed points of the action.
(3) Show that colimF is the set of orbits of the action.

Exercise 8.17. Let X be a topological space, and let (Ui)i∈I be
an open cover. Let I be the category with ob I = I and

Hom(i, j) =

{
{?} Ui ⊂ Uj
∅ otherwise

Assume that for all i, j there is a k ∈ I such that Ui ∩ Uj = Uk. Show
that colimI Ui = X in Top.

Exercise 8.18. Let Z and R be the categories of Exercise 7.4.
Let I be the category with ob I = N and

HomI(i, j) =

{
{?} i ≤ j
∅ i > j

Verify that a functor I → R is the same as an increasing sequence of
real numbers

x0 ≤ x1 ≤ x2 ≤ · · ·
When does this functor have a limit? And a colimit? Verify directly if
they are preserved by the left and right adjoints of the inclusion functor
Z → R.

Exercise 8.19. Prove Proposition 8.29.

Exercise 8.20. Show that all limits and colimits exist in the
category Top. (Hint: see Propositions 8.28 and 8.29).
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Exercise 8.21. Show that Ab has all limits and colimits. (Hint:
for colimits, first do Exercise 8.7).

Exercise 8.22. Let R and S be rings, let A be an (R,S)-module
and let

0 −→M1 −→M2 −→M3

be an exact sequence of R-modules. Use Theorem 8.33 to prove that
the induced sequence

0 −→ HomR(A,M1) −→ HomR(A,M2) −→ HomR(A,M3)

is exact in SMod. (See Exercise 2.8 for a more direct approach).



CHAPTER 9

Chain complexes

1. Chain complexes and their homology modules

Definition 9.1. Let R be a ring. A chain complex of R-modules
consists of

(1) for every i ∈ Z an R-module Mi,
(2) for every i ∈ Z an R-linear map di : Mi →Mi−1

such that for every i the identity di ◦ di+1 = 0 holds.

We depict a chain complex as a diagram

· · · −→M2
d2−→M1

d1−→M0
d0−→M−1 −→ · · ·

and often denote the chain complex by M•.

Definition 9.2. A morphism of chain complexes M• →M ′• con-
sists of an R-module homomorphism fi : Mi → M ′i for every i, such
that the resulting diagram

· · · M2 M1 M0 · · ·

· · · M ′2 M ′1 M ′0 · · ·

d2

f2

d1

f1 f0

d′2 d′1

commutes. The resulting category of chain complexes of left R-modules
is denoted RCh. The similarly-defined category of chain complexes of
right R-modules is denoted ChR.

The condition di ◦ di+1 = 0 in a chain complex

· · · −→Mi+1
di+1−→Mi

di−→Mi−1 −→ · · ·

implies that im di+1 ⊂ ker di inside Mi.

107
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Definition 9.3. Let M• be a chain complex of R-modules and i
an integer. The i-th homology module of M• is the R-module

Hi(M•) :=
ker di

im di+1
.

If f : M• → M ′• is a morphism of chain complexes, then fi : Mi

induces a morphism

Hi(f) : Hi(M•)→ Hi(M
′
•)

(see Exercise 9.1). We obtain for every i a functor

Hi : RCh→ RMod.

These modules measure the failure of the sequence M• to be exact,
in the following sense.

Lemma 9.4. A chain complex

· · · −→M2
d2−→M1

d1−→M0
d0−→M−1 −→ · · ·

is exact if and only if Hi(M•) = 0 for all i ∈ Z. �

2. The long exact sequence

Let M•, N• and P• be chain complexes of R-modules. We say that
a sequence of morphisms

0 −→M•
α−→ N•

β−→ P• −→ 0

is a short exact sequence in RCh if it is termwise exact. In other words,
if in the commutative diagram

0 0 0

· · · Mi+1 Mi Mi−1 · · ·

· · · Ni+1 Ni Ni−1 · · ·

· · · Pi+1 Pi Pi−1 · · ·

0 0 0

αi+1 αi βi−1

βi+1 βi βi−1
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all the columns are short exact sequences of R-modules.

Theorem 9.5. Let

0 −→M•
α−→ N•

β−→ P• −→ 0

be a short exact sequence of chain complexes of R-modules. Then there
exists an exact sequence

· · · Hi+1(N•) Hi+1(P•)

Hi(M•) Hi(N•) Hi(P•)

Hi−1(M•) Hi−1(N•) · · ·

Hi+1(β)

Hi(α) Hi(β)

Hi−1(α)

of R-modules.

The resulting exact sequence of homology modules is called the long
exact sequence of homology associated to the short exact sequence of
chain complexes.

Proof of Theorem 9.5. We omit the proof, which is a tedious
diagram chase in the style of the proof of the Snake Lemma (Theorem
2.2). In fact, the Snake Lemma is a special case of the theorem, obtained
by assuming the Mi, Ni and Pi vanish for i 6∈ {0, 1}. �

3. The homotopy category

Definition 9.6. Let R be a ring and let f : M• → M ′• and
g : M• →M ′• be morphisms of chain complexes of R-modules. A homo-
topy from f to g consists of a collection ofR-linear maps hi : Mi →M ′i+1
indexed by i ∈ Z, such that for every i ∈ Z the identity

gi − fi = d′i+1hi + hi−1di

holds in HomR(Mi,M
′
i). We say that f and g are homotopic, and write

f ∼ g, if there exists a homotopy from f to g.
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It is convenient to keep track of these maps in a diagram:

· · · M2 M1 M0 · · ·

· · · M ′2 M ′1 M ′0 · · ·

d2

f2 g2

d1

f1 g1h1 f0 g0h0

d′2 d′1

but note that in the definition of homotopy it is not required that the
hi’s commute with the horizontal maps d in any way.

The equation defining homotopy can be remembered as

g − f = dh+ hd,

omitting the indices which can be reinserted in only one meaningful
way.

Proposition 9.7. Let R be a ring and M•, M ′• chain complex
of R-modules. Then homotopy is an equivalence relation on the set
Hom

RCh(M•,M
′
•). �

Proposition 9.8. Let R be a ring and f, g : M• →M ′• homotopic
morphisms of chain complexes of R-modules. Then

(1) for any morphism s : M ′• → N• in RCh, the compositions sf
and sg are homotopic;

(2) for any morphism t : N• → M• in RCh, the compositions ft
and gt are homotopic.

Proof. Let (hi)i be a homotopy from f to g. In the first case,
one one verifies that (si+1hi)i is a homotopy from sf to sg, and in the
second case, that (hiti)i is a homotopy from ft to gt. �

Definition 9.9. The homotopy category of chain complexes of
R-modules, denoted RHo, is the category with

(1) obRHo := obRCh
(2) Hom

RHo(M•, N•) := Hom
RCh(M•, N•)/ ∼

where composition and identity maps are inherited from composition
and identity maps in RCh.

Proposition 9.8 guarantees that composition in RHo is well-defined.

Proposition 9.10. Let f, g : M• → M ′• be homotopic maps in
ChR, and let i be an integer. Then Hi(f) = Hi(g) as maps Hi(M•)→
Hi(M

′
•).
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Proof. By definition, an element of Hi(M•) is a coset

x̄ := x+ im(di+1)

for some x ∈ ker(di). We have

Hi(f)(x̄)−Hi(g)(x̄) = f(x)− g(x) + im(d′i+1)

= d′i+1(hi(x)) + hi−1(di(x)) + im(d′i+1).

Since d′i+1(hi(x)) ∈ im(d′i+1), the first term vanishes in Hi(M
′
•). Since

x ∈ ker(di), also the second term vanishes, and Hi(f) = Hi(g). �

A consequence of Proposition 9.10 is that the functors Hi on RCh
induce functors

Hi : RHo→ RMod, M• 7→ Hi(M•)

on the homotopy category of chain complexes.

Remark 9.11. As the terminology suggests, there is a close rela-
tionship with the notions of homotopic maps and homology groups in
algebraic topology. Homology groups of topological spaces are usually
defined in terms of the functor

C : Top→ ZCh, X 7→ C•(X)

that maps a space X to the chain complex of singular chains. One then
defines the i-th homology group of X by

Hi(X,Z) := Hi(C•(X))

and obtains functors Hi : Top→ Ab.
If f, g : X → Y are homotopic continuous maps, then their induced

maps C•(X) → C•(Y ) are homotopic maps of chain complexes, and
hence their induced maps Hi(X,Z)→ Hi(Y,Z) coincide.

Remark 9.12. Chain complexes form a mathematical context in
which three layers play a role: objects (chain complexes), morphisms
(morphisms of chain complexes), and maps between morphisms (ho-
motopies). See Remark 5.20 for two other such contexts: topological
spaces (spaces, continuous maps, homotopies), and categories (cate-
gories, functors, morphisms of functors).
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Exercises

Exercise 9.1 (Functoriality of homology). Let f : M• → M ′• be
a morphism of chain complexes of R-modules.

(1) Show fi(ker di) ⊂ ker d′i;
(2) Show fi(im di+1) ⊂ im d′i+1;
(3) Conclude that fi induces an R-linear map Hi(M)→ Hi(M

′).

Exercise 9.2. Let R be a non-zero ring. Show that the two chain
complexes

· · · 0 0 0 0 · · ·

· · · 0 R R 0 · · ·id

are isomorphic in RHo.

Exercise 9.3. Let n > 1 and let f be the morphism in ZCh given
by the diagram

· · · 0 Z Z 0 · · ·

· · · 0 0 Z/nZ 0 · · ·

n

π

with π the canonical map. Show that Hi(f) is an isomorphism for all
i, but that f is not an isomorphism in ZHo.

Exercise 9.4. Let R and S be rings. A functor F : RMod →
SMod is called additive if for all R-modules M , N the map

F : HomR(M,N)→ HomS(FM,FN)

is a homomorphism of abelian groups. Let A be an (R,S)-bimodule.
Show that the functor

RMod→ SMod, M 7→ HomR(A,M)

is additive.

Exercise 9.5. Show that an additive functor F : RMod→ SMod
induces functors RCh→ SCh and RHo→ SHo.

Exercise 9.6. Let R and S be rings and A an (R,S)-bimodule.
For a chain complex M• in RCh define a chain complex M ′• in ChS by

(1) M ′i := HomR(M−i, A)
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(2) di : M ′i →M ′i−1 the map induced from d1−i : M1−i →M−i

Verify that M ′• is a chain complex of right S-modules, and that the
operation M• 7→ M ′• defines functors RChopp → ChS and RHoopp →
HoS .

Exercise 9.7 (?). Let K be a field. Let
∏
i∈ZVecK be the

category whose objects are sequences (Vi)i∈Z of K-vector spaces, and
whose morphisms are sequences (fi)i∈Z of K-linear maps. Show that
the functor

HoK →
∏
i∈Z

VecK , V• 7→ (Hi(V•))i

is an equivalence of categories.





CHAPTER 10

Free resolutions

1. Definition and existence

Definition 10.1. Let R be a ring and let M be an R-module.
A free resolution of M is an exact sequence of R-modules

· · · −→ F2
d2−→ F1

d1−→ F0
π−→M −→ 0

in which the modules Fi are free.

Example 10.2. If M itself is free, then the exact sequence

· · · −→ 0 −→ 0 −→M
id−→M −→ 0

is a free resolution (with F0 = M and Fi = 0 for i 6= 0). We will usually
suppress leading zeroes from the notation, and simply write

0 −→M −→M −→ 0

for the above resolution.

Example 10.3. Let R be a domain. If I ⊂ R is a non-zero
principal ideal, then I is free of rank 1 as an R-module (see Exercise
1.6), hence the exact sequence

0 −→ I −→ R −→ R/I −→ 0

is a free resolution of the R-module R/I.

Example 10.4. If R is a principal ideal domain, and M a finitely
generated R-module, then we have seen in Corollary 3.2 that M has a
free resolution of the form

0 −→ F1 −→ F0 −→M −→ 0

with F0 and F1 free R-modules of finite rank.

115
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Example 10.5. Let K be a field, and let R = K[X,Y ]. Then the
sequence

0 −→ R
d2−→ R⊕R d1−→ R

π−→ K[X,Y ]/(X,Y ) −→ 0

with d2(1) = (Y,−X), d1(1, 0) = X and d1(0, 1) = Y , and π the
quotient map is a free resolution of the R-module K[X,Y ]/(X,Y ).

Every R-module has a free resolution, although in general the res-
olution will be infinite, and moreover the free modules occurring in it
will not be of finite rank.

Proposition 10.6. Let R be a ring and let M be an R-module.
Then there exists a free resolution of M .

Proof. Choose a generating set I of M , and let F0 = R(I) be the
free R-module with basis I. Then we have a natural surjective map
π : F0 →M , and hence an exact sequence

F0
π−→M −→ 0.

Now choose a generating set I1 of the R-module K0 := kerπ ⊂ F0 and
let F1 = R(I0). The natural map F1 → K0 ⊂ F0 extends the above to
an exact sequence

F1
d1−→ F0

π−→M −→ 0.

Repeating this argument with K1 := ker d1 and so forth, we obtain an
exact sequence

· · · −→ F2
d2−→ F1

d1−→ F0
π−→M −→ 0,

with the Fi free, as we had to show. �

Remark 10.7. From a free resolution

· · · −→ F2
d2−→ F1

d1−→ F0
π−→M −→ 0

of M we obtain a chain complex F• of the form

· · · −→ F2
d2−→ F1

d1−→ F0 −→ 0 −→ 0 −→ · · ·
by setting set Fi = 0 for i < 0. This chain complex satisfies

Hi(F•) ∼=

{
M i = 0

0 i 6= 0

Conversely, given a pair (F•, α) consisting of
(1) a chain complex F•
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(2) an isomorphism α : H0(F•)→M

with Fi free for all i and zero for i < 0, and with Hi(F•) = 0 for all
i 6= 0, the sequence

· · · −→ F2 −→ F1 −→ F0
π−→M −→ 0,

where π is induced by α, is a free resolution of M .
It will often be convenient to think of a free resolution as a pair

(F•, α) consisting of a chain complex F• and an isomorphism α as above.

2. The free resolution functor

Theorem 10.8. Let M and M ′ be R-modules. Let F• and F ′•
be free resolutions of M and M ′ respectively. Let ϕ : M → M ′ be a
morphism of R-modules. Then there exists a morphism f : F• → F ′•
such that H0(f) = ϕ. Moreover, f is unique up to homotopy.

Proof. The existence of f amounts to the existence of R-linear
maps fi making the diagram (with exact rows)

· · · F2 F1 F0 M 0

· · · F ′2 F ′1 F ′0 M ′ 0

f2

d2

f1

d1

f0

π

ϕ

d′2 d′1 π′

commute. We will construct such a diagram inductively.
Let S0 ⊂ F0 be a basis of the free module F0. For every s ∈ S0,

choose an s′ ∈ F ′0 such that π′(s′) = ϕπ(s). Such s′ exists by the
surjectivity of π′. Now, since F0 is free with basis S0, there exists a
unique R-linear map f0 : F0 → F ′0 that maps every s ∈ S0 to its chosen
counterpart s′ ∈ F ′0. By construction the right-hand square commutes.

Next, let S1 ⊂ F1 be a basis of F1. For every s ∈ S1, we have
πd1(s) = 0 by the exactness of the top-row, hence π′f0d1(s) = 0 by the
commutativity of the right-hand square, and hence f0d1(s) ∈ kerπ′.
We conclude that there exists an element s′ ∈ F ′1 with d′1(s′) = f0d1(s).
Choosing such an s′ for every s ∈ S1 yields anR-linear map f1 : F1 → F ′1
as above. Repeating the argument, we construct maps fi as required.

For the uniqueness assertion in the theorem, assume that we have
chain complex homomorphisms f : F• → F ′• and g : F• → F ′• with
H0(f) = H0(g) = ϕ. Let δ := g − f . We need to show that there
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are hi as in the diagram below

· · · F2 F1 F0 M 0

· · · F ′2 F ′1 F ′0 M ′ 0

d2

δ2 δ1

d1

h1 δ0

π

h0 0

d′2 d′1 π′

satisfying

δ0 = d′1h0

δi = d′i+1hi + hi−1di (i ≥ 1)

As in the proof of the first part of the theorem, we construct these hi
inductively.

For the base step, choose a basis S0 of F0 and for every s ∈ S0

choose an s′ ∈ F ′1 with d′1s′ = δ0s. Such s′ exists, since π′δ0s = 0, and
the bottom row in the diagram is exact. Since F0 is free with basis S0,
there is a (unique) morphism h0 : F0 → F ′1 with s→ s′ for every s ∈ S0,
and we have δ0 = d′1h0 by construction.

Next, let S1 be a basis of F1, and choose for every s ∈ S1 an s′ ∈ F ′2
with d′2s′ = δ1s− h0d1s. Such s′ exists, since

d′1(δ1s− h0d1s) = d′1δ1s− d′1h0d1s = δ0d1s− δ0d1s = 0.

As before, the collection of s′ defines a map h1 : F1 → F ′2, and re-
peating the argument gives a collection of maps hi defining the desired
homotopy between f and g. �

Corollary 10.9. If F• and F ′• are free resolutions of M , then
F• and F ′• are isomorphic in RHo.

Proof. The proof is ‘abstract nonsense’ and quite similar to the
argument that showed that final objects are unique up to unique iso-
morphism (see Proposition 4.25).

Take M ′ := M and apply Theorem 10.8 to id : M → M ′ and
id : M ′ → M to obtain morphisms f : F• → F ′• and g : F ′• → F•. Then
apply Theorem 10.8 again to idM and idM ′ to show that gf is homotopic
to idF• and fg is homotopic to idF ′• . This gives equalities fg = idF•
and gf = idF ′• in RHo, which shows that f and g are mutually inverse
isomorphisms in RHo. �
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Example 10.10. The zero module M = {0} has the zero resolu-
tion, but also the non-trivial free resolution

0 −→ R
id−→ R

π−→M −→ 0,

hence the corresponding complexes

· · · 0 0 0 0 · · ·

· · · 0 R R 0 · · ·
are isomorphic in RHo. See also Exercise 9.2.

We can now summarise this section into one powerful theorem.

Theorem 10.11. There exists a functor

F : RMod→ RHo, M 7→ F•(M)

and an isomorphism of functors

α : H0 ◦ F
∼−→ id

RMod

such that for every R-module M , the complex F•(M) together with the
isomorphism αM forms a free resolution of M .

The proof goes directly against our basic principle that ‘construc-
tions depending on choices do not give rise to functors’.

Proof of Theorem 10.11. Using Proposition 10.6, choose for ev-
ery R-module M a free resolution

· · · −→ F2(M) −→ F1(M) −→ F0(M)
πM−→M −→ 0.

This defines for every R-module M an object F•(M) ∈ RHo, and an
isomorphism αM : H0(F•(M))

∼→M (induced by πM ).
Now for every ϕ : M → N in RMod, Theorem 10.8 gives a unique

morphism F•(ϕ) : F•(M)→ F•(N) such that the square of R-modules

H0(F•(M)) M

H0(F•(N)) N

αM

H0(F•(ϕ)) ϕ

αN

commutes. This provides the necessary data for a functor F•, and
immediately shows that α is an isomorphism of functors, provided that
the data defining F• indeed forms a functor.
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For this, we need to check that F• respects identity and composi-
tion. But this follows quite formally from the uniqueness statement in
Theorem 10.8. Given an R-module M , both idF•(M) and F•(id) induce
the identity on H0(F•(M)) = M , so they must be homotopic and hence
they define the same morphism in RHo. Similarly, given f : M → N
and g : N → P then both

F•(g)F•(f) : F•(M)→ F•(N)

and
F•(gf) : F•(M)→ F•(N)

induce the map gf : M → P on H0, so they must be homotopic and
hence define the same morphism in RHo. �
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Exercises

Exercise 10.1. Let K be a field and R = K[X,Y ]. Show that
the R-module M = K[X,Y ]/(X,Y ) does not have a free resolution of
the form

0 −→ F1 −→ F0 −→M −→ 0.

Exercise 10.2. Let K be a field and consider the subring R =
K[X2, X3] of the polynomial ring K[X]. Let M be the R-module
R/(X2, X3). Find a free resolution of M .

Exercise 10.3. Let R be a commutative ring.

(1) Assume that r ∈ R is not a zero divisor in R. Show that R/rR
has a free resolution of the form

0 −→ R −→ R −→ R/(r) −→ 0.

(2) Let r, s ∈ R. Assume that r is not a zero divisor in R, and
that s̄ is not a zero divisor in R/rR. Show that R/(s, r) has a
free resolution of the form

0 −→ R −→ R2 −→ R −→ R/(r, s) −→ 0.

(3, ?) Try to formulate and prove an analogous statement for mod-
ules of the form R/(r, s, t), etcetera.

Exercise 10.4. Let n be a positive integer, and consider the ring
R := Z[X]/(Xn − 1). Let M be the quotient module R/(X − 1),
π : R→M the quotient map. Show that

· · · β−→ R
α−→ R

β−→ R
α−→ R

π−→M −→ 0,

with α(r) = (X − 1)r and β(r) = (Xn−1 + · · · + X + 1)r, is a free
resolution of the R-module M .

Exercise 10.5. Let R = Z/4Z and letM be the R-module Z/2Z.
Find a free resolution of M .

Exercise 10.6. Let K be a field, n > 1 and let R be the matrix
ring Matn(K). Let M = Kn be the left R-module of column vectors.
Show that M does not have a finite free resolution consisting of finitely
generated free R-modules.
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Exercise 10.7. Let 0 → M1 → M2 → M3 → 0 be a short exact
sequence of R-modules. Show that there exist free R-modules F1, F2,
F3, and a commutative diagram

0 F1 F2 F3 0

0 M1 M2 M3 0

with exact rows and surjective vertical maps.

Exercise 10.8 (Free resolution of a short exact sequence). Let
0 → M1 → M2 → M3 → 0 be a short exact sequence of R-modules.
Show that there exist free resolutions

· · · −→ Fi,2 −→ Fi,1 −→ Fi,0 −→Mi −→ 0

for i = 1, 2, 3, and a short exact sequence

0 −→ F1,• −→ F2,• −→ F3,• −→ 0

of chain complexes compatible with the exact sequence 0 → M1 →
M2 →M3 → 0.

Exercise 10.9 (Uniqueness of free resolution functor). Let F and
G be functors RMod→ RHo. Let α : H0 ◦F

∼→ id and β : H0 ◦G
∼→ id

be isomorphisms. Assume that for every M the pairs (F (M), α) and
(G(M), β) are free resolutions of M . Show that the functors F and G
are isomorphic.

Exercise 10.10. Let M• be a chain complex of R-modules with
Mi = 0 for all i 6= 0, 1. Show that there exists a chain complex F• and
a morphism α : F• →M• such that

(1) Hi(α) is an isomorphism for all i, and
(2) Fi is free for all i.

Exercise 10.11 (?). Let M• be a chain complex of R-modules
with Mi = 0 for all i < 0. Show that there exists an F• and α as in
Exercise 10.10.
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The Ext functors

1. The functors Extn

Let R be a ring. If M• is the complex of R-modules given by

· · · −→Mi+1 −→Mi −→Mi−1 −→ · · ·
and if N is an R-module, then the induced sequence

· · · −→ HomR(Mi−1, N) −→ HomR(Mi, N) −→ HomR(Mi+1, N) −→ · · ·
forms a complex of abelian groups, with the group HomR(M−i, N) in
degree i. This determines a functor

RChopp × RMod→ ZCh

and it induces a functor

RHoopp × RMod→ ZHo.

on the homotopy categories, by Exercise 9.6.

Definition 11.1. Let n be an integer. We define the functor

ExtnR(−,−) : RModopp × RMod→ Ab, (M,N) 7→ ExtnR(M,N)

as the composition of the following functors:
(1) the free resolution functor of Theorem 10.11 (applied to the

first coordinate)

F•(−)× id : RModopp × RMod −→ RHoopp × RMod

(2) the functor induced by HomR as above

RHoopp × RMod −→ ZHo

(3) the homology functor

H−n : ZHo→ Ab,

which is well-defined by Proposition 9.10.

123
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In other words, if

· · · −→ F1 −→ F0 −→M −→ 0

is a free resolution of M , then the group ExtnR(M,N) is defined as the
quotient group

ExtnR(M,N) =
ker
(

HomR(Fn, N)→ HomR(Fn+1, N)
)

im
(

HomR(Fn−1, N)→ HomR(Fn, N)
) ,

where the maps between the Hom groups are induced from the maps
in the free resolution, and where we set Fi = 0 for i < 0, as before.

Remark 11.2. A priori the functor ExtnR(−,−) depends on the
choices of free resolutions involved in F•(−), but different choices give
rise to isomorphic functors ExtnR(−,−).

Example 11.3. Let m be a positive integer. We compute the
groups ExtnZ(Z/mZ, Z) using the definition. As a first step we need to
find a free resolution of Z/mZ. The obvious choice leads to the complex

F• =
[
· · · −→ 0 −→ Z

m−→ Z −→ 0 −→ 0 −→ · · ·
]

with F1 = F0 = Z. Note that Hom(Z,Z) = Z, so that applying
the contravariant additive functor HomZ(−, Z) to this complex gives a
complex of the form

H• =
[
· · · −→ 0 −→ 0 −→ Z −→ Z −→ 0 −→ · · ·

]
with H0 = H−1 = Z. One checks that the map Z→ Z is multiplication
by m. We find Hi(H•) = 0 for all i 6= −1, and H−1(H•) = Z/mZ.
From this we conclude

ExtnZ(Z/mZ, Z) ∼=

{
Z/mZ n = 1

0 n 6= 1

By construction, the groups Extn(M,N) are zero for n < 0.

Proposition 11.4. The functors Ext0
R(−,−) and HomR(−,−)

are isomorphic.

Proof. Let

· · · −→ F1 −→ F0 −→M −→ 0

be a free resolution of an R-module M . Then by Exercise 2.9 we get
an exact sequence

0 −→ Hom(M,N) −→ Hom(F0, N) −→ Hom(F1, N).
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Using the definition of Ext0 we find

Ext0(M,N) = H0(Hom(F•, N)) = ker(Hom(F0, N) −→ Hom(F1, N)),

which gives an isomorphism Ext0(M,N) = Hom(M,N), functorial in
M . �

We will see that the module Ext1(M,N) is in bijection with iso-
morphism classes of short exact sequences

0 −→ N −→ E −→M −→ 0

ofR-modules. There is also an interpretation to the modules Extn(M,N)
with n > 1 in terms of exact sequences

0 −→ N −→ E1 −→ · · · −→ En −→M −→ 0,

but the statement is more delicate.

2. The long exact sequence

Theorem 11.5. Let N be an R-module, and let

0 −→M1 −→M2 −→M3 −→ 0

be a short exact sequence of R-modules. Then there is a natural exact
sequence

0 Hom(M3, N) Hom(M2, N) Hom(M1, N)

Ext1(M3, N) Ext1(M2, N) Ext1(M1, N)

Ext2(M3, N) Ext2(M2, N) · · ·

of abelian groups.

Proof. Choose free resolutions of the Mi as in Exercise 10.8, so
that we have a short exact sequence of complexes

0 −→ F1,• −→ F2,• −→ F3,• −→ 0.

Denote by Hi,• the complex obtained by applying Hom(−, N) to Fi,•,
so we have

Hi,j = Hom(Fi,−j , N).

For every i the exact sequence

0 −→ F1,i −→ F2,i −→ F3,i −→ 0
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is split exact because F3,i is a free R-module (see Exercise 2.17), and
hence also the induced sequence

0 −→ H3,−i −→ H2,−i −→ H1,−i −→ 0

is exact (see Exercise 2.19). Applying Theorem 9.5 to the short exact
sequence of complexes of abelian groups

0 −→ H3,• −→ H2,• −→ H1,• −→ 0

we obtain a long exact sequence

· · · Hi+1(H2,•) Hi+1(H1,•)

Hi(H3,•) Hi(H2,•) Hi(H1,•)

Hi−1(H3,•) Hi−1(H2,•) · · ·

which, taking into account the vanishing of Exti for i < 0 and the fact
that Ext0 = Hom, gives precisely the exact sequence of the theorem.
One verifies that this sequence does not depend on the choice of free
resolutions. �

3. Ext1 and extensions

Definition 11.6. Let R be a ring and let M and N be R-
modules. An extension of M by N is a short exact sequence

0 −→ N −→ E −→M −→ 0

of R-modules. Two such extensions are called equivalent if there exists
a commutative diagram

0 N E M 0

0 N E′ M 0

id id

of R-modules. We define the set extR(M,N) to be the set of equivalence
classes of extensions of M by N .

Note that the morphism E → E′ in the above diagram is auto-
matically an isomorphism, see Exercise 2.5. Warning: there can be
non-equivalent extensions with E ∼= E′, see Exercise 11.9.
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We will now construct a map

θ : extR(M,N)→ Ext1
R(M,N)

and show that it is a bijection. To define the map, consider an element
e ∈ extR(M,N), represented by a short exact sequence

0 −→ N −→ E −→M −→ 0.

By Theorem 11.5 this induces a long exact sequence, of which a part
reads

· · · −→ HomR(N, N) −→ Ext1
R(M, N) −→ · · ·

We define θ(e) ∈ Ext1
R(M, N) to be the image of idN under the above

map.

Theorem 11.7. The map

θ : extR(M,N)→ Ext1
R(M,N)

is a bijection.

Proof. We construct map

ψ : Ext1
R(M,N)→ extR(M,N)

but omit the tedious verification that it is a two-sided inverse.
Choose a free module F and a surjection F → M . Let K be the

kernel. Then we have a short exact sequence

0 −→ K
γ−→ F −→M −→ 0.

The induced long exact sequence of Theorem 11.5 contains

HomR(F,N) −→ HomR(K,N)
δ−→ Ext1

R(M,N) −→ Ext1
R(F,N).

Since F is a free module, it has a ‘trivial’ one-term free resolution, and
one sees that ExtiR(F,N) = 0 for all i > 0. It follows that the map δ is
surjective.

Let e ∈ Ext1
R(M,N). Choose an R-linear map f : K → N with

δ(f) = e. In the commutative diagram

0 K K 0

0 N N ⊕ F F 0

id

(f,γ) γ

ι1 π2
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both rows are exact, and all the vertical maps are injective (since γ is
injective). It follows that there is an induced short exact sequence of
cokernels

0 −→ N −→ E −→M −→ 0

with E = coker(K → N ⊕ F ). We define ψ(e) ∈ extR(M,N) to be
this extension. One verifies that this is well-defined: if also f ′ : K → N
satisfies δ(f) = e, leading to an extension E′, then f ′ = f + h for some
linear map h : F → N , and one shows that the isomorphism

F ⊕N → F ⊕N, (x, y) 7→ (x, y + hx)

induces an isomorphism E → E′ of extensions. �
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Exercises

Exercise 11.1. Let K be a field. Let M and N be K-modules.
Show that ExtiK(M,N) = 0 for all i 6= 0.

Exercise 11.2. Let n and m be positive integers. Compute for
all i the Z-modules

(1) ExtiZ(Z,Z/mZ);
(2) ExtiZ(Z/nZ,Z);
(3) ExtiZ(Z/nZ,Z/mZ).

Exercise 11.3. Let R = K[X2, X3] ⊂ K[X]. Let I = (X2, X3).
Show that Ext1

R(I,R/I) is non-zero, and conclude that I is not a prin-
cipal ideal. Show that also Ext2

R(R/I,R/I) is non-zero.

Exercise 11.4. Let R be a principal ideal domain. Show that
for every i ≥ 2, for every finitely generated R-module M , and for every
R-module N we have ExtiR(M,N) = 0.

Exercise 11.5. Let R be a ring, N an R-module and n ≥ 1.
Assume that ExtnR(M,N) = 0 for all R-modules M . Show that also
Extn+1

R (M,N) = 0 for all R-modules M . (Hint: consider a short exact
sequence of the form 0→ K → F →M → 0 with F a free module).

Exercise 11.6. Let

0 −→ N −→ E −→M −→ 0

be a short exact sequence of R-modules. Let ϕ : N → N ′ be a morphism
of R-modules, and let E′ be the push-out of N → E and ϕ : N → N ′.
Show that there is a short exact sequence

0 −→ N ′ −→ E′ −→M −→ 0

of R-modules.

Exercise 11.7. Let

0 −→ N −→ E −→M −→ 0

be a short exact sequence of R-modules. Let ϕ : M ′ → M be a mor-
phism of R-modules, and let E′ be the pull-back of E → M and
ϕ : M ′ →M . Show that there is a short exact sequence

0 −→ N −→ E′ −→M ′ −→ 0

of R-modules.
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Exercise 11.8. Let R be a ring. Show directly (without using
the relation with Ext1) that

RModopp × RMod→ Set, (M,N) 7→ extR(M,N)

is a functor. (In particular: explain what the functor does on the level
of morphisms).

Exercise 11.9. Describe explicitly the n elements of the set
extZ(Z/nZ,Z) for:

(1) n a prime number;
(2) n = pq with p and q distinct primes;
(3) n = 4.

Exercise 11.10. For i = 1, 2 let

0 −→ N
αi−→ Ei

βi−→M −→ 0

be a short exact sequence of R-modules. Define an R-module E as the
quotient

E :=
ker
(
β1 − β2 : E1 ⊕ E2 →M

)
im
(
(α1, α2) : N → E1 ⊕ E2

) .
Show that there is a natural short exact sequence

0 −→ N −→ E −→M −→ 0

of R-modules.

Exercise 11.11. Let K be a field and let λ1, λ2 ∈ K. Let Mi :=
K[X]/(X − λi). Show that Ext1

K[X](M2,M1) = 0 if λ1 6= λ2. Compute
Ext1

K[X](M2,M1) when λ2 = λ1.

Exercise 11.12. Let K be a field, λ1, λ2, µ ∈ K. Consider the
matrix

A :=

(
λ1 µ
0 λ2

)
and let E be the K[X]-module given by E = K2 on which X acts by
A. Show that E sits in a short exact sequence of K[X]-modules

0 −→M1 −→ E −→M2 −→ 0

where Mi = K with X acting as λi. Show that this sequence splits if
and only if λ2 6= λ1 or µ = 0. Relate this to the previous exercise.
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Exercise 11.13. Let n be a positive integer, and consider the
ring R := Z[X]/(Xn − 1). Let M be the quotient module R/(X − 1).
Compute the R-modules ExtiR(M,M) and ExtiR(M,R). (Hint: use the
free resolution from Exercise 10.4).
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