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Abstract. Following the idea of [Far16], we develop the foundations of the geometric Langlands
program on the Fargues–Fontaine curve. In particular, we define a category of `-adic sheaves on
the stack BunG of G-bundles on the Fargues–Fontaine curve, prove a geometric Satake equivalence
over the Fargues–Fontaine curve, and study the stack of L-parameters. As applications, we prove
finiteness results for the cohomology of local Shimura varieties and general moduli spaces of local
shtukas, and define L-parameters associated with irreducible smooth representations of G(E), a
map from the spectral Bernstein center to the Bernstein center, and the spectral action of the
category of perfect complexes on the stack of L-parameters on the category of `-adic sheaves on
BunG.
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CHAPTER I

Introduction

I.1. The local Langlands correspondence

The local Langlands correspondence aims at a description of the irreducible smooth representa-
tions π of G(E), for a reductive group G over a local field E. Until further notice, we will simplify
our life by assuming that G is split; the main text treats the case of general reductive G, requiring
only minor changes.

The case where E is archimedean, i.e. E = R or E = C, is the subject of Langlands’ classical
work [Lan89]. Based on the work of Harish-Chandra, cf. e.g. [HC66], Langlands associates to
each π an L-parameter, that is a continuous homomorphism

ϕπ : WE → Ĝ(C)

where WE is the Weil group of E = R,C (given by WC = C× resp. a nonsplit extension 1→WC →
WR → Gal(C/R)→ 1), and Ĝ is the Langlands dual group. This is the split reductive group over
Z whose root datum is dual to the root datum of G. The map π 7→ ϕπ has finite fibres, and a lot of
work has been done on making the fibres, the so-called L-packets, explicit. If G = GLn, the map
π 7→ ϕπ is essentially a bijection.

Throughout this paper, we assume that E is nonarchimedean, of residue characteristic p > 0,
with residue field Fq. Langlands has conjectured that one can still naturally associate an L-
parameter

ϕπ : WE → Ĝ(C)

to any irreducible smooth representation π of G(E). In the nonarchimedean case, WE is the
dense subgroup of the absolute Galois group Gal(E|E), given by the preimage of Z ⊂ Gal(Fq|Fq)
generated by the Frobenius x 7→ xq. This begs the question where such a parameter should come
from. In particular,

(1) How does the Weil group WE relate to the representation theory of G(E)?

(2) How does the Langlands dual group Ĝ arise?

The goal of this paper is to give a natural construction of a parameter ϕπ (only depending on
a choice of isomorphism C ∼= Q`), and in the process answer questions (1) and (2).

7



8 I. INTRODUCTION

I.2. The big picture

In algebraic geometry, to any ring A corresponds a space SpecA. The starting point of our
investigations is a careful reflection on the space SpecE associated with E.1 Note that the group
G(E) is the automorphism group of the trivial G-torsor over SpecE, while the Weil group of E is
essentially the absolute Galois group of E, that is the (étale) fundamental group of SpecE. Thus,
G(E) relates to coherent information (especially G-torsors) on SpecE, while WE relates to étale
information on SpecE. Moreover, the perspective of G-torsors is a good one: Namely, for general
groups G there can be nontrivial G-torsors E on SpecE, whose automorphism groups are then
the so-called pure inner forms of Vogan [Vog93]. Vogan realized that from the perspective of the
local Langlands correspondence, and in particular the parametrization of the fibres of π 7→ ϕπ, it
is profitable to consider all pure inner forms together; in particular, he was able to formulate a
precise form of the local Langlands conjecture (taking into account the fibres of π 7→ ϕπ) for pure
inner forms of (quasi)split groups. All pure inner forms together arise by looking at the groupoid
of all G-bundles on SpecE: This is given by

[∗/G](SpecE) =
⊔

[α]∈H1
ét(SpecE,G)

[∗/Gα(E)],

whereH1
ét(SpecE,G) is the set ofG-torsors on SpecE up to isomorphism, andGα the corresponding

pure inner form of G. Also, we already note that representations of G(E) are equivalent to sheaves
on [∗/G(E)] (this is a tautology if G(E) were a discrete group; in the present context of smooth
representations, it is also true for the correct notion of “sheaf”), and hence sheaves on

[∗/G](SpecE) =
⊔

[α]∈H1
ét(SpecE,G)

[∗/Gα(E)],

are equivalent to tuples (πα)[α] of representations of Gα(E).2

Looking at the étale side of the correspondence, we observe that the local Langlands correspon-
dence makes the Weil group WE of E appear, not its absolute Galois group Gal(E|E). Recall that

WE ⊂ Gal(E|E) is the dense subgroup given as the preimage of the inclusion Z ⊂ Gal(Fq|Fq) ∼= Ẑ,

where Gal(Fq|Fq) is generated by its Frobenius morphism x 7→ xq. On the level of geometry, this
change corresponds to replacing a scheme X over Fq with the (formal) quotient XFq/Frob.

In the function field case E = Fq((t)), we are thus led to replace SpecE by Spec Ĕ/ϕZ where

Ĕ = Fq((t)). We can actually proceed similarly in general, taking Ĕ to be the completion of the

maximal unramified extension of E. For a natural definition of π1, one then has π1(Spec(Ĕ)/ϕZ) =

WE — for example, Spec Ĕ → Spec(Ĕ)/ϕZ is a WE-torsor, where Ĕ is a separable closure.

Let us analyze what this replacement entails on the other side of the correspondence: Looking
at the coherent theory of Spec Ĕ/ϕZ, one is led to study Ĕ-vector spaces V equipped with ϕ-linear
automorphisms σ. This is known as the category of isocrystals IsocE . The category of isocrystals
is much richer than the category of E-vector spaces, which it contains fully faithfully. Namely, by

1Needless to say, the following presentation bears no relation to the historical developments of the ideas, which
as usual followed a far more circuitous route. We will discuss some of our original motivation in Section I.11 below.

2The point of replacing [∗/G(E)] by [∗/G](SpecE) was also stressed by Bernstein.
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the Dieudonné–Manin classification, the category IsocE is semisimple, with one simple object Vλ
for each rational number λ ∈ Q. The endomorphism algebra of Vλ is given by the central simple
E-algebra Dλ of Brauer invariant λ ∈ Q/Z. Thus, there is an equivalence of categories

IsocE ∼=
⊕
λ∈Q

VectDλ ⊗ Vλ.

Here, if one writes λ = s
r with coprime integers s, r, r > 0, then Vλ ∼= Ĕr is of rank r with σ given

by the matrix 
0 1 0 . . .

0 1 0
. . .

. . .
. . .

0 0 1
πs 0 0


where π ∈ E is a uniformizer.

Above, we were considering G-torsors on SpecE, thus we should now look at G-torsors in IsocE .
These are known as G-isocrystals and have been extensively studied by Kottwitz [Kot85], [Kot97].
Their study has originally been motivated by the relation of isocrystals to p-divisible groups and ac-
cordingly a relation of G-isocrystals to the special fibre of Shimura varieties (parametrizing abelian
varieties with G-structure, and thus p-divisible groups with G-structure). Traditionally, the set
of G-isocrystals is denoted B(E,G), and for b ∈ B(E,G) we write Eb for the corresponding G-
isocrystal. In particular, Kottwitz has isolated the class of basic G-isocrystals; for G = GLn, a
G-isocrystal is just a rank n isocrystal, and it is basic precisely when it has only one slope λ. There
is an injection H1

ét(SpecE,G) ↪→ B(E,G) as any G-torsor on SpecE “pulls back” to a G-torsor in
IsocE ; the image lands in B(E,G)basic. For any b ∈ B(E,G)basic, the automorphism group of Eb is
an inner form Gb of G; the set of such inner forms of G is known as the extended pure inner forms
of G. Note that for G = GLn, there are no nontrivial pure inner forms of G, but all inner forms
of G are extended pure inner forms, precisely by the occurence of all central simple E-algebras
as Hλ for some slope λ. More generally, if the center of G is connected, then all inner forms of
G can be realized as extended pure inner forms. Kaletha, [Kal14], has extended Vogan’s results
on pure inner forms to extended pure inner forms, giving a precise form of the local Langlands
correspondence (describing the fibres of π 7→ ϕπ) for all extended pure inner forms and thereby
showing that G-isocrystals are profitable from a purely representation-theoretic point of view. We
will actually argue below that it is best to include Gb for all b ∈ B(E,G), not only the basic b; the
resulting automorphism groups Gb are then inner forms of Levi subgroups of G. Thus, we are led
to consider the groupoid of G-torsors in IsocE ,

G-Isoc ∼=
⊔

[b]∈B(E,G)

[∗/Gb(E)].

Sheaves on this are then tuples of representations (πb)[b]∈B(E,G) of Gb(E). The local Langlands
conjecture, including its expected functorial behaviour with respect to passage to inner forms and
Levi subgroups, then still predicts that for any irreducible sheaf F — necessarily given by an
irreducible representation πb of Gb(E) for some b ∈ B(E,G) — one can associate an L-parameter

ϕF : WE → Ĝ(C).
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To go further, we need to bring geometry into the picture: Indeed, it will be via geometry that
(sheaves on the groupoid of) G-torsors on Spec Ĕ/ϕZ will be related to the fundamental group WE

of Spec Ĕ/ϕZ. The key idea is to study a moduli stack of G-torsors on Spec Ĕ/ϕZ.

There are several ways to try to define such a moduli stack. The most naive may be the
following. The category IsocE is an E-linear category. We may thus, for any E-algebra A, consider
G-torsors in IsocE ⊗E A. The resulting moduli stack will then actually be⊔

b∈B(E,G)

[∗/Gb],

an Artin stack over E, given by a disjoint union of classifying stacks for the algebraic groups
Gb. This perspective is actually instrumental in defining the Gb as algebraic groups. However, it
is not helpful for the goal of further geometrizing the situation. Namely, sheaves on [∗/Gb] are
representations of the algebraic group Gb, while we are interested in representations of the locally
profinite group Gb(E).

A better perspective is to treat the choice of Fq as auxiliary, and replace it by a general Fq-
algebra R. In the equal characteristic case, we can then replace Ĕ = Fq((t)) with R((t)). This carries
a Frobenius ϕ = ϕR acting on R. To pass to the quotient SpecR((t))/ϕZ, we need to assume that
the Frobenius of R is an automorphism, i.e. that R is perfect. (The restriction to perfect R will
become even more critical in the mixed characteristic case. For the purpose of considering `-adic
sheaves, the passage to perfect rings is inconsequential, as étale sheaves on a scheme X and on its
perfection are naturally equivalent.) We are thus led to the moduli stack on perfect Fq-algebras

G-Isoc : {perfect Fq-algebras} → {groupoids} : R 7→ {G-torsors on SpecR((t))/ϕZ}.
These are also known as families of G-isocrystals over the perfect scheme SpecR. (Note the curly
I in G-Isoc, to distinguish it from the groupoid G-Isoc.)

This definition can be extended to the case of mixed characteristic. Indeed, if R is a perfect

Fq-algebra, the analogue of R[[t]] is the unique π-adically complete flat OE-algebra R̃ with R̃/π = R;

explicitly, R̃ = WOE (R) = W (R) ⊗W (Fq) OE in terms of the p-typical Witt vectors W (R) or the
ramified Witt vectors WOE (R). Thus, if E is of mixed characteristic, we define

G-Isoc : {perfect Fq-algebras} → {groupoids} : R 7→ {G-torsors on Spec(WOE (R)[ 1
π ])/ϕZ}.

We will not use the stack G-Isoc in this paper. However, it has been highlighted recently among
others implicitly by Genestier–V. Lafforgue, [GL17], and explicitly by Gaitsgory, [Gai16, Section
4.2], and Zhu, [Zhu20], and one can hope that the results of this paper have a parallel expression in
terms of G-Isoc, so let us analyze it further in this introduction. It is often defined in the following
slightly different form. Namely, v-locally on R, any G-torsor over R((t)) resp. WOE (R)[ 1

π ] is trivial
by a recent result of Anschütz [Ans18]. Choosing such a trivialization, a family of G-isocrystals is
given by some element of LG(R), where we define the loop group

LG(R) = G(R((t))) (resp. LG(R) = G(WOE (R)[ 1
π ])).

Changing the trivialization of the G-torsor amounts to σ-conjugation on LG, so as v-stacks

G-Isoc = LG/Ad,σLG

is the quotient of LG under σ-conjugation by LG.
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The stack G-Isoc can be analyzed. More precisely, we have the following result.3

Theorem I.2.1. The prestack G-Isoc is a stack for the v-topology on perfect Fq-algebras. It
admits a stratification into locally closed substacks

G-Isocb ⊂ G-Isoc

for b ∈ B(E,G), consisting of the locus where at each geometric point, the G-isocrystal is isomorphic
to Eb. Moreover, each stratum

G-Isocb ∼= [∗/Gb(E)]

is a classifying stack for the locally profinite group Gb(E).

The loop group LG is an ind-(infinite dimensional perfect scheme), so the presentation

G-Isoc = LG/Ad,σLG

is of extremely infinite nature. We expect that this is not an issue with the presentation, but
that the stack itself has no good finiteness properties; in particular note that all strata appear
to be of the same dimension 0, while admitting nontrivial specialization relations. Xiao–Zhu (see
[XZ17], [Zhu20]) have nonetheless been able to define a category D(G-Isoc,Q`) of `-adic sheaves
on G-Isoc, admitting a semi-orthogonal decomposition into the various D(G-Isocb,Q`). Each
D(G-Isocb,Q`) ∼= D([∗/Gb(E)],Q`) is equivalent to the derived category of the category of smooth
representations of Gb(E) (on Q`-vector spaces). Here, as usual, we have to fix an auxiliary prime
` 6= p and an isomorphism C ∼= Q`.

At this point we have defined a stack G-Isoc, with a closed immersion

i : [∗/G(E)] ∼= G-Isoc1 ⊂ G-Isoc,

thus realizing a fully faithful embedding

i∗ : D(G(E),Q`) ↪→ D(G-Isoc,Q`)

of the derived category of smooth representations of G(E) into the derived category of Q`-sheaves
on G-Isoc. It is in this way that we “geometrize the representation theory of G(E)”.

The key additional structure that we need are the Hecke operators: These will simultaneously
make the Weil group WE (i.e. π1(Spec Ĕ/ϕZ)) and, by a careful study, also the Langlands dual

group Ĝ appear. Recall that Hecke operators are related to modifications of G-torsors, and are
parametrized by a point x of the curve where the modification happens, and the type of the
modification at x (which can be combinatorially encoded in terms of a cocharacter of G — this

eventually leads to the appearance of Ĝ). Often, the effect of Hecke operators is locally constant
for varying x. In that case, letting x vary amounts to an action of π1(X), where X is the relevant

curve; thus, the curve should now be Spec Ĕ/ϕZ.

Thus, if we want to define Hecke operators, we need to be able to consider modifications of
G-isocrystals. These modifications ought to happen at a section of SpecR((t)) → SpecR (resp. a

3This result seems to be well-known to experts, but we are not aware of a full reference. For the v-descent (even
arc-descent), see [Iva20, Lemma 5.9]. The stratification is essentially constructed in [RR96]; the local constancy of
the Kottwitz map is proved in general in Corollary III.2.8. The identification of the strata in some cases is in [CS17,
Proposition 4.3.13], and the argument works in general, up to translating all occurences of p-divisible groups into
families of isocrystals.
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non-existent map Spec(W (R) ⊗W (Fq) E) → SpecR). Unfortunately, the map R → R((t)) does
not admit any sections. In fact, we would certainly want to consider continuous sections; such
continuous sections would then be in bijection with maps Fq((t)) = Ĕ → R. In other words, in

agreement with the motivation from the previous paragraph, the relevant curve should be Spec Ĕ,
or really Spec Ĕ modulo Frobenius — so we can naturally hope to get actions of π1(Spec Ĕ/ϕZ) by
the above recipe.

However, in order for this picture to be realized we need to be in a situation where we have
continuous maps Fq((t)) → R. In other words, we can only hope for sections if we put ourselves
into a setting where R is itself some kind of Banach ring.

This finally brings us to the setting considered in this paper. Namely, we replace the category
of perfect Fq-schemes with the category of perfectoid spaces Perf = PerfFq over Fq. Locally any

S ∈ Perf is of the form S = Spa(R,R+) where R is a perfectoid Tate Fq-algebra: This means
that R is a perfect topological algebra that admits a topologically nilpotent unit $ ∈ R (called a
pseudouniformizer) making it a Banach algebra over Fq(($)). Moreover, R+ ⊂ R is an open and
integrally closed subring of powerbounded elements. OftenR+ = R◦ is the subring of powerbounded
elements, and we consequently use the abbreviation SpaR = Spa(R,R◦). The geometric (rank 1)
points of S are given by SpaC for complete algebraically closed nonarchimedean fields C, and as
usual understanding geometric points is a key first step. We refer to [SW20] for an introduction
to adic and perfectoid spaces.

For any S = Spa(R,R+), we need to define the analogue of SpecR((t))/ϕZ, taking the topology
of R into account. Note that for discrete R′, we have

SpaR′((t)) = SpaR′ ×SpaFq SpaFq((t)),

and we are always free to replace SpecR′((t))/ϕZ by SpaR′((t))/ϕZ as they have the same category
of vector bundles. This suggests that the analogue of SpecR′((t)) is

Spa(R,R+)×SpaFq SpaFq((t)) = D∗Spa(R,R+),

a punctured open unit disc over Spa(R,R+), with coordinate t. Note that

Spa(R,R+)×SpaFq SpaFq((t)) ⊂ SpaR+ ×SpaFq SpaFq[[t]] = SpaR+[[t]]

is the locus where t and $ ∈ R+ are invertible, where $ is a topologically nilpotent unit of R. The
latter definition can be extended to mixed characteristic: We let

Spa(R,R+)×̇SpaFq SpaE ⊂ SpaR+×̇SpaFq SpaOE := SpaWOE (R+)

be the open subset where π and [$] ∈ WOE (R+) are invertible. This space is independent of the
choice of $ as for any other such $′, one has $|$′n and $′|$n for some n ≥ 1, and then the
same happens for their Teichmüller representatives. We note that the symbol ×̇ is purely symbolic:
There is of course no map of adic spaces SpaE → SpaFq along which a fibre product could be
taken.

Definition I.2.2. The Fargues–Fontaine curve (for the local field E, over S = Spa(R,R+) ∈
Perf) is the adic space over E defined by

XS = XS,E =
(
Spa(R,R+)×SpaFq SpaFq((t))

)
/ϕZ,
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respectively
XS = XS,E =

(
Spa(R,R+)×̇SpaFq SpaE

)
/ϕZ,

where the Frobenius ϕ acts on (R,R+).

A novel feature, compared to the discussion of G-isocrystals, is that the action of ϕ is free and
totally discontinuous, so the quotient by ϕ is well-defined in the category of adic spaces. In fact,
on YS = Spa(R,R+)×̇SpaFq SpaE ⊂ SpaWOE (R+) one can compare the absolute values of π and
[$]. As both are topologically nilpotent units, the ratio

rad = log(|[$]|)/ log(|π|) : |YS | → (0,∞)

gives a well-defined continuous map. The Frobenius on |YS | multiplies rad by q, proving that the
action is free and totally discontinuous.

We note that in the function field case E = Fq((t)), the space

YS = S ×SpaFq SpaFq((t)) = D∗S
is precisely a punctured open unit disc over S. In this picture, the radius function measures the
distance to the origin: Close to the origin, the radius map is close to 0, while close to the boundary
of the open unit disc it is close to ∞. The quotient by ϕ is however not an adic space over S
anymore, as ϕ acts on S. Thus,

XS = YS/ϕ
Z = D∗S/ϕZ

is locally an adic space of finite type over S, but not globally so. This space, for S = SpaC a
geometric point, has been first studied by Hartl–Pink [HP04].

If S = SpaC is a geometric point but E is general, this curve (or rather a closely related
schematic version) has been extensively studied by Fargues–Fontaine [FF18], where it was shown
that it plays a central role in p-adic Hodge theory. From the perspective of adic spaces, it has
been studied by Kedlaya–Liu [KL15]. In particular, in this case where S is a point, XS is indeed
a curve: It is a strongly noetherian adic space whose connected affinoid subsets are spectra of
principal ideal domains. In particular, in this situation there is a well-behaved notion of “classical
points”, referring to those points that locally correspond to maximal ideals. These can be classified.
In the equal characteristic case, the description of

YS = D∗S = S ×SpaFq SpaFq((t))
shows that the closed points are in bijection with maps S → SpaFq((t)) up to Frobenius; where now
one has to take the quotient under t 7→ tq. In mixed characteristic, the situation is more subtle,
and brings us to the tilting construction for perfectoid spaces.

Proposition I.2.3. If E is of mixed characteristic and S = SpaC is a geometric point, the
classical points of XC are in bijection with untilts C]|E of C, up to the action of Frobenius.

Here, we recall that for any complete algebraically closed field C ′|E, or more generally any
perfectoid Tate ring R, one can form the tilt

R[ = lim←−
x 7→xp

R,

where the addition is defined on the ring of integral elements in terms of the bijection R[+ =
lim←−x 7→xp R

+ ∼= lim←−x 7→xp R
+/π, where now x 7→ xp is compatible with addition on R+/π. Then R[
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is a perfectoid Tate algebra of characteristic p. Geometrically, sending Spa(R,R+) to Spa(R[, R[+)

defines a tilting functor on perfectoid spaces T 7→ T [, preserving the underlying topological space
and the étale site, cf. [SW20].

One sees that the classical points of XS , for S = SpaC a geometric point, are in bijection with
untilts S] of S together with a map S → SpaE, modulo the action of Frobenius. Recall from
[SW20] that for any adic space Z over W (Fq), one defines a functor

Z♦ : Perf → Sets : S 7→ {S], f : S] → Z}

sending a perfectoid space S over Fq to pairs S] of an untilt of S, and a map S] → Z. If Z is an

analytic adic space, then Z♦ is a diamond, that is a quotient of a perfectoid space by a pro-étale
equivalence relation. Then the classical points of XS are in bijection with the S-valued points of
the diamond

(Spa Ĕ)♦/ϕZ.

More generally, for any S ∈ Perf, maps S → (Spa Ĕ)♦/ϕZ are in bijection with degree 1 Cartier
divisors DS ⊂ XS , so we define

Div1 = (Spa Ĕ)♦/ϕZ.

We warn the reader the action of the Frobenius here is a geometric Frobenius. In particular, it
only exists on (Spa Ĕ)♦, not on Spa Ĕ, in case E is of mixed characteristic. However, one still has
π1(Div1) = WE .

This ends our long stream of thoughts on the geometry of SpecE: We have arrived at the
Fargues–Fontaine curve, in its various incarnations. To orient the reader, we recall them here:

(i) For any complete algebraically closed nonarchimedean field C|Fq, the curve XC = XC,E , a
strongly noetherian adic space over E, locally the adic spectrum of a principal ideal domain. One

can also construct a schematic version Xalg
C , with the same classical points and the same category

of vector bundles. The classical points are in bijection with untilts C]|E of C, up to Frobenius.

(ii) More generally, for any perfectoid space S ∈ Perf, the “family of curves” XS , again an adic

space over E, but no longer strongly noetherian. If S is affinoid, there is a schematic version Xalg
S ,

with the same category of vector bundles.

(iii) The “mirror curve” Div1 = (Spa Ĕ)♦/ϕZ, which is only a diamond. For any S ∈ Perf, this
parametrizes “degree 1 Cartier divisors on XS”.

A peculiar phenomenon here is that there is no “absolute curve” of which all the others are
the base change. Another peculiar feature is that the space of degree 1 Cartier divisors is not the
curve itself.

Again, it is time to study G-torsors. This leads to the following definition.

Definition I.2.4. Let

BunG : Perf → {groupoids} : S 7→ {G-torsors on XS}

be the moduli stack of G-torsors on the Fargues–Fontaine curve.

Remark I.2.5. Let us stress here that while “the Fargues–Fontaine curve” is not really a well-
defined notion, “the moduli stack of G-torsors on the Fargues–Fontaine curve” is.
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As XS maps towards Spa Ĕ/ϕZ, there is a natural pullback functor G-Isoc → BunG(S). The
following result is in most cases due to Fargues [Far18b], completed by Anschütz, [Ans19].

Theorem I.2.6. If S = SpaC is a geometric point, the map

B(G)→ BunG(S)/ ∼=
is a bijection. In particular, any vector bundle on XS is a direct sum of vector bundles OXS (λ)
associated to D−λ, λ ∈ Q.

Under this bijection, b ∈ B(G) is basic if and only if the corresponding G-torsor Eb on XS is
semistable in the sense of Atiyah–Bott [AB83].

However, it is no longer true that the automorphism groups are the same. On the level of the
stack, we have the following result.

Theorem I.2.7. The prestack BunG is a v-stack. It admits a stratification into locally closed
substacks

ib : BunbG ⊂ BunG

for b ∈ B(G) consisting of the locus where at each geometric point, the G-torsor is isomorphic to
Eb. Moreover, each stratum

BunbG
∼= [∗/G̃b]

is a classifying space for a group G̃b that is an extension of the locally profinite group Gb(E) by a
“unipotent group diamond”.

The semistable locus Bunss
G ⊂ BunG is an open substack, and

Bunss
G =

⊔
b∈B(G)basic

[∗/Gb(E)].

Remark I.2.8. The theorem looks formally extremely similar to Theorem I.2.1. However,
there is a critical difference, namely the closure relations are reversed: For BunG, the inclusion of
BunbG for b ∈ B(G) basic is an open immersion while it was a closed immersion in Theorem I.2.1.
Note that basic b ∈ B(G) correspond to semistable G-bundles, and one would indeed expect the
semistable locus to be an open substack. Generally, BunG behaves much like the stack of G-bundles
on the projective line.

Remark I.2.9. We define a notion of Artin stacks in this perfectoid setting, and indeed BunG
is an Artin stack; we refer to Section I.4 for a more detailed description of our geometric results
on BunG. This shows that BunG has much better finiteness properties than G-Isoc, even if it is
defined on more exotic test objects.

We can define a derived category of `-adic sheaves

D(BunG,Q`)

on BunG. This admits a semi-orthogonal decomposition into all D(BunbG,Q`), and

D(BunbG,Q`) ∼= D([∗/Gb(E)],Q`) ∼= D(Gb(E),Q`)

is equivalent to the derived category of smooth Gb(E)-representations.
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Remark I.2.10. It is reasonable to expect that this category is equivalent to the category
D(G-Isoc,Q`) defined by Xiao–Zhu. However, we do not pursue this comparison here.

Finally, we can define the Hecke stack that will bring all key players together. Consider the
global Hecke stack HckG parametrizing pairs (E , E ′) of G-bundles on XS , together with a map
S → Div1 giving rise to a degree 1 Cartier divisor DS ⊂ XS , and an isomorphism

f : E|XS\DS ∼= E
′|XS\DS

that is meromorphic along DS . This gives a correspondence

BunG
h1←− HckG

h2−→ BunG×Div1.

To define the Hecke operators, we need to bound the modification, i.e. bound the poles of f along
DS . This is described by the local Hecke stack HckG, parametrizing pairs of G-torsors on the
completion of XS along DS , together with an isomorphism away from DS ; thus, there is a natural
map HckG → HckG from the global to the local Hecke stack. Geometrically, HckG admits a
Schubert stratification in terms of the conjugacy classes of cocharacters of G; in particular, there
are closed Schubert cells HckG,≤µ for each conjugacy class µ : Gm → G. By pullback, this defines
a correspondence

BunG
h1,≤µ←−−− HckG,≤µ

h2,≤µ−−−→ BunG×Div1

where now h1,≤µ and h2,≤µ are proper. One can then consider Hecke operators

Rh2,≤µ,∗h
∗
1,≤µ : D(BunG,Λ)→ D(BunG×Div1,Λ).

The following theorem ensures that Hecke operators are necessarily locally constant as one
varies the point of Div1, and hence give rise to representations of π1(Div1) = WE . In the following,
we are somewhat cavalier about the precise definition of D(−,Q`) employed, and the notion of
WE-equivariant objects: The fine print is addressed in the main text.

Theorem I.2.11. Pullback along the map Div1 → [∗/WE ] induces an equivalence

D(BunG×Div1,Q`) ∼= D(BunG×[∗/WE ],Q`) ∼= D(BunG,Q`)
BWE .

Thus, Hecke operators produce WE-equivariant objects in D(BunG,Q`), making the Weil group
appear naturally.

One also wants to understand how Hecke operators compose. This naturally leads to the study
of D(HckG,Q`) as a monoidal category, under convolution. Here, we have the geometric Satake
equivalence. In the setting of usual smooth projective curves (over C), this was established in
the papers of Lusztig [Lus83], Ginzburg [Gin90] and Mirković–Vilonen [MV07]. The theorem
below is a first approximation; we will actually prove a more precise version with Z`-coefficients,
describing all perverse sheaves on HckG, and applying to the Beilinson–Drinfeld Grassmannians in
the spirit of Gaitsgory’s paper [Gai07].

Theorem I.2.12. There is a natural monoidal functor from Rep Ĝ to D(HckG,Q`).

Remark I.2.13. Our proof of Theorem I.2.12 follows the strategy of Mirković–Vilonen’s proof,
and in particular defines a natural symmetric monoidal structure on the category of perverse sheaves
by using the fusion product. This requires one to work over several copies of the base curve, and
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let the points collide. It is a priori very surprising that this can be done in mixed characteristic,
as it requires a space like SpaQp×̇SpaFp SpaQp. Spaces of this type do however exist as diamonds,
and this was one of the main innovations of [SW20].

Remark I.2.14. Using a degeneration of the local Hecke stack, which is essentially the B+
dR-

affine Grassmannian of [SW20], to the Witt vector affine Grassmannian, Theorem I.2.12 gives a
new proof of Zhu’s geometric Satake equivalence for the Witt vector affine Grassmannian [Zhu17].
In fact, we even prove a version with Z`-coefficients, thus also recovering the result of Yu [Yu19].

Remark I.2.15. Regarding the formalism of `-adic sheaves, we warn the reader that we are
cheating slightly in the formulation of Theorem I.2.12; the definition of D(BunG,Q`) implicit above
is not the same as the one implicit in Theorem I.2.12. With torsion coefficients, the problem would
disappear, and in any case the problems are essentially of technical nature.

Thus, this also makes the Langlands dual group Ĝ appear naturally. For any representation V

of Ĝ, we get a Hecke operator

TV : D(BunG,Q`)→ D(BunG,Q`)
BWE .

Moreover, the Hecke operators commute and

TV⊗W ∼= TV ◦ TW |∆(WE)

where we note that TV ◦TW naturally takes values in WE ×WE-equivariant objects; the restriction
on the right means the restriction to the action of the diagonal copy ∆(WE) ⊂WE ×WE .

At this point, the representation theory of G(E) (which sits fully faithfully in D(BunG,Q`)), the

Weil group WE , and the dual group Ĝ, all interact with each other naturally. It turns out that this
categorical structure is precisely what is needed to construct L-parameters for (Schur-)irreducible
objects A ∈ D(BunG,Q`), and in particular for irreducible smooth representations of G(E). We
will discuss the construction of L-parameters below in Section I.9.

We note that the whole situation is exactly parallel to the Betti geometric Langlands situa-
tion considered by Nadler–Yun [NY19], and indeed the whole strategy can be described as “the
geometric Langlands program on the Fargues–Fontaine curve”. It is curious that our quest was
to understand the local Langlands correspondence in an arithmetic setting, for potentially very
ramified representations, and eventually we solved it by relating it to the global Langlands corre-
spondence in a geometric setting, in the everywhere unramified setting.

In the rest of this introduction, we give a more detailed overview of various aspects of this
picture:

(i) The Fargues–Fontaine curve (Section I.3);

(ii) The geometry of the stack BunG (Section I.4);

(iii) The derived category of `-adic sheaves on BunG (Section I.5);

(iv) The geometric Satake equivalence (Section I.6);

(v) Finiteness of the cohomology of Rapoport–Zink spaces, local Shimura varieties, and more gen-
eral moduli spaces of shtukas (Section I.7);

(vi) The stack of L-parameters (Section I.8);

(vii) The construction of L-parameters (Section I.9);
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(viii) The spectral action (Section I.10);

(ix) The origin of the ideas fleshed out in this paper (Section I.11).

These items largely mirror the chapters of this paper, and each chapter begins with a reprise
of these introductions.

I.3. The Fargues–Fontaine curve

The Fargues–Fontaine curve has been studied extensively in the book of Fargues–Fontaine
[FF18] and further results, especially in the relative situation, have been obtained by Kedlaya–Liu
[KL15]. In the first chapter, we reprove these foundational results, thereby also collecting and
unifying certain results (proved often only for E = Qp).

The first results concern the Fargues–Fontaine curve XC = XS when S = SpaC for some
complete algebraically closed nonarchimedean field C|Fq. We define a notion of classical points of
XC in that case; they form a subset of |XC |. The basic finiteness properties of XC are summarized
in the following result.

Theorem I.3.1. The adic space XC is locally the adic spectrum Spa(B,B+) where B is a
principal ideal domain; the classical points of Spa(B,B+) ⊂ XC are in bijection with the maximal
ideals of B. For each classical point x ∈ XC , the residue field of x is an untilt C] of C over E,
and this induces a bijection of the classical points of XC with untilts C] of C over E, taken up to
the action of Frobenius.

In the equal characteristic case, Theorem I.3.1 is an immediate consequence of the presentation
XC = D∗C/ϕZ and classical results in rigid-analytic geometry. In the p-adic case, we use tilting
to reduce to the equal characteristic case. At one key turn, in order to understand Zariski closed
subsets of XC , we use the result that Zariski closed implies strongly Zariski closed [BS19]. Using
these ideas, we are able to give an essentially computation-free proof.

A key result is the classification of vector bundles.

Theorem I.3.2. The functor from IsocE to vector bundles on XC induces a bijection on iso-
morphism classes. In particular, there is a unique stable vector bundle OXC (λ) of any slope λ ∈ Q,
and any vector bundle E can be written as a direct sum of stable bundles.

We give a new self-contained proof of Theorem I.3.2, making critical use of the v-descent results
for vector bundles obtained in [Sch17a] and [SW20], and basic results on the geometry of Banach–
Colmez spaces established here. The proof in the equal characteristic case by Hartl–Pink [HP04]
and the proof of Kedlaya in the p-adic case [Ked04] relied on heavy computations, while the proof
of Fargues–Fontaine [FF18] relied on the description of the Lubin–Tate and Drinfeld moduli spaces
of π-divisible O-modules. Our proof is related to the arguments of Colmez in [Col02].

Allowing general S ∈ PerfFq , we define the moduli space of degree 1 Cartier divisors as Div1 =

Spd Ĕ/ϕZ. Given a map S → Div1, one can define an associated closed Cartier divisor DS ⊂ XS ;
locally, this is given by an untilt DS = S] ⊂ XS of S over E, and this embeds Div1 into the space
of closed Cartier divisors on XS (justifying the name). Another important result is the following
ampleness result, cf. [KL15, Proposition 6.2.4], which implies that one can define an algebraic
version of the curve, admitting the same theory of vector bundles.
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Theorem I.3.3. Assume that S ∈ Perf is affinoid. For any vector bundle E on XS, the twist
E(n) is globally generated and has no higher cohomology for all n� 0. Defining the graded ring

P =
⊕
n≥0

H0(XS ,OXS (n))

and the scheme Xalg
S = ProjP , there is a natural map of locally ringed spaces XS → Xalg

S , pullback
along which defines an equivalence of categories of vector bundles, preserving cohomology.

If S = SpaC for some complete algebraically closed nonarchimedean field C, then Xalg
C is a

regular noetherian scheme of Krull dimension 1, locally the spectrum of a principal ideal domain,
and its closed points are in bijection with the classical points of XC .

We also need to understand families of vector bundles, i.e. vector bundles E on XS for general
S. Here, the main result is the following.

Theorem I.3.4. Let S ∈ Perf and let E be a vector bundle on XS. Then the function taking a
point s ∈ S to the Harder–Narasimhan polygon of E|Xs defines a semicontinuous function on S. If
it is constant, then E admits a global Harder–Narasimhan stratification, and pro-étale locally on S
one can find an isomorphism with a direct sum of OXS (λ)’s.

In particular, if E is everywhere semistable of slope 0, then E is pro-étale locally trivial, and the
category of such E is equivalent to the category of pro-étale E-local systems on S.

The key to proving Theorem I.3.4 is the construction of certain global sections of E . To achieve
this, we use v-descent techniques, and an analysis of the spaces of global sections of E ; these are
known as Banach–Colmez spaces, and were first introduced (in slightly different terms) in [Col02].

Definition I.3.5. Let E be a vector bundle on XS. The Banach–Colmez space BC(E) associated
with E is the locally spatial diamond over S whose T -valued points, for T ∈ PerfS, are given by

BC(E)(T ) = H0(XT , E|XT ).

Similarly, if E is everywhere of only negative Harder–Narasimhan slopes, the negative Banach–
Colmez space BC(E [1]) is the locally spatial diamond over S whose T -valued points are

BC(E [1])(T ) = H1(XT , E|XT ).

Implicit here is that this functor actually defines a locally spatial diamond. For this, we calculate
some key examples of Banach–Colmez spaces. For example, if E = OXS (λ) with 0 < λ ≤ [E : Qp]
(resp. all positive λ if E is of equal characteristic), then BC(E) is representable by a perfectoid open
unit disc (of dimension given by the numerator of λ). A special case of this is the identification
of BC(OXS (1)) with the universal cover of a Lubin–Tate formal group law, yielding a very close
relation between Lubin–Tate theory, and thus local class field theory, and the Fargues–Fontaine
curve; see also [Far18a]. On the other hand, for larger λ, or negative λ, Banach–Colmez spaces
are more exotic objects; for example, the negative Banach–Colmez space

BC(OXC (−1)[1]) ∼= (A1
C])
♦/E
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is the quotient of the affine line by the translation action of E ⊂ A1
C]

. We remark that our
proof of the classification theorem, Theorem I.3.2, ultimately relies on the negative result that
BC(OXC (−1)[1]) is not representable by a perfectoid space!4

For the proof of Theorem I.3.4, a key result is that projectivized Banach–Colmez spaces

(BC(E) \ {0})/E×

are proper — they are the relevant analogues of “families of projective spaces over S”. In particular,
their image in S is a closed subset, and if the image is all of S, then we can find a nowhere vanishing
section of E after a v-cover, as then the projectivized Banach–Colmez space is a v-cover of S. From
here, Theorem I.3.4 follows easily.

I.4. The geometry of BunG

Let us discuss the geometry of BunG. Here, G can be any reductive group over a nonarchimedean
local field E, with residue field Fq of characteristic p. Recall that Kottwitz’ set B(G) = B(E,G) of
G-isocrystals can be described combinatorially, by two discrete invariants. The first is the Newton
point

ν : B(G)→ (X∗(T )+
Q)Γ,

where T is the universal Cartan of G and Γ = Gal(E|E). More precisely, any G-isocrystal E defines
a slope morphism D → GĔ where D is the diagonalizable group with cocharacter group Q; its
definition reduces to the case of GLn, where it amounts to the slope decomposition of isocrystals.
Isomorphisms of G-isocrystals lead to conjugate slope morphisms, and this defines the map ν.

The other map is the Kottwitz invariant

κ : B(G)→ π1(GE)Γ.

Its definition is indirect, starting from tori, passing to the case of G with simply connected derived
group, and finally to the general case by z-extensions. Then Kottwitz shows that

(ν, κ) : B(G)→ (X∗(T )+
Q)Γ × π1(GE)Γ

is injective. Moreover, κ induces a bijection between B(G)basic and π1(GE)Γ. The non-basic
elements can be described in terms of Levi subgroups.

Using ν and κ, one can define a partial order on B(G) by declaring b ≤ b′ if κ(b) = κ(b′) and
νb ≤ νb′ with respect to the dominance order.

Up to sign, one can think of ν, resp. κ, as the Harder–Narasimhan polygon, resp. first Chern
class, of a G-bundle.

Theorem I.4.1. The prestack BunG satisfies the following properties.

(i) The prestack BunG is a stack for the v-topology.

(ii) The points |BunG | are naturally in bijection with Kottwitz’ set B(G) of G-isocrystals.

4Actually, we only know this for sure if E is p-adic; in the function field case, we supply a small extra argument
circumventing the issue.
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(iii) The map

ν : |BunG | → B(G)→ (X∗(T )+
Q)Γ

is semicontinuous, and
κ : |BunG | → B(G)→ π1(GE)Γ

is locally constant. Equivalently, the map |BunG | → B(G) is continuous when B(G) is equipped
with the order topology.

(iv) For any b ∈ B(G), the corresponding subfunctor

ib : BunbG = BunG×|BunG |{b} ⊂ BunG

is locally closed, and isomorphic to [∗/G̃b], where G̃b is a v-sheaf of groups such that G̃b → ∗ is

representable in locally spatial diamonds with π0G̃b = Gb(E). The connected component G̃◦b ⊂ G̃b
of the identity is cohomologically smooth of dimension 〈2ρ, νb〉.
(v) In particular, the semistable locus Bunss

G ⊂ BunG is open, and given by

Bunss
G
∼=

⊔
b∈B(G)basic

[∗/Gb(E)].

(vi) For any b ∈ B(G), there is a map

πb :Mb → BunG

that is representable in locally spatial diamonds, partially proper and cohomologically smooth, where
Mb parametrizes G-bundles E together with an increasing Q-filtration whose associated graded is,
at all geometric points, isomorphic to Eb with its slope grading. The v-stack Mb is representable in
locally spatial diamonds, partially proper and cohomologically smooth over [∗/Gb(E)].

(vii) The v-stack BunG is a cohomologically smooth Artin stack of dimension 0.

As examples, let us analyze the case of GL1 and GL2. For GL1, and general tori, everything is
semistable, so

Pic := BunGL1
∼=
⊔
Z

[∗/E×].

For GL2, the Kottwitz invariant gives a decomposition

BunGL2 =
⊔
α∈1

2Z

BunαGL2
.

Each connected component has a unique semistable point, given by the basic element b ∈ B(GL2)basic

with κ(b) = α. For b ∈ B(GL2)basic
∼= 1

2Z, the corresponding group Gb(E) is given by GL2(E)

when b ∈ Z, and by D× when b ∈ 1
2Z \ Z, where D|E is the quaternion algebra.

The non-semistable points of BunGL2 are given by extensions of line bundles, which are of the
form O(i)⊕O(j) for some i, j ∈ Z, with 2α = i+ j. Let us understand the simplest degeneration
inside BunGL2 , which is from O(1

2) to O ⊕O(1). The individual strata here are

[∗/D×], [∗/Aut(O ⊕O(1))].

Here

Aut(O ⊕O(1)) =

(
E× BC(O(1))
0 E×

)
.
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Here BC(O(1)) is representable by a perfectoid open unit disc SpdFq[[t1/p
∞

]].

In this case, the local chart Mb for BunGL2 parametrizes rank 2 bundles E written as an
extension

0→ L → E → L′ → 0

such that at all geometric points, L ∼= O and L′ ∼= O(1). Fixing such isomorphisms defines a
E× × E×-torsor

M̃b →Mb

with M̃b = BC(O(−1)[1]) a “negative Banach–Colmez space”. This local chart shows that the
local structure of BunG is closely related to the structure of negative Banach–Colmez spaces. It
also shows that while the geometry of BunG is quite nonstandard, it is still fundamentally a finite-
dimensional and “smooth” situation.

For general G, we still get a decomposition into connected components

BunG =
⊔

α∈π1(G)Γ

BunαG

and each connected component BunαG admits a unique semistable point.

By a recent result of Viehmann [Vie21], the map |BunG | → B(G) is a homeomorphism. This
had previously been proved for G = GLn by Hansen [Han17] based on [BFH+17]; that argument
was extended to some classical groups in unpublished work of Hamann.

Let us say some words about the proof of Theorem I.4.1. Part (i) has essentially been proved
in [SW20], and part (ii) follows from the result of Fargues and Anschütz, Theorem I.2.6. In part
(iii), the statement about ν reduces to GLn by an argument of Rapoport–Richartz [RR96], where
it is Theorem I.3.4. The statement about κ requires more work, at least in the general case: If
the derived group of G is simply connected, one can reduce to tori, which are not hard to handle.

In general, one approach is to use z-extensions G̃ → G to reduce to the case of simply connected
derived group. For this, one needs that Bun

G̃
→ BunG is a surjective map of v-stacks; we prove

this using Beauville–Laszlo uniformization. Alternatively, one can use the abelianized Kottwitz set
of Borovoi [Bor98], which we prove to behave well relatively over a perfectoid space S. Part (iv)
is a also consequence of Theorem I.3.4. Part (v) is a consequence of parts (iii) and (iv). The key
point is then part (vi), which will imply (vii) formally. The properties of Mb itself are easy to

establish — the analysis for GL2 above generalizes easily to show that M̃b is a successive extension
of negative Banach–Colmez spaces. The key difficulty is to prove that

πb :Mb → BunG

is cohomologically smooth. Note that as we are working with perfectoid spaces, there are no tangent
spaces, and we cannot hope to prove smoothness via deformation theory. To attack this problem,
we nonetheless prove a general “Jacobian criterion of cohomological smoothness”. The setup here
is the following.

Let S be a perfectoid space, and let Z → XS be a smooth map of (sousperfectoid) adic spaces;
this means that Z is an adic space that is locally étale over a finite-dimensional ball over XS . In this
situation, we can define a v-sheaf MZ → S parametrizing sections of Z → XS , i.e. the S′-valued
points, for S′/S a perfectoid space, are given by the maps s : XS′ → Z lifting XS′ → XS . For
each such section, we get the vector bundle s∗TZ/XS on S′, where TZ/XS is the tangent bundle.
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Naively, deformations of S′ →MZ , i.e. of XS′ → Z over XS′ → XS , should correspond to global
sections H0(XS′ , s

∗TZ/XS ), and obstructions to H1(XS′ , s
∗TZ/XS ). If s∗TZ/XS has everywhere only

positive Harder–Narasimhan slopes, then this vanishes locally on S′. By analogy with the classical
situation, we would thus expect the open subspace

Msm
Z ⊂MZ ,

where s∗TZ/XS has positive Harder–Narasimhan slopes, to be (cohomologically) smooth over S.
Our key geometric result confirms this, at least if Z → XS is quasiprojective.

Theorem I.4.2. Assume that Z → XS can, locally on S, be embedded as a Zariski closed
subset of an open subset of (the adic space) PnXS . Then MZ → S is representable in locally spatial
diamonds, compactifiable, and of locally finite dim. trg. Moreover, the open subset Msm

Z ⊂ MZ is
cohomologically smooth over S.

In the application, the space Z → XS will be the flag variety parametrizing Q-filtrations on a
given G-torsor E on XS . Then Mb will be an open subset of Msm

Z .

The proof of Theorem I.4.2 requires several innovations. The first is a notion of formal smooth-
ness, in which infinitesimal thickenings (that are not available in this perfectoid setting) are replaced
by small étale neighborhoods. This leads to a notion with a close relation to the notion of absolute
neighborhood retracts [Bor67] in classical topology. We prove that virtually all examples of coho-
mologically smooth maps are also formally smooth, including Banach–Colmez spaces and BunG. We
also prove thatMsm

Z → S is formally smooth, which amounts to some delicate estimates, spreading
sections XT0 → Z into small neighborhoods of T0 ⊂ T , for any Zariski closed immersion T0 ⊂ T
of affinoid perfectoid spaces — here we crucially use the assumption that all Harder–Narasimhan
slopes are positive. Coupled with the theorem that Zariski closed implies strongly Zariski closed
[BS19] this makes it possible to write Msm

Z , up to (cohomologically and formally) smooth maps,
as a retract of a space that is étale over a ball over S. Certainly in classical topology, this is not
enough to ensure cohomological smoothness — a coordinate cross is a retract of R2 — but it does
imply that the constant sheaf F` is universally locally acyclic over S. For this reason, and other
applications to sheaves on BunG as well as geometric Satake, we thus also develop a general theory
of universally locally acyclic sheaves in our setting. To finish the proof, we use a deformation to
the normal cone argument to show that the dualizing complex is “the same” as the one for the
Banach–Colmez space BC(s∗TZ/XS ).

I.5. `-adic sheaves on BunG

For our results, we need to define the category of `-adic sheaves on BunG. More precisely, we
will define for each Z`-algebra Λ a category

D(BunG,Λ)

of sheaves of Λ-modules on BunG. If Λ is killed by some power of `, such a definition is the main
achievement of [Sch17a]. Our main interest is however the case Λ = Q`. In the case of schemes (of
finite type over an algebraically closed field), the passage from torsion coefficients to Q`-coefficients
is largely formal: Roughly,

D(X,Q`) = Ind(lim←−
n

Db
c(X,Z/`nZ)⊗Z` Q`).
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Behind this definition are however strong finiteness results for constructible sheaves; in particular,
the morphism spaces between constructible sheaves are finite. For BunG, or for the category of
smooth representations, there are still compact objects (given by compactly induced representations
in the case of smooth representations), but their endomorphism algebras are Hecke algebras, which
are infinite-dimensional. A definition along the same lines would then replace all Hecke algebras
by their `-adic completions, which would drastically change the category of representations.

Our definition of D(BunG,Λ) in general involves some new ideas, employing the idea of solid
modules developed by Clausen–Scholze [CS] in the context of the pro-étale (or v-)site; in the end,
D(BunG,Λ) is defined as a certain full subcategory

Dlis(BunG,Λ) ⊂ D�(BunG,Λ)

of the category D�(BunG,Λ) of solid complexes of Λ-modules on the v-site of BunG. The formalism
of solid sheaves, whose idea is due to Clausen and the second author, is developed in Chapter VII.
It presents some interesting surprises; in particular, there is always a left adjoint f\ to pullback f∗,
satisfying base change and a projection formula. (In return, Rf! fails to exist in general.)

Theorem I.5.1. Let Λ be any Z`-algebra.

(i) Via excision triangles, there is an infinite semiorthogonal decomposition of D(BunG,Λ) into the
various D(BunbG,Λ) for b ∈ B(G).

(ii) For each b ∈ B(G), pullback along

BunbG
∼= [∗/G̃b]→ [∗/Gb(E)]

gives an equivalence

D([∗/Gb(E)],Λ) ∼= D(BunbG,Λ),

and D([∗/Gb(E)],Λ) ∼= D(Gb(E),Λ) is equivalent to the derived category of the category of smooth

representations of Gb(E) on Λ-modules.

(iii) The category D(BunG,Λ) is compactly generated, and a complex A ∈ D(BunG,Λ) is compact
if and only if for all b ∈ B(G), the restriction

ib∗A ∈ D(BunbG,Λ) ∼= D(Gb(E),Λ)

is compact, and zero for almost all b. Here, compactness in D(Gb(E),Λ) is equivalent to lying in

the thick triangulated subcategory generated by c-Ind
Gb(E)
K Λ as K runs over open pro-p-subgroups

of Gb(E).

(iv) On the subcategory D(BunG,Λ)ω ⊂ D(BunG,Λ) of compact objects, there is a Bernstein–
Zelevinsky duality functor

DBZ : (D(BunG,Λ)ω)op → D(BunG,Λ)ω

with a functorial identification

RHom(A,B) ∼= π\(DBZ(A)⊗L
Λ B)

for B ∈ D(BunG,Λ), where π : BunG → ∗ is the projection. The functor DBZ is an equivalence,
and D2

BZ is naturally equivalent to the identity. It is compatible with usual Bernstein–Zelevinsky
duality on D(Gb(E),Λ) for basic b ∈ B(G).
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(v) An object A ∈ D(BunG,Λ) is universally locally acyclic (with respect to BunG → ∗) if and only
if for all b ∈ B(G), the restriction

ib∗A ∈ D(BunbG,Λ) ∼= D(Gb(E),Λ)

is admissible, i.e. for all pro-p open subgroups K ⊂ Gb(E), the complex (ib∗A)K is perfect. Univer-
sally locally acyclic complexes are preserved by Verdier duality, and satisfy Verdier biduality.

This theorem extends many basic notions from representation theory — finitely presented
objects, admissible representations, Bernstein–Zelevinsky duality, smooth duality — to the setting
of D(BunG,Λ).

Parts (i) and (ii) are easy when Λ is `-power torsion. In general, their proofs invoke the
precise definition of D(BunG,Λ) = Dlis(BunG,Λ) and are somewhat subtle. Part (iii) uses that iib∗

admits a left adjoint, which will then automatically preserve compact objects (inducing compact
generators). Using the diagram

[∗/Gb(E)]
qb←−Mb

πb−→ BunG,

this left adjoint is defined as πb\q
∗
b . The verification that this is indeed a left adjoint amounts in

some sense to the assertion that Mb is “strictly local” along the closed subspace [∗/Gb(E)] ⊂Mb

in the sense that for all A ∈ D(Mb,Λ), the restriction

RΓ(Mb, A)→ RΓ([∗/Gb(E)], A)

is an isomorphism. This builds on a detailed analysis of the topological nature ofMb, in particular

that M̃b \ ∗ is a spatial diamond, and Theorem I.5.2 below. For part (iv), the constructions in (iii)
imply the existence of DBZ(A) on a class of generators, thus in general, and similar arguments to
the ones in (iii) prove the biduality. Finally, part (v) is essentially a formal consequence.

The key cohomological result for the proof is the following result, applied to M̃b\∗ (or quotients
of it). It plays on the subtle point that the point ∗ is not quasiseparated.

Theorem I.5.2. Let X be a spatial diamond such that f : X → ∗ is partially proper, and of
finite dim. trg. Then for any affinoid perfectoid space S, the base change XS = X × S naturally
admits two ends. Taking compactly supported cohomology with respect to one end (but no support
condition at the other end), one has

RΓ∂-c(XS , A) = 0

for all A ∈ D+
� (X,Z`) (resp. all A ∈ D�(X,Z`) if f is `-cohomologically smooth).

As an example, if X = SpaFq((t)), then XS = D∗S is an open unit disc over S, whose two ends
are the origin and the boundary, and one has

RΓ∂-c(D∗S ,Z`) = 0.

In particular, the cohomology of SpaFq[[t]] agrees with sections on the closed point, showing that

SpaFq[[t]] is “strictly local”. The same phenomenon is at work for Mb.
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I.6. The geometric Satake equivalence

In order to define the Hecke operators, we need to prove the geometric Satake equivalence,

taking representations of the dual group Ĝ to sheaves on the local Hecke stack. In order to analyze
compositions of Hecke operators, it will in fact be necessary to analyze modifications at several
points.

Thus, for any finite set I, we consider the moduli space (Div1)I parametrizing degree 1 Cartier

divisors Di ⊂ XS , i ∈ I. Locally on S, each Di defines an untilt S]i of S over E, and one can form
the completion B+ of OXS along the union of the Di. Inverting the Di defines a localization B of
B+. One can then define a positive loop group L+

(Div1)I
G and loop group L(Div1)IG, with values

given by G(B+) resp. G(B); for brevity, we will simply write L+G and LG here. One can then
define the local Hecke stack

HckIG = [L+G\LG/L+G]→ (Div1)I .

For d = |I|, this is in fact already defined over the moduli space Divd = (Div1)d/Σd of degree d
Cartier divisors. We will often break symmetry, and first take the quotient on the right to define
the Beilinson–Drinfeld Grassmannian

GrIG = LG/L+G→ (Div1)I

so that
HckIG = L+G\GrIG .

The Beilinson–Drinfeld Grassmannian GrIG → (Div1)I is a small v-sheaf that can be written as
an increasing union of closed subsheaves that are proper and representable in spatial diamonds, by
bounding the relative position; this is one main result of [SW20]. On the other hand, L+G can
be written as an inverse limit of truncated positive loop groups, which are representable in locally
spatial diamonds and cohomologically smooth; moreover, on each bounded subset, it acts through
such a finite-dimensional quotient. This essentially reduces the study of all bounded subsets of
HckIG to Artin stacks.

In particular, one can write the local Hecke stack as an increasing union of closed substacks
that are quasicompact over (Div1)I , by bounding the relative position. In the following, we assume
that the coefficients Λ are killed by some power of `, so that we can use the theory from [Sch17a].
Let

Dét(HckIG,Λ)bd ⊂ Dét(HckIG,Λ)

be the full subcategory of all objects with quasicompact support over (Div1)I . This is a monoidal
category under convolution ?. Here, we use the convolution diagram

HckIG×(Div1)I HckIG
(p1,p2)←−−−− L+G\LG×L+G LG/L+G

m−→ HckIG

and define
A ? B = Rm∗(p

∗
1A⊗L

Λ p
∗
2B).

The map m is ind-proper (its fibres are GrIG), and in particular proper on any bounded subset;
thus, proper base change ensures that this defines an associative monoidal structure.

On Dét(HckIG,Λ)bd, one can define a relative perverse t-structure (where an object is perverse if
and only if it is perverse over any geometric fibre of (Div1)I). For this t-structure, the convolution
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? is left t-exact (and t-exactness only fails for issues related to non-flatness over Λ). To prove that
there is a well-defined t-structure, and the preservation of perversity under convolution, we adapt
Braden’s theorems [Bra03] on hyperbolic localization, and a degeneration to the Witt vector affine
Grassmannian [Zhu17], [BS17]. We will discuss hyperbolic localization further below.

We remark that there is no general theory of perverse sheaves in p-adic geometry, the issue be-
ing that it is difficult to unambiguously assign a dimension to a point of an adic space (cf. [Tem21]
for what is known about topological transcendence degrees of points, and the subtleties especially
in characteristic p). In particular, we would not know how to define a notion of perverse sheaf on
(Div1)I in general, which is the reason we revert to asking perversity only in the fibres. Here, we
use that all geometric fibres of the stack HckIG → (Div1)I have only countably many points enu-
merated explicitly in terms of dominant cocharacters µi, and one can assign by hand the dimension∑

i〈2ρ, µi〉 of the corresponding open Schubert cells.

Remark I.6.1. It seems to have been overlooked in the literature that for any map f : X → S
locally of finite type between schemes, one can define a relative perverse t-structure, with relative
perversity equivalent to perversity on all geometric fibres. It is a nontrivial result that there indeed
is such a t-structure; this will appear in forthcoming work of Hansen and the second author. Thus,
there is a good notion of “families of perverse sheaves”.

Moreover, one can restrict to the complexes A ∈ Dét(HckIG,Λ)bd that are universally locally
acyclic over (Div1)I . This condition is also preserved under convolution.

Definition I.6.2. The Satake category

SatIG(Λ) ⊂ Dét(HckIG,Λ)bd

is the category of all A ∈ Dét(HckIG,Λ)bd that are perverse, flat over Λ (i.e., for all Λ-modules M ,
also A⊗L

Λ M is perverse), and universally locally acyclic over (Div1)I .

Intuitively, SatIG(Λ) are the “flat families of perverse sheaves on HckIG → (Div1)I”, where
flatness refers both to the geometric aspect of flatness over (Div1)I (encoded in universal local
acyclicity) and the algebraic aspect of flatness in the coefficients Λ. The Satake category SatIG(Λ)
is a monoidal category under convolution. Moreover, it is covariantly functorial in I.

In fact, the monoidal structure naturally upgrades to a symmetric monoidal structure. This
relies on the fusion product, for which it is critical to allow general finite sets I. Namely, given
finite sets I1, . . . , Ik, letting I = I1 t . . . t Ik, one has an isomorphism

HckIG×(Div1)I (Div1)I;I1,...,Ik ∼=
k∏
j=1

Hck
Ij
G ×(Div1)I (Div1)I;I1,...,Ik

where (Div1)I;I1,...,Ik ⊂ (Div1)I is the open subset where xi 6= xi′ whenever i, i′ ∈ I lie in different
Ij ’s. The exterior tensor product then defines a functor

�kj=1 :
k∏
j=1

Sat
Ij
G (Λ)→ SatI;I1,...,IkG (Λ)
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where SatI;I1,...,IkG (Λ) is the variant of SatIG(Λ) for HckIG×(Div1)I (Div1)I;I1,...,Ik . However, the re-

striction functor
SatIG(Λ)→ SatI;I1,...,IkG (Λ)

is fully faithful, and the essential image of the exterior product lands in its essential image. Thus,
we get a natural functor

∗kj=1 :

k∏
j=1

Sat
Ij
G (Λ)→ SatIG(Λ),

independent of the ordering of the Ij . In particular, for any I, we get a functor

SatIG(Λ)× SatIG(Λ)→ SatItIG (Λ)→ SatIG(Λ),

using functoriality of SatJG(Λ) in J , which defines a symmetric monoidal structure ∗ on SatIG(Λ),
commuting with ?. This is called the fusion product. In general, for any symmetric monoidal
category (C, ∗) with a commuting monoidal structure ?, the monoidal structure ? necessarily agrees
with ∗; thus, the fusion product refines the convolution product. (As usual in geometric Satake, we
actually need to change ∗ slightly by introducing certain signs into the commutativity constraint,
depending on the parity of the support of the perverse sheaves.)

Moreover, restricting A ∈ SatIG(Λ) to GrIG and taking the pushforward to (Div1)I , all cohomol-
ogy sheaves are local systems of Λ-modules on (Div1)I . By a version of Drinfeld’s lemma, these
are equivalent to representations of W I

E on Λ-modules. This defines a symmetric monoidal fibre
functor

F I : SatIG(Λ)→ RepW I
E

(Λ),

where RepW I
E

(Λ) is the category of continuous representations of W I
E on finite projective Λ-modules.

Using a version of Tannaka duality, one can then build a Hopf algebra in the Ind-category of
RepW I

E
(Λ) so that SatIG(Λ) is given by its category of representations (internal in RepW I

E
(Λ)). For

any finite set I, this is given by the tensor product of I copies of the corresponding Hopf algebra

for I = {∗}, which in turn is given by some affine group scheme G

∧

over Λ with WE-action.

Theorem I.6.3. There is a canonical isomorphism G

∧∼= Ĝ with the Langlands dual group, under

which the action of WE on G

∧

agrees with the usual action of WE on Ĝ up to an explicit cyclotomic
twist. If

√
q ∈ Λ, the cyclotomic twist can be trivialized, and SatIG(Λ) is naturally equivalent to the

category of (ĜoWE)I-representations on finite projective Λ-modules.

This theorem is thus a version of the theorem of Mirković–Vilonen [MV07], coupled with the
refinements of Gaitsgory [Gai07] for general I. (We remark that we formulate a theorem valid
for any Λ, not necessarily regular; such a formulation does not seem to be in the literature. Also,
we give a purely local proof: Most proofs require a globalization on a (usual) curve.) Contrary to

Mirković–Vilonen, we actually construct an explicit pinning of G

∧

. For the proof, one can restrict
to Λ = Z/`nZ; passing to a limit over n, one can actually build a group scheme over Z`. Its generic
fibre is reductive, as the Satake category with Q`-coefficients is (geometrically) semisimple: For
this, we again use the degeneration to the Witt vector affine Grassmannian and the decomposition
theorem for schemes. To identify the reductive group, we argue first for tori, and then for rank
1 groups, where everything reduces to G = PGL2 which is easy to analyze by using the minus-
cule Schubert cell. Here, the pinning includes a cyclotomic twist as of course the cohomology of
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the minuscule Schubert variety P1 of GrPGL2 contains a cyclotomic twist. Afterwards, we apply
hyperbolic localization in order to construct symmetric monoidal functors SatG → SatM for any

Levi M of G, inducing dually maps M

∧

→ G

∧

. This produces many Levi subgroups of G

∧

Q` from

which it is easy to get the isomorphism with ĜQ` , including a pinning. As these maps M

∧

→ G

∧

are

even defined integrally, and Ĝ(Z`) ⊂ Ĝ(Q`) is a maximal compact open subgroup by Bruhat–Tits

theory, generated by the rank 1 Levi subgroups, one can then deduce that G

∧∼= Ĝ integrally, again
with an explicit (cyclotomic) pinning.

We will also need the following addendum regarding a natural involution. Namely, the local
Hecke stack HckG has a natural involution sw given by reversing the roles of the two G-torsors; in
the presentation in terms of LG, this is induced by the inversion on LG. Then sw∗ induces naturally
an involution of SatG(Λ), and this involution can be upgraded to a symmetric monoidal functor

commuting with the fibre functor, thus realizing a WE-equivariant automorphism of G

∧∼= Ĝ.

Proposition I.6.4. The action of sw∗ on SatG induces the automorphism of Ĝ that is the

Cartan involution of the split group Ĝ, conjugated by ρ̂(−1).

Critical to all of our arguments is the hyperbolic localization functor. In the setting of the
Beilinson–Drinfeld Grassmannian, assume that P+, P− ⊂ G are two opposite parabolics, with
common Levi M . We get a diagram

GrIP+

q+

||

p+

##
GrIG GrIM .

GrIP−

q−
bb

p−
;;

We get two “constant term” functors

CT+ = R(p+)!(q
+)∗,CT− = R(p−)∗R(q−)! : Dét(GrIG,Λ)bd → Dét(GrIM ,Λ)bd,

and one can construct a natural transformation CT− → CT+. The functor CT+ corresponds
classically to the Satake transform, of integrating along orbits under the unipotent radical of U+.
Hyperbolic localization claims that the transformation CT− → CT+ is an equivalence when re-
stricted to L+G-equivariant objects. This has many consequences; note that CT+ is built from left
adjoint functors while CT− is built from right adjoint functors, so if they are isomorphic, hyperbolic
localization has the best of both worlds. In particular, hyperbolic localization commutes with all
colimits and all limits, preserves (relative) perversity, universal local acyclicity, commutes with any
base change, etc. .

This is in fact a special case of the following more general assertion. Let S be any small v-stack,
and f : X → S be a proper map that is representable in spatial diamonds with dim. trg f < ∞.
Assume that there is an action of Gm on X/S, where Gm(R,R+) = R×. The fixed points X0 ⊂ X
of the Gm-action form a closed substack. We assume that one can define an attractor locus X+ ⊂ X
and a repeller locus X− ⊂ X, given by disjoint unions of locally closed subspaces, on which the
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t ∈ Gm-action admits a limit as t→ 0 (resp. t→∞). We get a diagram

X+

q+

~~

p+

!!
X X0,

X−

q−
``

p−
==

generalizing (bounded parts of) the above diagram if one chooses a cocharacter µ : Gm → G whose
dynamic parabolics are P+, P−. One can define

L+ = R(p+)!(q
+)∗, L− = R(p−)∗R(q−)! : Dét(X,Λ)→ Dét(X

0,Λ)

and a natural transformation L− → L+. The following is our version of Braden’s theorem [Bra03],
cf. also [Ric19].

Theorem I.6.5. The transformation L− → L+ is an equivalence when restricted to the essential
image of Dét(X/Gm,Λ)→ Dét(X,Λ).

The proof makes use of the following principle: If Y → S is partially proper with a Gm-
action such that the quotient stack Y/Gm is qcqs over S, then again Y admits two ends, and the
partially compactly supported cohomology of Y with coefficients in any A ∈ Dét(Y/Gm,Λ) vanishes
identically.

I.7. Cohomology of moduli spaces of shtuka

At this point, we have defined

D(BunG,Λ),

and using the geometric Satake equivalence and the diagram

HckIG
q //

h1{{

h2

&&

HckIG

BunG BunG×(Div1)I

one can define the Hecke operator

TV = Rh2∗(h
∗
1 ⊗L

Λ q
∗SV ) : D(BunG,Λ)→ D(BunG×(Div1)I ,Λ)

for any V ∈ SatIG(Λ), where SV is the corresponding sheaf on HckIG. This works at least if Λ is
killed by some power of `. We can in fact extend this functor to all Z`-algebras Λ. Moreover,
its image lies in the full subcategory of those objects that are locally constant in the direction of
(Div1)I , thereby giving a functor

TV : D(BunG,Λ)→ D(BunG,Λ)BW
I
E
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to the category of W I
E-equivariant objects in D(BunG,Λ). The proof is surprisingly formal: One

reduces to I = {∗} by an inductive argument, and then uses that Div1 = Spd Ĕ/ϕZ is still just a
point. More precisely, one uses that

D(BunG,Λ)→ D(BunG×Spd Ê,Λ)

is an equivalence.

Remark I.7.1. To define D(BunG,Λ)BW
I
E , we need to upgrade D(BunG,Λ) to a condensed

∞-category; then it is the notion of W I
E-equivariant objects for the condensed group W I

E .

A first consequence of our results is that TV , forgetting the W I
E-equivariance, preserves finiteness

properties. Note that TV ◦ TW ∼= TV⊗W as the geometric Satake equivalence is monoidal. This
formally implies that TV is left and right adjoint to TV ∗ . From here, it is not hard to prove the
following result.

Theorem I.7.2. The functor TV : D(BunG,Λ) → D(BunG,Λ) preserves compact objects and
universally locally acyclic objects. Moreover, it commutes with Bernstein–Zelevinsky and Verdier
duality in the sense that there are natural isomorphisms DBZ(TV (A)) ∼= Tsw∗V ∨(DBZ(A)) and
RHom(TV (A),Λ) ∼= T(sw∗V )∨RHom(A,Λ).

Here sw∗ is the involution of SatIG which by Proposition I.6.4 is induced by the Cartan involution

of Ĝ, conjugated by ρ̂(−1).

This theorem has concrete consequences for the cohomology of moduli spaces of shtukas. For
simplicity, we formulate it here with coefficients in a Λ-algebra that is killed by `n for some n; for the
general formulation, we would need to discuss more precisely the foundational issues surrounding
the derived categories. In [SW20, Lecture XXIII], for any collection {µi}i of conjugacy classes of
cocharacters with fields of definition Ei/E and b ∈ B(G), there is defined a tower of moduli spaces
of local shtukas

fK : (Sht(G,b,µ•),K)K⊂G(E) →
∏
i∈I

Spd Ĕi

as K ranges over compact open subgroups of G(E), equipped with compatible étale period maps

πK : Sht(G,b,µ•),K → Grtw
G,

∏
i∈I Spd Ĕi,≤µ•

.

Here, Grtw
G,

∏
i∈I Spd Ĕi

→
∏
i∈I Spd Ĕ is a certain twisted form of the convolution affine Grassman-

nian, cf. [SW20, Section 23.5]. Let W be the exterior tensor product �i∈IVµi of highest weight
representations, and SW the corresponding sheaf on Grtw

G,
∏
i∈I Spd Ĕi

. We continue to write SW for

its pullback to Sht(G,b,µ•),K .

Corollary I.7.3. The sheaf

RfK!SW ∈ D([∗/Gb(E)]×
∏
i∈I

Spd Ĕi,Λ)

is equipped with partial Frobenii, thus descends to an object of

D([∗/Gb(E)]×
∏
i∈I

Spd Ĕi/ϕ
Z
i ,Λ).
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This object lives in the full subcategory

D(Gb(E),Λ)B
∏
i∈IWEi ⊂ D([∗/Gb(E))]×

∏
i∈I

Spd Ĕi/ϕ
Z
i ,Λ),

and its restriction to D(Gb(E),Λ) is compact. In particular, for any admissible representation ρ of
Gb(E), the object

RHomGb(E)(RfK!SW , ρ) ∈ D(Λ)B
∏
i∈IWEi

is a representation of
∏
i∈IWEi on a perfect complex of Λ-modules. Taking the colimit over K, this

gives rise to a complex of admissible G(E)-representations

lim−→
K

RHomGb(E)(RfK!SW , ρ)

equipped with a
∏
i∈IWEi-action.

If ρ is compact, then so is
lim−→
K

RHomGb(E)(RfK!SW , ρ)

as a complex of G(E)-representations.

Specializing to I = {∗} and µ minuscule, we get local Shimura varieties, and this proves the
finiteness properties of [RV14, Proposition 6.1] unconditionally, as well as [RV14, Remark 6.2 (iii)].
We note that those properties seem inaccessible using only the definition of the moduli spaces of
shtukas, i.e. without the use of BunG.

I.8. The stack of L-parameters

Let us discuss the other side of the Langlands correspondence, namely (the stack of) L-
parameters. This has been previously done by Dat–Helm–Kurinczuk–Moss [DHKM20] and Zhu
[Zhu20]. One wants to define a scheme whose Λ-valued points, for a Z`-algebra Λ, are the contin-
uous 1-cocycles

ϕ : WE → Ĝ(Λ).

(Here, we endow Ĝ with its usual WE-action, that factors over a finite quotient Q of WE . As
discussed above, the difference between the two actions disappears over Z`[

√
q], and we find it

much more convenient to use the standard normalization here, so that we can sometimes make use

of the algebraic group ĜoQ.)

There seems to be a mismatch here, in asking for an algebraic stack, but continuous cocycles.
Interestingly, there is a way to phrase the continuity condition that produces a scheme. Namely,
we consider Λ as a condensed Z`-algebra that is “relatively discrete over Z`”. Abstract Z`-modules
M embed fully faithfully into condensed Z`-modules, via sending M to Mdisc ⊗Z`,disc

Z`.

Theorem I.8.1. There is a scheme Z1(WE , Ĝ) over Z` whose Λ-valued points, for a Z`-algebra
Λ, are the condensed 1-cocycles

ϕ : WE → Ĝ(Λ),

where we regard Λ as a relatively discrete condensed Z`-algebra. The scheme Z1(WE , Ĝ) is a union

of open and closed affine subschemes Z1(WE/P, Ĝ) as P runs through open subgroups of the wild
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inertia subgroup of WE, and each Z1(WE/P, Ĝ) is a flat local complete intersection over Z` of
dimension dimG.

The point here is that the inertia subgroup ofWE has a Z`-factor, and this can map in interesting
ways to Λ when making this definition. To prove the theorem, following [DHKM20] and [Zhu20]
we define discrete dense subgroups W ⊂WE/P by discretizing the tame inertia, and the restriction

Z1(WE/P, Ĝ)→ Z1(W, Ĝ) is an isomorphism, where the latter is clearly an affine scheme.

We can also prove further results about the Ĝ-action on Z1(WE , Ĝ), or more precisely each

Z1(WE/P, Ĝ). For this result, we need to exclude some small primes, but if G = GLn, all primes
` are allowed; for classical groups, all ` 6= 2 are allowed. More precisely, we say that ` is very good

for Ĝ if the following conditions are satisfied.

(i) The (algebraic) action of WE on Ĝ factors over a finite quotient Q of order prime to `.

(ii) The order of the fundamental group of the derived group of Ĝ is prime to ` (equivalently, π0Z(G)
is of order prime to `).

(iii) If G has factors of type B, C, or D, then ` 6= 2; if it has factors of type E, F , or G, then
` 6= 2, 3; and if it has factors of type E8, then ` 6= 2, 3, 5.

Theorem I.8.2. Assume that ` is a very good prime for Ĝ. Then H i(Ĝ,O(Z1(WE/P, Ĝ))) = 0

for i > 0 and the formation of the invariants O(Z1(WE/P, Ĝ))Ĝ commutes with any base change.

The algebra O(Z1(WE/P, Ĝ))Ĝ admits an explicit presentation in terms of excursion operators,

O(Z1(WE/P, Ĝ))Ĝ = colim(n,Fn→W )O(Z1(Fn, Ĝ))Ĝ

where the colimit runs over all maps from a free group Fn to W ⊂ WE/P , and Z1(Fn, Ĝ) ∼= Ĝn

with the simultaneous twisted Ĝ-conjugation.

Moreover, the ∞-category Perf(Z1(WE/P, Ĝ)/Ĝ) is generated under cones and retracts by the

image of Rep(Ĝ) → Perf(Z1(WE/P, Ĝ)/Ĝ), and Ind Perf(Z1(WE/P, Ĝ)) is equivalent to the ∞-

category of modules over O(Z1(WE/P, Ĝ)) in Ind Perf(BĜ).

All of these results also hold with Q`-coefficients, without any assumption on `.

With Q`-coefficients, these results are simple, as the representation theory of Ĝ is semisimple.
However, with Z`-coefficients, these results are quite subtle, and we need to dive into modular
representation theory of reductive groups. Very roughly, the proof of the theorem proceeds by

analyzing the closed Ĝ-orbits in the stack of L-parameters first, and then use a deformation to the

normal cone to understand the behaviour near any Ĝ-orbit. We make critical use of some results

of Touzé–van der Kallen [TvdK10]. Let us make some further remarks about the closed Ĝ-orbits.

First, the closed Ĝ-orbits in Z1(WE/P, Ĝ)L, for any algebraically closed field L over Z`, corre-

spond to the semisimple L-parameter ϕ : WE → Ĝ(L), and also biject to the geometric points of

SpecO(Z1(WE/P, Ĝ))Ĝ. Here, an L-parameter is semisimple if, whenever it factors over a para-

bolic P̂ ⊂ Ĝ, it also factors over a Levi M̂ ⊂ P̂ . Any semisimple parameter is in fact continuous
for the discrete topology on L, i.e. trivial on an open subgroup of IE . If L = F` and Q is of order
prime to `, then ϕ is semisimple if and only if it factors over a finite quotient of order prime to `.
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Its orbit in Z1(WE/P, Ĝ)L is then given by Ĝ/Sϕ where Sϕ ⊂ Ĝ is the centralizer of ϕ, which is

in that case the fixed points under the action of a finite solvable group F of automorphisms of Ĝ,
where the order of F is prime to `. We need the following result.

Theorem I.8.3. Let H be a reductive group over an algebraically closed field L of characteristic
`. Let F be a finite group of order prime to ` acting on H. Then HF is a smooth linear algebraic
group whose connected component is reductive, and with π0H

F of order prime to `. If F is solvable,
the image of Perf(BH)→ Perf(BHF ) generates under cones and retracts.

The last part of this theorem is proved by a very explicit (and exhausting) analysis of all
possible cases. It would be desirable to have a more enlightening argument, possibly also removing
the assumption that F is solvable. In fact, we would expect similar results to hold true in the
case where W is replaced by the fundamental group of a Riemann surface. Our arguments are not
general enough to handle that case.

Remark I.8.4. While the hypotheses imposed on ` are surely not optimal, we are quite sure

that some hypothesis on ` is required in Theorem I.8.2. For example, if Ĝ = PGL2 and ` = 2,

we expect problems to arise. For example, one can show that for X = Ĝ with the conjugation

action by Ĝ, the ∞-category Perf(X/Ĝ) is not generated under cones and retracts by the image

of Rep(Ĝ). Our guess would be that the condition that ` does not divide the order of π1(Ĝder) is
essential.

On the other hand, we expect that, for example by the use of z-embeddings [Kal14, Section 5],
one can reduce all relevant questions (like the general construction of maps on Bernstein centers
discussed below, or the construction of the spectral action) to the case where ` does not divide the

order of π1(Ĝder). We are not taking this up here.

I.9. Construction of L-parameters

Finally, we can discuss the construction of L-parameters. Assume first for simplicity that Λ =
Q` with fixed

√
q ∈ Q`, and let A ∈ D(BunG,Q`) be any Schur-irreducible object, i.e. End(A) = Q`.

For example, A could correspond to an irreducible smooth representation of G(E), taking the
extension by zero along [∗/G(E)] ↪→ BunG. Then, following V. Lafforgue [Laf18], we can define

excursion operators as follows. For any representation V of (ĜoWE)I over Q`, together with maps

α : Q` → V |
Ĝ
, β : V |

Ĝ
→ Q`

when restricted to the action of the diagonal copy Ĝ ⊂ (ĜoWE)I , and elements γi ∈WE for i ∈ I,
we can define the endomorphism

A
Tα−→ TV (A)

(γi)i∈I−−−−→ TV (A)
Tβ−→ A

of A, defining an element of Q`. With all the formalism in place, the following result is essentially
due to V. Lafforgue [Laf18, Proposition 11.7].

Proposition I.9.1. There is a unique continuous semisimple L-parameter

ϕA : WE → Ĝ(Q`)



I.9. CONSTRUCTION OF L-PARAMETERS 35

such that for all (I, V, α, β, (γi)i∈I) as above, the excursion operator

A
Tα−→ TV (A)

(γi)i∈I−−−−→ TV (A)
Tβ−→ A

is given by multiplication with the scalar

Q`
α−→ V

(ϕA(γi)i∈I)−−−−−−−→ V
β−→ Q`.

Note that in fact, the excursion operators define elements in the Bernstein center of G(E), as
they define endomorphisms of the identity functor. From this perspective, let us make the following
definition.

Definition I.9.2.

(i) The Bernstein center of G(E) is

Z(G(E),Λ) = π0End(idD(G(E),Λ)) = lim←−
K⊂G(E)

Z(Λ[K\G(E)/K])

where K runs over open pro-p subgroups of G(E), and Λ[K\G(E)/K] = EndG(E)(c-Ind
G(E)
K Λ) is

the Hecke algebra of level K.

(ii) The geometric Bernstein center of G is

Zgeom(G,Λ) = π0End(idDlis(BunG,Λ)).

Inside Zgeom(G,Λ), we let Zgeom
Hecke(G,Λ) be the subring of all endomorphisms f : id→ id commuting

with Hecke operators, in the sense that for all V ∈ Rep(ĜI) and A ∈ Dlis(BunG,Λ), one has
TV (f(A)) = f(TV (A)) ∈ End(TV (A)).

(iii) The spectral Bernstein center of G is

Zspec(G,Λ) = O(Z1(WE , Ĝ)Λ)Ĝ,

the ring of global functions on the quotient stack Z1(WE , Ĝ)Λ/Ĝ.

The inclusionD(G(E),Λ) ↪→ Dlis(BunG,Λ) induces a map of algebra Zgeom(G,Λ)→ Z(G(E),Λ).

Now the construction of excursion operators, together with Theorem I.8.2 imply the following.
Here Λ is a Z`[

√
q]-algebra.

Proposition I.9.3. Assume that ` is invertible in Λ, or ` is a very good prime for Ĝ. Then
there is a canonical map

Zspec(G,Λ)→ Zgeom
Hecke(G,Λ) ⊂ Zgeom(G,Λ),

and in particular a map

ΨG : Zspec(G,Λ)→ Z(G(E),Λ).

In fact, even for general `, one gets similar maps, up to replacing Z1(WE , Ĝ)�Ĝ by a universally
homeomorphic scheme. The construction of L-parameters above is then a consequence of this map
on Bernstein centers. The existence of such an integral map is due to Helm–Moss [HM18] in the
case G = GLn.



36 I. INTRODUCTION

Remark I.9.4. In the function-field case, a similar construction has been given by Genestier–
Lafforgue [GL17]. We expect that the two constructions agree, and that proving this is within
reach (as both are based on the cohomology of moduli spaces of shtukas), but have not thought
much about it.

We make the following conjecture regarding independence of `. For its formulation, we note
that there is a natural Q-algebra Zspec(G,Q) whose base change to Q` is Zspec(G,Q`) for any ` 6= p;
in fact, one can take the global functions on the stack of L-parameters that are continuous for the
discrete topology (i.e. trivial on an open subgroup of WE); see also [DHKM20].

Conjecture I.9.5. There is a (necessarily unique) map Zspec(G,Q(
√
q)) → Z(G(E),Q(

√
q))

that after base extension to any Q` for ` 6= p recovers the composite

Zspec(G,Q`(
√
q))→ Zgeom(G,Q`(

√
q))→ Z(G(E),Q`(

√
q)).

This would ensure that the L-parameters we construct are independent of ` in the relevant
sense. Further conjectures about this map and its relation to the stable Bernstein center have
been formulated by Haines [Hai14] (see also [BKV15], [SS13, Section 6]). In particular, it is
conjectured that for G quasisplit, the map ΨG is injective, and its image can be characterized as
those elements of the Bernstein center of G(E) whose corresponding distribution is invariant under
stable conjugation.

One can also construct the map to the Bernstein center in terms of moduli spaces of local
shtukas, as follows. For simplicity, we discuss this again only if Λ is a Z/`n-algebra for some
n. Given I and V as above, we can consider a variant Sht(G,1,V ),K of the spaces Sht(G,b,≤µ•),K
considered above, where the bound is given by the support of V and we fix the element b = 1.
They come with an étale period map

πK : Sht(G,1,V ),K → Grtw
G,

∏n
i=1 Spd Ĕ

and a perverse sheaf SV . When restricted to the geometric diagonal

x : Spd Ê →
n∏
i=1

Spd Ĕ,

they become a corresponding moduli space of shtukas with one leg

f∆
K : Sht(G,1,V |

Ĝ
) → Spd Ê

with the sheaf SV |
Ĝ

. The sheaf SV |
Ĝ

admits maps α (resp. β) from (resp. to) the sheaf i∗Λ, where

i : G(E)/K = Sht(G,1,Q`),K
↪→ Sht(G,1,V |

Ĝ
),K is the subspace of shtukas with no legs. This produces

an endomorphism

c-Ind
G(E)
K Λ

α−→ Rf∆
K!SV |Ĝ = (RfK!SV )x

(γi)i∈I−−−−→ (RfK!SV )x = Rf∆
K!SV |Ĝ

β−→ c-Ind
G(E)
K Λ.

Here, the action of (γi)i∈I is defined by Corollary I.7.3. It follows from the definitions that this

is precisely the previous construction applied to the representation c-Ind
G(E)
K Λ. Note that these

endomorphisms are G(E)-equivariant, so define elements in the Hecke algebra

Λ[K\G(E)/K] = EndG(E)(c-Ind
G(E)
K Λ);
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in fact, these elements are central (as follows by comparison to the previous construction). Taking
the inverse limit over K, one gets the elements in the Bernstein center of G(E).5

Concerning the L-parameters we construct, we can prove the following basic results.

Theorem I.9.6.

(i) If G = T is a torus, then π 7→ ϕπ is the usual Langlands correspondence.

(ii) The correspondence π 7→ ϕπ is compatible with twisting.

(iii) The correspondence π 7→ ϕπ is compatible with central characters.

(iv) The correspondence π 7→ ϕπ is compatible with passage to congradients.

(v) If G′ → G is a map of reductive groups inducing an isomorphism of adjoint groups, π is an
irreducible smooth representation of G(E) and π′ is an irreducible constitutent of π|G′(E), then ϕπ′

is the image of ϕπ under the induced map Ĝ→ Ĝ′.

(vi) If G = G1 × G2 is a product of two groups and π is an irreducible smooth representation of
G(E), then π = π1 � π2 for irreducible smooth representations πi of Gi(E), and ϕπ = ϕπ1 × ϕπ2

under Ĝ = Ĝ1 × Ĝ2.

(vii) If G = ResE′|EG
′ is the Weil restriction of scalars of a reductive group G′ over some finite sep-

arable extension E′|E, so that G(E) = G′(E′), then L-parameters for G|E agree with L-parameters
for G′|E′.
(viii) The correspondence π 7→ ϕπ is compatible with parabolic induction.

(ix) For G = GLn and supercuspidal π, the correspondence π 7→ ϕπ agrees with the usual local
Langlands correspondence [LRS93], [HT01], [Hen00].

Note that parts (viii) and (ix) together say that for GLn and general π, the L-parameter ϕπ is
what is usually called the semisimple L-parameter.

I.10. The spectral action

The categorical structure we have constructed actually produces something better. Let Λ
be the ring of integers in a finite extension of Q`(

√
q). We have the stable ∞-category C =

Dlis(BunG,Λ)ω of compact objects, which is linear over Λ, and functorially in the finite set I an

exact monoidal functor RepΛ(ĜoQ)I → EndΛ(C)BW I
E that is linear over RepΛ(QI); here, EndΛ(C)

denotes the stable ∞-category of Λ-linear endofunctors of C, and we regard it as being enriched in
condensed Λ-modules via regarding C as enriched in relatively discrete condensed Λ-modules. A
first version of the following theorem is due to Nadler–Yun [NY19] in the context of Betti geometric
Langlands, and a more general version appeared in the work of Gaitsgory–Kazhdan–Rozenblyum–
Varshavsky [GKRV19]. Both references, however, effectively assume that G is split, work only
with characteristic 0 coefficients, and work with a discrete group in place of WE . At least the
extension to Z`-coefficients is a nontrivial matter.

5When the second author gave his Berkeley lectures [SW20], this was the construction of excursion operators
that we envisaged. Note that a key step here is that the cohomology of moduli spaces of local shtukas defines a local
system on (Div1)I . It is however not clear how to prove this purely in terms of moduli space of shtukas. In the global
function field case, this result has been obtained by Xue [Xue20].
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Note that Z1(WE , Ĝ) is not quasicompact, as it has infinitely many connected components; it

can be written as the increasing union of open and closed quasicompact subschemes Z1(WE/P, Ĝ).

We say that an action of Perf(Z1(WE , Ĝ)/Ĝ) on a stable ∞-category C is compactly supported if

for all X ∈ C the functor Perf(Z1(WE , Ĝ)/Ĝ) → C (induced by acting on X) factors over some

Perf(Z1(WE/P, Ĝ)/Ĝ).

We stress again that for G = GLn, all ` are very good, and for classical groups, all ` 6= 2 are
very good.

Theorem I.10.1. Assume that ` is a very good prime for Ĝ. Let C be a small Λ-linear stable∞-
category. Then giving, functorially in the finite set I, an exact RepΛ(QI)-linear monoidal functor

Rep(ĜoQ)I → EndΛ(C)BW I
E

is equivalent to giving a compactly supported Λ-linear action of

Perf(Z1(WE , Ĝ)Λ/Ĝ).

Here, given a compactly supported Λ-linear action of Perf(Z1(WE , Ĝ)Λ/Ĝ), one can produce such
an exact RepΛ(QI)-linear monoidal functor

RepΛ(ĜoQ)I → EndΛ(C)BW I
E

functorially in I by composing the exact RepΛ(QI)-linear symmetric monoidal functor

Rep(ĜoQ)I → Perf(Z1(WE , Ĝ)Λ/Ĝ)BW
I
E

with the action of Perf(Z1(WE , Ĝ)Λ/Ĝ).

The same result holds true with Λ a field over Q`, for any prime `.

Here, the exact RepΛ(QI)-linear symmetric monoidal functor

RepΛ(ĜoQ)I → Perf(Z1(WE , Ĝ)Λ/Ĝ)BW
I
E

is induced by tensor products and the exact RepΛ(Q)-linear symmetric monoidal functor

RepΛ(ĜoQ)→ Perf(Z1(WE , Ĝ)Λ/Ĝ)BWE

corresponding to the universal ĜoQ-torsor, with the universal WE-equivariance as parametrized

by Z1(WE , Ĝ)/Ĝ.

The key part of the proof is actually the final part of Theorem I.8.2 above, which effectively

describes Perf(Z1(WE/P, Ĝ)/Ĝ) in terms of generators and relations, as does the present theorem.

In particular, we get an action of Perf(Z1(WE , Ĝ)Λ/Ĝ) on Dlis(BunG,Λ), suitably compatible
with the Hecke action.

With everything in place, it is now obvious that the main conjecture is the following, cf. [AG15],
[Zhu20], [Hel20]:6

6The formulation of the conjecture presumes a spectral action, which we have only constructed under a small
assumption on `; implicit is thus that a spectral action, refining the Hecke action, can be defined for all `.
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Conjecture I.10.2. Assume that G is quasisplit and choose Whittaker data consisting of a
Borel B ⊂ G and generic character ψ : U(E) → O×L of the unipotent radical U ⊂ B, where L/Q`

is some algebraic extension; also fix
√
q ∈ OL. Then there is an equivalence

D(BunG,OL)ω ∼= Db,qc
coh,Nilp(Z1(WE , Ĝ)OL/Ĝ)

of stable ∞-categories equipped with actions of Perf(Z1(WE , Ĝ)OL/Ĝ). Under this correspondence,

the structure sheaf of Z1(WE , Ĝ)OL/Ĝ maps to the Whittaker sheaf, which is the sheaf concentrated

on Bun1
G corresponding to the Whittaker representations c-Ind

G(E)
U(E)ψ.

Here, we use the notion of complexes of coherent sheaves with nilpotent singular support, see

[AG15]. More precisely, Db,qc
coh,Nilp is the ∞-category of bounded complexes with quasicompact

support, coherent cohomology, and nilpotent singular support. With characteristic 0 coefficients,
or at banal primes `, the condition of nilpotent singular support is actually automatic.

If Wψ is the Whittaker sheaf and we note ∗ the spectral action, the conjecture thus says that

Perfqc(Z1(WE , Ĝ)OL/Ĝ) −→ D(BunG,OL)

M 7−→M ∗Wψ

is fully faithful and extends to an equivalence of stable ∞-categories

Db,qc
coh,Nilp(Z1(WE , Ĝ)OL/Ĝ) ∼= D(BunG,OL)ω.

Remark I.10.3. Consider the conjecture with coefficients in Q`. Ideally, the conjecture should
also include a comparison of t-structures. Unfortunately, we did not immediately see a good can-
didate for matching t-structures. Ideally, this would compare the perverse t-structure on the left
(which is well-defined, for abstract reasons, and appears at least implicitly in [CS17], [CS19a];
it seems to be the “correct” t-structure for questions of local-global compatibility) with some
“perverse-coherent” t-structure on the right. If so, the equivalence would also yield a bijection
between irreducible objects in the abelian hearts. On the left-hand side, these irreducible objects
would then be enumerated by pairs (b, πb) of an element b ∈ B(G) and an irreducible smooth
representation πb of Gb(E), by using intermediate extensions. On the right-hand side, they would

likely correspond to a Frobenius-semisimple L-parameter ϕ : WE → Ĝ(Q`) together with an irre-
ducible representation of the centralizer Sϕ of ϕ. Independently of the categorical conjecture, one
can wonder whether these two sets are in fact canonically in bijection.

I.11. The origin of the ideas

Finally, let us give some account of the historical developments of these ideas. Let us first
recall some of our early work in the direction of local Langlands correspondences. Fargues [Far04]
has proved that in the cohomology of basic Rapoport–Zink spaces for GLn (and U(3)) and general
minuscule cocharacters, an appropriate version of the local Langlands correspondence is realized.
Moreover, Fargues [Far08] has proved the duality isomorphism between the Lubin–Tate and Drin-
feld tower. Already at this point Fargues thought of this as an attempt to geometrize the Jacquet-
Langlands correspondence, see [Far08, Theorem 2 of the Préambule]. On the other hand, Scholze
[Sch13] has given a new proof of the local Langlands correspondence for GLn. His results pointed
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to the idea that there ought to exist certain sheaves on the moduli stack of p-divisible groups (which,
when restricted to perfect schemes, can be regarded as a “part” of the stack GLn -Isoc considered
above), giving a certain geometrization of the local Langlands correspondence, then formulated as
a certain character sheaf property (inspired by the character formulas in [Sch13]). Related ob-
servations were also made by Boyer (cf. e.g. [Boy09]) and in unpublished work of Dat. However,
Scholze was always uneasy with the very bad geometric properties of the stack of p-divisible groups.

At this point, both of us had essentially left behind local Langlands to study other questions.
Fargues found the fundamental curve of p-adic Hodge theory in his work with Fontaine [FF18]; an
initial critical motivation for Fargues was a development of “p-adic Hodge theory without Galois
actions”, i.e. for fields like Cp. Indeed, this was required in some of his work on Rapoport–Zink
spaces. On the other hand, Scholze developed perfectoid spaces [Sch12], motivated by the weight-
monodromy conjecture. After his talk at a conference in Princeton in March 2011, Weinstein gave
a talk about his results on the Lubin–Tate tower at infinite level, which made it clear that it is
in fact a perfectoid space. Scholze at the time was already eager to understand the isomorphism
between Lubin–Tate and Drinfeld tower, and it now became clear that it should really be an iso-
morphism of perfectoid spaces. This was worked out in [SW13]. At the time of writing of [SW13],
the perspective of the Fargues–Fontaine curve had already become central, and we realized that
the isomorphism of the towers simply amounts to two dual descriptions of the space of minuscule
modifications OnX → OX( 1

n) on the Fargues–Fontaine curve, depending on which bundle is fixed
and which one is the modification. This was the first clear connection between local Langlands (as
encoded in the cohomology of Lubin–Tate and Drinfeld space) and the theory of vector bundles
on the Fargues–Fontaine curve, which Scholze had however not taken seriously enough. Moreover,
Fargues had noted in [FF18], in the proof of “weakly admissible implies admissible”, that modifica-
tions of vector bundles were playing an important role: the Hodge filtration of a filtered ϕ-module
allows one to define a new vector bundle by modifying the vector bundle associated to an isocrystal
i.e. by “applying a Hecke correspondence” as he said in the talk [Far10] at the conference in honor
of Jean-Marc Fontaine.

This duality perspective also put the two dual period morphisms into the center of attention:
The Hodge–de Rham period mapping, and the Hodge–Tate period mapping (which are swapped
under the duality isomorphism). Thinking about the Lubin–Tate tower as part of the moduli space
of elliptic curves, Scholze then realized that the Hodge–Tate period map even exists globally on the
moduli space of elliptic curves with infinite level (on the level of Berkovich topological spaces, this
had also been observed by Fargues before). Moreover, Scholze realized that the Hodge–Tate period
map gives a substitute for the map from the moduli space of elliptic curves to the moduli space of
p-divisible groups, and that the sheaves he sought for a geometric interpretation of [Sch13] have a
better chance of existing on the target of the Hodge-Tate period map, which is simply a projective
space over Cp; he sketched these ideas in an MSRI talk [Sch14]. (Again, Dat has had similar
ideas.) Eventually, this perspective was used in his work with Caraiani [CS17], [CS19a] to study
torsion in the cohomology of Shimura varieties. The work with Caraiani required the classification
of G-torsors on the Fargues–Fontaine curve, which was proved by Fargues [Far18b].

Increasingly taking the perspective of studying all geometric objects by mapping only perfectoid
spaces in, the idea of diamonds emerged quickly, including the possibility of getting several copies
of SpecQp (the earliest published incarnation of this idea is [Wei17]), and of defining general
moduli spaces of p-adic shtukas. These ideas were laid out in Scholze’s Berkeley course [SW20]
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during the MSRI trimester in Fall 2014. The eventual goal was always to adapt V. Lafforgue’s
work [Laf18] to the case of p-adic fields; the original strategy was to define the desired excursion
operators via the cohomology of moduli spaces of local shtukas. At the beginning of the trimester,
Scholze was still very wary about the geometric Langlands program, as it did not seem to be able
to incorporate the subtle arithmetic properties of supercuspidal representations of p-adic groups.
It was thus a completely unexpected conceptual leap that in fact the best perspective for the whole
subject is to view the local Langlands correspondence as a geometric Langlands correspondence
on the Fargues–Fontaine curve, which Fargues suggested over a coffee break at MSRI (partly
inspired by having thought intensely about the space of G-bundles on the curve in relation to
[Far18b]). Fargues was taking the perspective of Hecke eigensheaves then, seeking to construct for
any (discrete) L-parameter ϕ an associated Hecke eigensheaf Aϕ on BunG with eigenvalue ϕ. This

should define a functor ϕ 7→ Aϕ, and thus carry an action of the centralizer group Sϕ ⊂ Ĝ of ϕ,
and the corresponding Sϕ-isotypic decomposition of Aϕ should realize the internal structures of the
L-packets. Moreover, the Hecke eigensheaf property should imply the Kottwitz conjecture [RV14,
Conjecture 7.3] on the cohomology of local Shimura varieties. This made everything come together.
In particular, it gave a compelling geometric origin for the internal structure of L-packets, and also
matched the recent work of Kaletha [Kal14] who used basic G-isocrystals for the fine study of
L-packets.

Unfortunately, the conjecture was formulated on extremely shaky grounds: It presumed that
one could work with the moduli stack BunG as if it were an object of usual algebraic geometry.
Of course, it also presumed that there is a version of geometric Satake, etc.pp. On the other
hand, we realized that once we could merely formulate Fargues’ conjecture, enough machinery is
available to apply Lafforgue’s ideas [Laf18] to get the “automorphic-to-Galois” direction and define
(semisimple) L-parameters (as Genestier–Lafforgue [GL17] did in equal characteristic).

Since then, it has been a long and very painful process. The first step was to give a good
definition of the category of geometric objects relevant to this picture, i.e. diamonds. In particular,
one had to prove that the relevant affine Grassmannians have this property. This was the main
result of the Berkeley course [SW20]. For the proof, the concept of v-sheaves was introduced,
which has since taken on a life of its own also in algebraic geometry (cf. [BM18]). (Generally,
v-descent turned out to be an extremely powerful proof technique. We use it here to reprove the
basic theorems about the Fargues–Fontaine curve, recovering the main theorems of [FF18] and
[KL15] with little effort.) Next, one had to develop a 6-functor formalism for the étale cohomology
of diamonds, which was achieved in [Sch17a], at least with torsion coefficients. The passage
to Q`-coefficients requires more effort than for schemes, and we will comment on it below. A
central technique of [Sch17a] is pro-étale descent, and more generally v-descent. In fact, virtually
all theorems of [Sch17a] are proved using such descent techniques, essentially reducing them to
profinite collections of geometric points. It came as a surprise to Scholze that this process of
disassembling smooth spaces into profinite sets has any power in proving geometric results, and
this realization gave a big impetus to the development of condensed mathematics (which in turn
fueled back into the present project).

At this point, it became possible to contemplate Fargues’ conjecture. In this respect, the first
result that had to be established is that Dét(BunG,Z/`nZ) is well-behaved, for example satisfies
Verdier biduality for “admissible” sheaves. We found a proof, contingent on the cohomological
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smoothness of a certain “chart” πb :Mb → BunG for BunG near any b ∈ B(G); this was explained

in Scholze’s IHÉS course [Sch17b]. While for G = GLn, the cohomological smoothness of πb could
be proved by a direct attack, in general we could only formulate it as a special case of a general
“Jacobian criterion of smoothness” for spaces parametrizing sections of Z → XS for some smooth
adic space Z over the Fargues–Fontaine curve. Proving this Jacobian criterion required three further
key ideas. The first is the notion of “formal smoothness”, where liftings to infinitesimal thickenings
(that do not exist in perfectoid geometry) are replaced by liftings to actual small open (or étale)
neighborhoods. The resulting notion is closely related to the notion of absolute neighborhood
retracts in classical topology [Bor67]. Through some actual “analysis”, it is not hard to prove
that the space of sections is formally smooth. Unfortunately, this does not seem to be enough to
guarantee cohomological smoothness. The first issue is that formal smoothness does not imply any
finite-dimensionality. Here, the second key idea comes in, which is Bhatt’s realization [BS19] that
Zariski closed immersions are strongly Zariski closed in the sense of [Sch15, Section II.2] (contrary
to a claim made by Scholze there). At this point, it would be enough to show that spaces that
are formally smooth and Zariski closed in a finite-dimensional perfectoid ball are cohomologically
smooth. Unfortunately, despite many tries, we are still unable to prove that even the different
notions of dimension of [Sch17a] (Krull dimension, dim. trg, cohomological dimension) agree for
such spaces. This may well be the most important foundational open problem in the theory:

Problem I.11.1. Let X ⊂ B̃nC be Zariski closed, where B̃n is a perfectoid ball. Show that X has
a well-behaved dimension.

In fact, we find it crazy that we are able to prove all sorts of nontrivial geometric results without
ever being able to unambiguously talk about dimensions!

Our attacks on this failing, a third key idea comes in: Namely, the notion of universally locally
acyclic sheaves, that we also developed independently in order to prove geometric Satake. It is
easy to see that formal smoothness plus finite-dimensionality implies that the constant sheaf is
universally locally acyclic; it remains to see that the dualizing sheaf is invertible. This can be
proved by a deformation to the normal cone (using universal local acyclicity to spread the result on
the normal cone to a neighborhood). We found this argument at a conference in Luminy in July
2018; an inspiration to use a deformation to the normal cone may have been Clausen’s use in the
proof of the “linearization hypothesis”.

These results are enough to show that Dét(BunG,Z/`nZ) is well-behaved, and are already
enough to prove new finiteness results on the cohomology of Rapoport–Zink spaces (with torsion
coefficients). Our next emphasis was on geometric Satake. This essentially required the theory
of universally locally acyclic sheaves, and a version of Braden’s hyperbolic localization theorem
[Bra03]. We were able to find substitutes for both. Regarding universally locally acyclic sheaves,
we were able to prove analogues of most basic theorems, however we failed to prove that in general
they are preserved under relative Verdier duality (even while we could check it by hand in all
relevant cases). Lu–Zheng [LZ20] then found a new characterization of universally locally acyclic
sheaves, making stability under relative Verdier duality immediate. Their arguments immediately
transport to our setting. Eventually we used a slightly different characterization, but in spirit the
argument is still the same as theirs. Regarding hyperbolic localization, we could not follow Braden’s
arguments that rely on nice coordinate choices. Instead, we reduce all arguments to the following
(simple to prove) principle: If X is a (partially proper) space with a Gm-action such that [X/Gm]
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is qcqs, and A ∈ Dét([X/Gm],Λ), then the partially compactly supported cohomology of X with
coefficients in A vanishes. The idea here is that the Gm-action contracts X towards one of the ends.
Afterwards, the proof of geometric Satake largely follows the lines of [MV07], although there are
certain improvements in the argument; in particular, we give a simple reduction to groups of rank
1, and pin the isomorphism with the dual group.

Using these results, one has all ingredients in place, but only working with torsion coefficients.
One can formally pass to `-adically complete sheaves, but this leads to studying representations on
Banach Q`-vector spaces, which is very unnatural. During this time, Clausen came to Bonn, and
Clausen and Scholze started to develop condensed mathematics, and the theory of solid modules
[CS]. They realized that one could also define solid Z`-sheaves on schemes or diamonds, and that
this makes it possible to study representations on discrete Q`- or Q`-vector spaces, as desired.
We take this up here, and first define solid Z`-sheaves on any small v-stack, together with some
5-functor formalism (involving relative homology in place of compactly supported cohomology;
its right adjoint is then pullback, so there are only 5 functors), and afterwards pass to a certain
subcategory of “lisse-étale” sheaves to define the desired category Dlis(BunG,Q`), with exactly the
desired properties.

In the meantime, Nadler–Yun [NY19] and Gaitsgory–Kazhdan–Rozenblyum–Varshavsky [GKRV19]
showed that the categorical structures we have now constructed — D(BunG,Q`) together with the
action of Hecke operators — formally induce an action of the category of perfect complexes on
the stack of L-parameters on D(BunG,Q`), giving a categorical upgrade to the construction of
L-parameters based on excursion operators. (We were aware of some weak form of this, when
restricted to elliptic parameters; this was discussed in the last lecture of [Sch17b], based on some
unpublished results of Anschütz.) Here, we make the effort of proving a result with Z`-coefficients,
at least under a minor assumption on `.
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I.13. Notation

Throughout most of this paper, E denotes a nonarchimedean local field with residue field Fq
of characteristic p > 0, and we fix an algebraic closure k = Fq of Fq. Then Ĕ is the completed

unramified extension of E with residue field k. We also fix a separable closure E of E, with absolute
Galois group Γ = Gal(E|E), containing the Weil group WE , inertia subgroup IE , and wild inertia
PE . The letter P usually denotes open subgroups of PE .

The group G is usually a reductive group over E; reductive groups are always assumed to be
connected.

For any topological space X, we denote by X the sheaf taking any S (in the relevant test
category, usually a perfectoid space) to the continuous maps from |S| to X. This is in the spirit
of the passage from topological spaces to condensed sets, see [CS]. We make occasional use of the
condensed language, but do not make use of any nontrivial results from [CS]. In particular, our
discussion of solid `-adic sheaves is self-contained.

We will occasionally use the “animated” terminology, see [CS], [ČS19b]. In particular, we use
the term anima for what is variously called spaces in [Lur09],∞-groupoids, or homotopy types, and
for any ring A, the ∞-category of animated A-algebras is the ∞-category obtained from simplicial
A-algebras by inverting weak equivalences. Thus, animated A-algebras are freely generated under
sifted colimits by polynomial algebras A[X1, . . . , Xn].

If C is an (∞-)category equipped with an action of a group G, we write CBG for the (∞-)category
of G-equivariant objects in C. Note that the data here is really a functor BG→ Cat∞, and CBG is
by definition the limit of this diagram. (It would be more customary to write CG, but this leads to
inconsistent notation.)



CHAPTER II

The Fargues–Fontaine curve and vector bundles

The goal of this chapter is to define the Fargues–Fontaine curve, in its various incarnations,
and the category of vector bundles on the Fargues–Fontaine curve. Throughout this chapter, we
fix a nonarchimedean local field E with residue field Fq of characteristic p. We let OE ⊂ E be the
ring of integers, and π a uniformizing element in E.

For any perfectoid space S over Fq, we introduce a curve YS , to be thought of as the product
S ×SpaFq SpaOE , together with an open subset YS ⊂ YS given by the locus where π 6= 0. This

carries a Frobenius ϕ induced from the Frobenius on S, and XS is the quotient YS/ϕ
Z.

The first results concern the Fargues–Fontaine curve XC = XS when S = SpaC for some
complete algebraically closed nonarchimedean field C|Fq. We define a notion of classical points of
XC in that case; they form a subset of |XC |. The basic finiteness properties of XC are summarized
in the following result.

Theorem II.0.1 (Proposition II.1.11, Corollary II.1.12, Definition/Proposition II.1.22). The
adic space YC is locally the adic spectrum Spa(B,B+) where B is a principal ideal domain; the
classical points of Spa(B,B+) ⊂ YC are in bijection with the maximal ideals of B. For each classical
point x ∈ YC , the residue field of x is an untilt C] of C over OE, and this induces a bijection of
the classical points of YC with untilts C] of C over OE. A similar result holds true for YC ⊂ YC ,
and the quotient XC = YC/ϕ

Z.

In the equal characteristic case, this is an immediate consequence of YC = DC and classi-
cal results in rigid-analytic geometry. In the p-adic case, we use tilting to reduce to the equal
characteristic case. More precisely, if E is p-adic and E∞ is the completion of E(π1/p∞), then

YC ×SpaOE SpaOE∞ is perfectoid, with tilt given by a perfectoid open unit disc D̃C . The corre-

sponding map |D̃C | → |YC | induces a surjective map on classical points, see Proposition II.1.8. At
one key turn, in order to understand Zariski closed subsets of YC , we use the result that Zariski

closed subspaces are invariant under tilting, to reduce to D̃C . More precisely, we recall the following
result.

Proposition II.0.2 ([Sch15, Section II.2], [BS19], [Sch17a, Definition 5.7, Theorem 5.8]).

Let S = Spa(R,R+) be an affinoid perfectoid space with tilt S[ = Spa(R[, R[+). Then a closed

subspace Z ⊂ |S| is the vanishing locus of an ideal I ⊂ R if and only if Z ⊂ |S| ∼= |S[| is the

vanishing locus of an ideal J ⊂ R[. In that case, there is a universal perfectoid space SZ → S
such that |SZ | → |S| factors over Z, and SZ = Spa(T, T+) is affinoid perfectoid with |SZ | → Z a
homeomorphism, R → T surjective, R+ → T+ almost surjective, and T+ is the integral closure of
R+ in T .

45
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A key result is the classification of vector bundles.

Theorem II.0.3 (Theorem II.2.14). The functor from IsocE to vector bundles on XC induces
a bijection on isomorphism classes. In particular, there is a unique stable vector bundle OXC (λ) of
any slope λ ∈ Q, and any vector bundle E can be written as a direct sum of stable bundles.

We give a new self-contained proof of the classification theorem, making critical use of the
v-descent results for vector bundles obtained in [Sch17a] and [SW20], and basic results on the
geometry of Banach–Colmez spaces established here.

Allowing general S ∈ PerfFq , we define the moduli space of degree 1 Cartier divisors as Div1 =

Spd Ĕ/ϕZ. Given a map S → Div1, one can define an associated closed Cartier divisor DS ⊂ XS ;
locally, this is given by an untilt DS = S] ⊂ XS of S over E, and this embeds Div1 into the
space of closed Cartier divisors on XS . Another important result is the following ampleness result,
cf. [KL15, Proposition 6.2.4], which implies that one can define an algebraic version of the curve,
admitting the same theory of vector bundles.

Theorem II.0.4 (Theorem II.2.6, Proposition II.2.7, Proposition II.2.9). Assume that S ∈ Perf
is affinoid. For any vector bundle E on XS, the twist E(n) is globally generated and has no higher
cohomology for all n� 0. Defining the graded ring

P =
⊕
n≥0

H0(XS ,OXS (n))

and the scheme Xalg
S = ProjP , there is a natural map of locally ringed spaces XS → Xalg

S , pullback
along which defines an equivalence of categories of vector bundles, preserving cohomology.

If S = SpaC for some complete algebraically closed nonarchimedean field C, then Xalg
C is a

regular noetherian scheme of Krull dimension 1, locally the spectrum of a principal ideal domain,
and its closed points are in bijection with the classical points of XC .

We also need to understand families of vector bundles, i.e. vector bundles E on XS for general
S. Here, the main result is the following, which is originally due to Kedlaya–Liu [KL15].

Theorem II.0.5 (Theorem II.2.19, Corollary II.2.20). Let S ∈ Perf and let E be a vector
bundle on XS. Then the function taking a point s ∈ S to the Harder–Narasimhan polygon of
E|Xs defines a semicontinuous function on S. If it is constant, then E admits a global Harder–
Narasimhan stratification, and pro-étale locally on S one can find an isomorphism with a direct
sum of OXS (λ)’s.

In particular, if E is everywhere semistable of slope 0, then E is pro-étale locally trivial, and the
category of such E is equivalent to the category of pro-étale E-local systems on S.

The key to proving this theorem is the construction of certain global sections of E . To achieve
this, we use v-descent techniques, and an analysis of the spaces of global sections of E ; these are
known as Banach–Colmez spaces, and were first introduced (in slightly different terms) in [Col02].

Definition II.0.6. Let E be a vector bundle on XS. The Banach–Colmez space BC(E) associated
with E is the locally spatial diamond over S whose T -valued points, for T ∈ PerfS, are given by

BC(E)(T ) = H0(XT , E|XT ).
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Similarly, if E is everywhere of only negative Harder–Narasimhan slopes, the negative Banach–
Colmez space BC(E [1]) is the locally spatial diamond over S whose T -valued points are

BC(E [1])(T ) = H1(XT , E|XT ).

Implicit here is that this functor actually defines a locally spatial diamond. For this, we calculate
some key examples of Banach–Colmez spaces. For example, if E = OXS (λ) with 0 < λ ≤ [E : Qp]
(resp. all positive λ if E is of equal characteristic), then BC(E) is representable by a perfectoid open
unit disc (of dimension given by the numerator of λ). A special case of this is the identification
of BC(OXS (1)) with the universal cover of a Lubin–Tate formal group law, yielding a very close
relation between Lubin–Tate theory, and thus local class field theory, and the Fargues–Fontaine
curve. This case actually plays a special role in getting some of the theory started, and we recall it
explicitly in Section II.2.1. On the other hand, for larger λ, or negative λ, Banach–Colmez spaces
are more exotic objects; for example, the negative Banach–Colmez space

BC(OXC (−1)[1]) ∼= (A1
C])
♦/E

is the quotient of the affine line by the translation action of E ⊂ A1
C]

.

A key result is Proposition II.2.16, stating in particular that projectivized Banach–Colmez
spaces

(BC(E) \ {0})/E×

are proper — they are the relevant analogues of “families of projective spaces over S”. In particular,
their image in S is a closed subset, and if the image is all of S, then we can find a nowhere vanishing
section of E after a v-cover, as then the projectivized Banach–Colmez space is a v-cover of S.

II.1. The Fargues–Fontaine curve

II.1.1. The curve YC . Recall that for any perfect Fq-algebra R, there is a unique π-adically

complete flat OE-algebra R̃ such that R̃ = R/π. There is a unique multiplicative lift [·] : R → R̃
of the identity R→ R, called the Teichmüller lift. Explicitly, one can take

R̃ = WOE (R)

in terms of the ramified Witt vectors.

The construction of the Fargues–Fontaine curve is based on this construction on the level of
perfectoid spaces S over Fq. Its construction is done in three steps. First, one constructs a curve YS ,
an adic space over OE , which carries a Frobenius action ϕ. Passing to the locus YS = YS \{π = 0},
i.e. the base change to E, the action of ϕ is free and totally discontinuous, so that one can pass to
the quotient XS = YS/ϕ

Z, which will be the Fargues–Fontaine curve.

We start by constructing YS in the affinoid case. More precisely, if S = Spa(R,R+) is an
affinoid perfectoid space over Fq, and $ ∈ R+ is a pseudouniformizer (i.e. a topologically nilpotent
unit of R), we let

YS = SpaWOE (R+) \ V ([$]).

This does not depend on the choice of $, as for any choice of $,$′ ∈ R, one has $|$′n, $′|$n for
some n > 0. The q-th power Frobenius of R+ induces an automorphism ϕ of YS . To construct the
Fargues–Fontaine curve, we will eventually remove V (π) from YS and quotient by ϕ, but for now
we recall some properties of YS .
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Proposition II.1.1. The above defines an analytic adic space YS over OE. Letting E∞ be the
completion of E(π1/p∞), the base change

YS ×SpaOE SpaOE∞
is a perfectoid space, with tilt given by

S ×Fq SpaFq[[t1/p
∞

]] = DS,perf ,

a perfectoid open unit disc over S.

Proof. One can cover YS by the subsets YS,[0,n] := {|π|n ≤ |[$]| 6= 0} ⊂ YS , which are

rational subsets of SpaWOE (R+), where n > 0 is some integer that we assume to be a power of p
for simplicity. Then

YS,[0,n] = Spa(BS,[0,n], B
+
S,[0,n])

where

BS,[0,n] = WOE (R+)〈 π
n

[$]
〉[ 1

[$] ]

and B+
S,[0,n] ⊂ BS,[0,n] is the integral closure of WOE (R+)〈 πn[$]〉. To see that YS is an adic space

(i.e. the structure presheaf is a sheaf) and YS ×SpaOE SpaOE∞ is perfectoid, it is enough to

prove that BS,[0,n]⊗̂OEOE∞ is a perfectoid Tate algebra. Indeed, the algebra BS,[0,n] splits off

BS,[0,n]⊗̂OEOE∞ as a direct factor as topological BS,[0,n]-module, and hence the sheaf property for
perfectoid spaces gives the result for YS,[0,n] and thus all of YS (cf. the sousperfectoid property of

[HK20], [SW20, Section 6.3]). Using the Frobenius automorphism of (R,R+), one can in fact
assume that n = 1.

Let us abbreviate

A = BS,[0,1]⊗̂OEOE∞
and A+ ⊂ A the integral closure of B+

S,[0,1]⊗̂OEOE∞ . In particular

A+
0 = (WOE (R+)⊗̂OEOE∞)[( π

[$])
1/p∞ ]∧[$] ⊂ A

+,

and A = A+
0 [ 1

[$] ]. Note that

A+
0 /[$] = (R+/$ ⊗Fq OE∞/π)[t

1/p∞

1 ]/(π1/pm − [$]1/p
m
t
1/pm

1 ) ∼= R+/$[t
1/p∞

1 ].

This implies already that A+
0 is integral perfectoid by [BMS18, Lemma 3.10 (ii)], and thus nec-

essarily (cf. [BMS18, Lemma 3.21]) A+
0 → A+ is an almost isomorphism and A+

0 [ 1
[$] ]
∼= A is

perfectoid. Moreover, one can see that the tilt of A is given by R〈t1/p
∞

1 〉, where t]1 = π
[$] , which

corresponds to the subset

{|t| ≤ |$| 6= 0} ⊂ S ×Fq SpaFq[[t1/p
∞

]] = DS,perf . �

Proposition II.1.2. For any perfectoid space T over Fq, giving an untilt T ] of T together with

a map T ] → YS of analytic adic spaces is equivalent to giving an untilt T ] together with a map
T ] → SpaOE, and a map T → S. In other words, there is a natural isomorphism

Y♦S ∼= SpdOE × S.
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Proof. Changing notation, we need to see that for any perfectoid space T over OE , giving
a map T → YS is equivalent to giving a map T [ → S. Let T = Spa(A,A+). Giving a map
T → YS is equivalent to giving a map WOE (R+) → A+ such that the image of [$] in A is
invertible. By the universal property of WOE (R+) in case R+ is perfect, this is equivalent to giving

a map R+ → (A+)[ such that the image of $ in A[ is invertible. But this is precisely a map
T = Spa(A,A+)→ S = Spa(R,R+). �

In particular, there is a natural map

|YS | ∼= |Y♦S | ∼= |(SpaOE)♦ × S| → |S|.

The following proposition ensures that we may glue YS for general S, i.e. for any perfectoid
space S there is an analytic adic space YS equipped with an isomorphism

Y♦S ∼= SpdOE × S

(and in particular a map |YS | → |S|) such that for U = Spa(R,R+) ⊂ S an affinoid subset, the
corresponding pullback of YS is given by YU .

Proposition II.1.3. If S′ ⊂ S is an affinoid subset, then YS′ → YS is an open immersion,
with

|YS′ | //

��

|YS |

��
S′ // S

cartesian.

Proof. Let Z ⊂ YS be the open subset corresponding to |YS | ×|S| |S′| ⊂ |YS |. Then by
functoriality of the constructions, we get a natural map YS′ → Z. To see that it is an isomorphism,
we can check after base change to OE∞ (as the maps on structure sheaves are naturally split
injective). The base change of YS′ and Z become perfectoid, and hence it suffices to see that one
gets an isomorphism after passing to diamonds, where it follows from Proposition II.1.2. �

Next, we recall the “sections of YS → S”.

Proposition II.1.4 ([SW20, Proposition 11.3.1]). Let S be a perfectoid space over Fq. The
following objects are in natural bijection.

(i) Sections of Y♦S → S;

(ii) Morphisms S → SpdOE;

(iii) Untilts S] over OE of S.

Moreover, given an untilt S] over OE of S, there is a natural closed immersion of adic spaces

S] ↪→ YS

that presents S] as a closed Cartier divisor in YS.
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Proof. The equivalence of (i), (ii) and (iii) is a direct consequence of Proposition II.1.2. Thus,
let S] be an untilt of S over OE . We may work locally, so assume S = Spa(R,R+) is affinoid. Then
S] = Spa(R], R]+) is affinoid perfectoid as well, and

R]+ = WOE (R+)/ξ

for some nonzerodivisor ξ ∈ WOE (R+) that can be chosen to be of the form π − a[$] for some
a ∈ WOE (R+) and suitable topologically nilpotent $ ∈ R (choose $ ∈ R+ a pseudouniformizing
element such that $]|π, and write π = $]θ(a) for some a). To see that S] defines a closed Cartier
divisor in YS , that is to say the sequence

0→ OYS
ξ−→ OYS → i∗OS] → 0

is exact with i : S] ↪→ YS , we need to see that for any open affinoid U = Spa(A,A+) ⊂ YS with
affinoid perfectoid pullback V = Spa(B,B+) ⊂ S], the sequence

0→ A
ξ−→ A→ B → 0

is exact. To see this, we are free to localize near S] = V (ξ) ⊂ YS . In particular, replacing S by

V [, we can assume that V = S]. In that case, any neighborhood of S] = V (ξ) in YS contains
{|ξ| ≤ |[$]|n} for some n > 0, so we can assume that U is of this form.

Endow A with the spectral norm, where we normalize the norm on each completed residue field
of YS by |[$]| = 1

q . We claim that with this choice of norm, one has

|ξa| ≥ q−n|a|

for all a ∈ A. In particular, this implies that ξ : A → A is injective, and has closed image (as the
preimage of any Cauchy sequence in the image is a Cauchy image). On the other hand, R] is the
separated completion of A/ξ, so B = A/ξ.

To verify the claimed inequality, it is enough to see that the norm of |a| is equal to the supremum
norm over {|ξ| = |[$|n}. In fact, it is enough to consider the points in the Shilov boundary, i.e. those
points Spa(C,OC)→ U that admit a specialization Spa(C,C+)→ YS whose image is not contained
in U ; any such is necessarily contained in {|ξ = [$]n}. This will in fact hold for all functions on
U ×SpaOE SpaOE∞ , for which the claim reduces to the tilt, which is an affinoid subset of DS,perf .
By approximation, it then reduces to the case of affinoid subsets of DS , where it is well-known that
the maximum is taken on the Shilov boundary. (Note that this question immediately reduces to
the case that S is a geometric point.) �

Remark II.1.5. The preceding Cartier divisor satisfies the stronger property of being a “relative
Cartier divisor” in the sense that for all s ∈ S its pullback to YSpa(K(s),K(s)+) is a Cartier divisor.

Now let us analyze the case S = SpaC for some complete algebraically closed nonarchimedean
field over Fq.

Example II.1.6. Assume that E = Fq((t)) is of equal characteristic. Then YC = DC is an open
unit disc over C, with coordinate t. In particular, inside |YC |, we have the subset of classical points
|YC |cl ⊂ |YC |, which can be identified as

|YC |cl = {x ∈ C | |x| < 1}.
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Note that these classical points are in bijection with maps OE → C (over Fq), i.e. with “untilts of
C over OE”.

With suitable modifications, the same picture exists also when E is of mixed characteristic.

Definition/Proposition II.1.7. Any untilt C] of C over OE defines a closed Cartier divisor
SpaC] ↪→ YS, and in particular a closed point of |YC |. This induces an injection from the set of
such untilts to |YC |.

The set of classical points |YC |cl ⊂ |YC | is defined to be the set of such points.

Proof. We have seen that any untilt C] defines such a map SpaC] ↪→ YS . As it is a closed
Cartier divisor, the corresponding point is closed in |YC |. One can recover C] as the completed
residue field at the point, together with the map WOE (OC)→ OC] , which induces the isomorphism

OC ∼= O[C] and thus C ∼= (C])[, giving the untilt structure on C]; this shows that the map is
injective. �

Recall that YC is preperfectoid. In fact, if one picks a uniformizer π ∈ E and lets E∞ be the
completion of E(π1/p∞), then YC ×OE OE∞ is perfectoid, and its tilt is given by

SpaC × SpaO[E∞ ∼= SpaC × SpaFq[[t1/p
∞

]].

Thus, we get a map

|DC | = |SpaC × SpaFq[[t]]| ∼= |SpaC × SpaFq[[t1/p
∞

]]| ∼= |YC ×OE OE∞ | → |YC |.

Proposition II.1.8. Under this map, the classical points |DC |cl = {x ∈ C | |x| < 1} ⊂ |DC |
are exactly the preimage of the classical points |YC |cl ⊂ |YC |.

Unraveling the definitions, one sees that the map

{x ∈ C | |x| < 1} = |DC |cl → |YC |cl

sends any x ∈ C with |x| < 1 to the closed point defined by the ideal (π − [x]). In particular, the
proposition shows that any classical point of YC can be written in this form.

Proof. This is clear as classical points are defined in terms of maps of diamonds, which are
compatible with this tilting construction on topological spaces. �

The formation of classical points is also compatible with changing C in the following sense.

Proposition II.1.9. Let C ′|C be an extension of complete algebraically closed nonarchimedean
fields over Fq, inducing the map YC′ → YC . A point x ∈ |YC | is classical if and only if its preimage
in |YC′ | is a classical point. Moreover, if x ∈ |YC | is a rank-1-point that is not classical, then there
is some C ′|C such that the preimage of x contains a nonempty open subset of |YC′ |.

In other words, one can recognize classical points as those points that actually stay points
after any base change; all other rank 1 points actually contain whole open subsets after some base
change.
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Proof. It is clear that if x is classical, then its preimage is a classical point. Conversely,
if x ∈ |YC | is a rank 1 point, and S = SpdK(x), the point x is given by a morphism S →
SpaC × SpdOE . If the preimage of x is a classical point, the induced morphism S → SpaC
becomes an isomorphism after pullback via SpaC ′ → SpaC. Since S is a v-sheaf ([Sch17a,
Proposition 11.9]) and SpaC ′ → SpaC a v-cover, the morphism S → SpaC is an isomorphism,
and thus x is a classical point.

Now assume that x is nonclassical rank-1-point; we want to find C ′|C such that the preimage
of x contains an open subset of |YC′ |. By Proposition II.1.8, it is enough to prove the similar result
for DC , using that |DC′ | → |YC′ | is open.1 Thus, assume x ∈ |DC | is a non-classical point. Let C ′

be a completed algebraic closure of the corresponding residue field. Then the preimage of x in |DC′ |
has a tautological section x̃ ∈ DC′(C ′) which is a classical point, and the preimage of x contains
a small disc B(x̃, r) ⊂ DC′ for some r > 0. Indeed, this follows from the description of the rank 1
points of DC as being either the Gauss norm for some disc B(x, r0) ⊂ DC of radius r0 > 0, or the
infimum of such over a decreasing sequence of balls (but with radii not converging to zero). See
Lemma II.1.10. �

Lemma II.1.10. Let x ∈ DC(C), ρ ∈ (0, 1], and xρ ∈ |DC | be the Gauss norm with radius ρ
centered at x. The preimage of xρ in |DC(xρ)| contains the open disk with radius ρ centered at
xρ ∈ DC(xρ)(C(xρ)).

Proof. We can suppose x = 0. The point xρ is given by the morphism C〈T 〉 → C(xρ) that
sends T to t. Let y ∈ |DC(xρ)|. This corresponds to a morphism C(xρ)〈T 〉 → C(xρ)(y). Let us note
u ∈ C(xρ)(y) the image of T via the preceding map. Suppose y lies in the open disk with radius ρ
centered at xρ. This means |u − t| < ρ = |t|. Let us remark that this implies that for any n ≥ 1,
|un − tn| < ρn. For f =

∑
n≥0 anT ∈ C〈T 〉, one then has

|
∑
n≥0

an(un − tn)| < sup
n≥0
|an|ρn = |

∑
n≥0

ant
n|.

We deduce that
|
∑
n≥0

anu
n| = |

∑
n≥0

ant
n| = |f(xρ)|. �

There is in fact another characterization of the classical points in terms of maximal ideals.

Proposition II.1.11. Let U = Spa(B,B+) ⊂ YC be an affinoid subset. Then for any maximal
ideal m ⊂ B, the quotient B/m is a nonarchimedean field, inducing an injection Spm(B) ↪→ |U |.
This gives a bijection between Spm(B) and |U |cl := |U | ∩ |YC |cl ⊂ |YC |.

Proof. First, if x ∈ |U |cl, then it corresponds to a closed Cartier divisor SpaC] ↪→ U ⊂ YC ,
and thus defines a maximal ideal of B, yielding an injection |U |cl ↪→ Spm(B). We need to see that
this is a bijection.

Note that using the tilting map |DC | → |YC |, one sees that the preimage of U in |DC | has
only finitely many connected components (any quasicompact open subset of |DC | has finitely many

1Any quasicompact open of |DC′ | is the base change of a quasicompact open of |YC′ ×SpaOE SpaOE′ | for a finite
extension E′|E. Passing to the Galois hull of E′ and taking the orbit of the open subset under the Galois group, it
then follows from the map being a quotient map, as any map of analytic adic spaces.
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connected components); we can thus assume that U is connected. In that case, we claim that any
nonzero element f ∈ B vanishes only at classical points of |U |. By Proposition II.1.9, it suffices to
see that for any nonempty open subset U ′ ⊂ U , the map O(U)→ O(U ′) is injective. In fact, if V (f)
contains a nonclassical point, it also contains a nonclassical rank 1 point as V (f) is generalizing,
then after base changing to some C ′|C, V (f) contains an open subset U ′, and this is impossible if
O(U) ↪→ O(U ′). For this it suffices to prove that O(V ) ↪→ O(V ′) where V is a connected component
of U⊗̂OEOE∞ , and V ′ the intersection of U ′⊗̂OEOE∞ with this connected component. Now for
any g ∈ O(V ) \ {0}, V (g) 6= V , as perfectoid spaces are uniform (and hence vanishing at all points
implies vanishing). We thus have to prove that for any Zariski closed subset Z ( V , V ′ 6⊂ Z.

By Proposition II.0.2, it suffices to prove the similar property for open subsets V ′ ⊂ V ⊂ DC,perf ,
with V connected. But then V ′ = W ′perf and V = Wperf for W ′ ⊂W ⊂ DC , and O(V )→ O(V ′) is

topologically free (with basis ti, i ∈ [0, 1) ∩ Z[p−1]) over the corresponding map O(W ) → O(W ′)
of classical Tate algebras over C, for which injectivity is classical. �

The previous proposition implies that, once U is connected, the rings B are principal ideal
domains (cf. [Ked16]).

Corollary II.1.12. Let U = Spa(B,B+) ⊂ YC be an affinoid subset. Then U has finitely many
connected components. Assuming that U is connected, the ring B is a principal ideal domain.

Proof. We have already seen in the preceding proof that U has finitely many connected
components. Moreover, each maximal ideal of B is principal, as it comes from a closed Cartier
divisor on U . Now take any nonzero f ∈ B. We have seen that the vanishing locus of f is contained
in |U |cl, and it is also closed in |U |. It it thus a spectral space with no nontrivial specializations,
and therefore a profinite set. We claim that it is in fact discrete. For this, let x ∈ V (f) be any
point. We get a generator ξx ∈ B for the corresponding maximal ideal. We claim that there is
some n ≥ 1 such that f = ξnxg where g does not vanish at x. Assume otherwise. Note that the
spectral norm on U is given by the supremum over finitely many points, the Shilov boundary of U
(cf. proof of Proposition II.1.4). We may normalize ξx so that its norm at all of these finitely many
points is ≥ 1. Then for any n, if f = ξnxgn, one has ||gn|| ≤ ||f ||. But inside the open neighborhood
Ux = {|ξx| ≤ |[$]|} of x, this implies that ||f ||Ux ≤ |[$]|n||f || for all n, and thus ||f ||Ux = 0 as
n→∞. Thus, f vanishes on all of Ux, which is a contradiction.

By the above, we can write f = ξnxg where g does not vanish at x. But then g does not vanish
in a neighborhood of x, and therefore x ∈ V (f) is an isolated point, and hence V (f) is profinite and
discrete, and thus finite. Enumerating these points x1, . . . , xm, we can thus write f = ξn1

x1
· · · ξnmxm g

where g does not vanish at x1, . . . , xm, and thus vanishes nowhere, and hence is a unit. This finishes
the proof. �

Remark II.1.13. The main new ingredient compared to [Ked16] or [FF18, Theorem 2.5.1]
that allows us to shorten the proof is Proposition II.0.2, i.e. the use of the fact (proved in [BS19])
that “Zariski closed implies strongly Zariski closed” in the terminology of [Sch15, Section II.2].

Later (cf. Proposition IV.7.3), we will also need the following lemma about non-classical points
of YC = YC ×SpaOE SpaE.
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Lemma II.1.14. There is a point x ∈ |YC |, with completed residue field K(x), such that the

induced map Gal(K(x)|K(x)) → IE is surjective, where IE is the inertia subgroup of the absolute
Galois group of E.

Note that a priori we have a map Gal(K(x)|K(x)) → Gal(E|E), but it is clear that its image

is contained in IE , as K(x) contains Ĕ.

Proof. In fact, we can be explicit: Looking at the surjection

|D∗C | → |YC |
from the tilting construction, the image of any Gaußpoint (corresponding to a disc of radius r,
0 < r < 1, around the origin) will have the desired property. This follows from the observation

that this locus of Gaußpoints lifts uniquely to |YC ×Spa Ĕ SpaE′| for any finite extension E′|Ĕ. In

fact, this cover admits a similar surjection from a punctured open unit disc over C, and there is
again one Gaußpoint for each radius (i.e. the set of Gaußpoints maps isomorphically to (0,∞) via
rad : |YC | → (0,∞)). �

II.1.2. The Fargues–Fontaine curve. Now we can define the Fargues–Fontaine curve.

Definition II.1.15. For any perfectoid space S over Fq, the relative Fargues–Fontaine curve is

XS = YS/ϕ
Z

where

YS = YS ×SpaOE SpaE = YS \ V (π),

which for affinoid S = Spa(R,R+) with pseudouniformizer $ is given by

YS = SpaWOE (R+) \ V (π[$]).

To see that this is well-formed, we note the following proposition.

Proposition II.1.16. The action of ϕ on YS is free and totally discontinuous. In fact, if
S = Spa(R,R+) is affinoid and $ ∈ R is a pseudouniformizer, one can define a map

rad : |YS | −→ (0,∞)

taking any point x ∈ YS with rank-1-generalization x̃ to log |[$](x̃)|/ log |π(x̃)|. This factorizes
through the Berkovich space quotient of |YS | and satisfies rad ◦ ϕ = q · rad.

For any interval I = [a, b] ⊂ (0,∞) with rational ends (possibly with a = b), there is the open
subset

YS,I = {|π|b ≤ |[$]| ≤ |π|a} ⊂ rad−1(I) ⊂ YS
which is in fact a rational open subset of SpaWOE (R+) and thus affinoid,

YS,I = Spa(BS,I , B
+
S,I),

and one can form XS as the quotient of YS,[1,q] via the identification ϕ : YS,[1,1]
∼= YS,[q,q]. In

particular, XS is qcqs in case S is affinoid.

Proof. This follows directly from the definitions. �
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In terms of the preceding radius function, the end 0 corresponds to the boundary divisor (π),
and ∞ to the boundary divisor ([$]).

For each s ∈ S corresponding to a map Spa(K(s),K(s)+)→ S, functoriality defines a morphism
XK(s),K(s)+ → XS . We way think of XS as the collection of curves (XK(s),K(s)+)s∈S , the one
defined and studied in [FF18], merged in a “family of curves”. Although XS does not sit over S,
the absolute Frobenius ϕ× ϕ of S × Spd(E) acts trivially on the topological space and one has

|XS | ∼= |X♦S | ∼= |S × Spd(E)/ϕZ × id| ∼= |S × Spd(E)/id× ϕZ| −→ |S|.
Thus the topological space |XS | sits over |S|, and for all S the map |XS | → |S| is qcqs. Here, we
used the following identification of the diamond.

Proposition II.1.17. There is a natural isomorphism

Y ♦S
∼= S × Spd(E),

descending to an isomorphism

X♦S
∼= (S × Spd(E))/ϕZ × id.

Proof. This is immediate from Proposition II.1.2. �

Moreover, we have the following version of Proposition II.1.4.

Proposition II.1.18. The following objects are naturally in bijection.

(i) Sections of Y ♦S → S;

(ii) Maps S → Spd(E);

(iii) Untilts S] over E of S.

Given such a datum, in particular an untilt S] over E of S, there is a natural closed immersion
S] ↪→ YS presenting S] as a closed Cartier divisor in YS. The composite map S] → YS → XS is
still a closed Cartier divisor, and depends only on the composite S → Spd(E) → Spd(E)/ϕZ. In
this way, any map S → Spd(E)/ϕZ defines a closed Cartier divisor D ⊂ XS; this gives an injection
of Spd(E)/ϕZ into the space of closed Cartier divisors on XS.

Proof. This is immediate from Proposition II.1.4. �

Definition II.1.19. A closed Cartier divisor of degree 1 on XS is a closed Cartier divisor
D ⊂ XS that arises from a map S → Spd(E)/ϕZ. Equivalently, it arises locally on S from an
untilt S] over E of S.

In particular, we see that the moduli space Div1 of degree 1 closed Cartier divisors is given by

Div1 = Spd(E)/ϕZ.

Note that something strange is happening in the formalism here: Usually the curve itself would
represent the moduli space of degree 1 Cartier divisors!

Remark II.1.20. In [Far18a, Définition 2.6] Fargues gives a definition of a Cartier divisor of
degree 1 on XS equivalent to the preceding one, similar to the definition of a relative Cartier divisor
in classical algebraic geometry.
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Proposition II.1.21. The map Div1 → ∗ is proper, representable in spatial diamonds, and
cohomologically smooth.

Proof. First, Spd(E) → ∗ is representable in locally spatial diamonds and cohomologically
smooth by [Sch17a, Proposition 24.5] (for E = Qp, which formally implies the case of E finite over
Qp, and the equal characteristic case is handled in the proof). As | Spd(E) × S| ∼= |YS | → |S|, we
see that ϕZ acts totally discontinuously with quotient |Spd(E)/ϕZ × S| ∼= |XS | → |S| being qcqs
in case |S| is qcqs; thus, Spd(E)/ϕZ → ∗ is representable in spatial diamonds, in particular qcqs.
Then being proper follows from the valuative criterion [Sch17a, Proposition 18.3]. �

In particular, the map

|XS | = |Div1 × S| −→ |S|
is open and closed. We can thus picture XS as being “a proper and smooth family over S”.

Further motivation for Definition II.1.19 is given by the following.

Definition/Proposition II.1.22. The classical points of XC are |XC |cl := |YC |cl/ϕZ ⊂
|XC | = |YC |/ϕZ. They are in bijection with (Spd(E)/ϕZ)(C) = Div1(C), i.e. are given untilts
of C over E up to Frobenius, or by degree 1 closed Cartier divisors on XC . For any affinoid open
subset U = Spa(B,B+) ⊂ XC , the maximal ideals of B are in bijection with |U |cl = |U | ∩ |XC |cl.
Any such U has only finitely many connected components, and if U is connected, then B is a
principal ideal domain.

Proof. This follows immediately from Proposition II.1.11 and Corollary II.1.12 if U lifts to
YC . In general, YC → XC is locally split, so the result is true locally on U ; and then it easily follows
by gluing in general. �

II.2. Vector bundles on the Fargues–Fontaine curve

Let us recall a few basic facts about the cohomology of vector bundles. Suppose S = Spa(R,R+)
is affinoid perfectoid. Then YS is ”Stein”, one has YS =

⋃
I⊂(0,∞) Y(R,R+),I where

(i) as before I is a compact interval with rational ends

(ii) Y(R,R+),I is affinoid sous-perfectoid

(iii) for I1 ⊂ I2, the restriction morphism O(Y(R,R+),I2)→ O(Y(R,R+),I1) has dense image.

Let F be a vector bundle on YS . Point (2) implies that H i(YS,I ,F|Y(R,R+),I
) = 0 when i > 0. Point

(3) implies that R1 lim←−I Γ(Y(R,R+),I ,F) = 0 ([Gro61, 0.13.2.4]). We thus have H i(YS ,F) = 0 when
i > 0.

Thus, if E is a vector bundle on XS , one has

RΓ(XS , E) =
[
H0(YS , E|YS )

Id−ϕ−−−−→ H0(YS , E|YS )].

In particular, this vanishes in degree > 1.

Moreover, one has the following important (cohomological) descent result.
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Proposition II.2.1. Let S be a perfectoid space over Fq and E a vector bundle on XS. The
functor taking any T ∈ PerfS to

RΓ(XT , E|XT )

is a v-sheaf of complexes. In fact, the functor taking any T ∈ PerfS to H0(YT , E|YT ) is a v-sheaf,
whose cohomology vanishes in case T is affinoid.

Moreover, sending S to the groupoid of vector bundles on XS defines a v-stack.

Proof. By the displayed formula for RΓ(XS , E) as Frobenius fixed points, it suffices to prove
the result about YT . We can assume that S = Spa(R,R+) is affinoid, pick a pseudouniformizer
$ ∈ R, and one can further reduce to the similar claim for YT,I for any compact interval I with

rational ends. We need to see that for any v-cover T = Spa(R′, R′+), the corresponding Čech
complex

0→ O(YS,I)→ O(YT,I)→ O(YT×ST,I)→ . . .

of E-Banach spaces is exact. This can be checked after taking a completed tensor product with
E∞ = E(π1/p∞)∧. In that case, all algebras become perfectoid, and YT,I ×E E∞ → YS,I ×E E∞ is a
v-cover of affinoid perfectoid spaces, so the result follows from [Sch17a, Theorem 8.7, Proposition
8.8].

Similarly, one proves v-descent for the groupoid of vector bundles, cf. [SW20, Lemma 17.1.8,
Proposition 19.5.3]. �

If [E1 → E0] is a complex of vector bundles on XS sitting in homological degrees [0, 1], such that
H0(XT , E1|XT ) = 0 for all T ∈ PerfS , we let

BC([E1 → E0]) : T 7→ H0(XT , [E1 → E0]|XT )

be the corresponding v-sheaf on PerfS . We refer to this as the Banach–Colmez space associated
with [E1 → E0]. We will usually apply this only when either of E1 and E0 is zero.

Let us also recall the basic examples of vector bundles. Already here it is useful to fix an
algebraically closed field k|Fq, e.g. k = Fq. Let Ĕ = WOE (k)[ 1

π ], the complete unramified extension
of E with residue field k. Recall that, functorially in S ∈ Perfk, there is a natural exact ⊗-functor

Isock −→ Bun(XS)

(D,ϕ) 7−→ E(D,ϕ)

from the category of isocrystals (of a finite-dimensional Ĕ-vector space D equipped with a σ-linear

automorphism ϕ : D
∼−→ D) to the category of vector bundles on XS , defined via descending

D⊗Ĕ OYS to XS via ϕ⊗ϕ. We denote by OXS (n) the image of (Ĕ, π−nσ) (note the change of sign
— the functor E reverses slopes); more generally, if (Dλ, ϕλ) is the simple isocrystal of slope λ ∈ Q
in the Dieudonné–Manin classification, we let OXS (−λ) = E(Dλ, ϕλ).

II.2.1. Lubin–Tate formal groups. The claim of this paper is that the Fargues–Fontaine
curve enables a geometrization of the local Langlands correspondence. As a warm-up, let us recall
the relation between OXS (1) and local class field theory in the form of Lubin–Tate theory.
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Up to isomorphism, there is a unique 1-dimensional formal group G over OĔ with action by
OE , such that the two induced actions on Lie G coincide; this is “the” Lubin–Tate formal group
G = GLT of E. Fixing a uniformizer π ∈ E, we normalize this as follows. First, any Lubin–
Tate formal group law over OE is the unique (up to unique isomorphism) lift of a 1-dimensional
formal group over k whose Lie algebra has the correct OE-action. Now, if E is p-adic then Gk is
classified by Dieudonné theory by a finite projective WOE (k)-module M equipped with a σ-linear
isomorphism F : M [ 1

π ] ∼= M [ 1
π ] such that M ⊂ F (M) ⊂ 1

πM .2 Here, we take M = WOE (k) with

F = 1
πσ. One can similarly define G in equal characteristic, but actually we will explain a different

way to pin down the choice just below; under our normalization, G is already defined over OE .

After passing to the generic fibre, GE is isomorphic to the additive group Ga, compatibly with
the OE-action, and one can choose a coordinate on G ∼= Spf OE [[X]] so that explicitly, the logarithm
map is given by

logG : GE → Ga,E : X 7→ X + 1
πX

q + 1
π2X

q2
+ . . .+ 1

πnX
qn + . . . .

Regarding the convergence of logG, we note that in fact it defines a map of rigid-analytic varieties
(i.e. adic spaces locally of finite type over E)

logG : Gad
E
∼= DE → Gad

a,E

from the open unit disc

Gad
E
∼= SpaOE [[X]]×SpaOE SpaE

to the adic space corresponding to Ga. From the formula, one sees that in small enough discs
it defines an isomorphism, and via rescaling by powers of π (which on the level of Gad

E defines

finite étale covers of degree q, while it is an isomorphism on Gad
a,E), one sees that one has an exact

sequence

0→ Gad
E [π∞]→ Gad

E → Gad
a,E → 0

on the big étale site of adic spaces over SpaE, where Gad
E [π∞] ⊂ Gad

E is the torsion subgroup.
This is, in fact, the generic fibre of G[π∞] =

⋃
nG[πn] over SpaOE , and each G[πn] = SpaAn is

represented by some finite OE-algebra An of degree qn. Inductively, G[πn−1] ⊂ G[πn] giving a map
An → An−1; after inverting π, this is split, and the other factor is a totally ramified extension
En|E. Then

Gad
E =

⋃
n

SpaAn[ 1
π ] =

⊔
n

SpaEn.

We also need the “universal cover” of G, defined as

G̃ = lim←−
×π

G ∼= SpfOE [[X̃1/p∞ ]],

where the inverse limit is over the multiplication by π maps. The isomorphism with SpfOE [[X̃1/p∞ ]]
is evident modulo π, but as this gives a perfect algebra, we see that in fact the isomorphism lifts

uniquely to OE . Explicitly, the coordinate X̃ is given by

X̃ = lim
n→∞

Xqn

n

2As in [SW20, p. 99], we renormalize usual covariant Dieudonné theory for p-divisible groups by dividing F by
p; and then in the case of π-divisible OE-modules as here, we base change along W (k)⊗Zp OE →WOE (k).
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where Xn is the coordinate on the n-th copy of G in the formula G̃ = lim←−×π G; in fact, X̃ ≡ Xqn
n

modulo πn. In particular, the logarithm map

logG : G̃E → GE → Ga,E

is given by the series ∑
i∈Z

πiX̃q−i .

Note that for any π-adically complete OE-algebra A, one has

G̃(A) ∼= G̃(A/π) = HomOE (E/OE , G(A/π))[ 1
π ].

Indeed, the first equality follows from OE [[X̃1/p∞ ]] being relatively perfect over OE , and the second
equality by noting that any element of G(A/π) is πn-torsion for some n. A different description

based on G̃ = Spf OE [[X̃1/p∞ ]] is

G̃(A) = lim←−
x7→xp

A◦◦ = A[,◦◦ ⊂ A[,

the subset of topologically nilpotent elements of the tilt.

This is related to the line bundle OXS (1) as follows.

Proposition II.2.2. Let S = Spa(R,R+) be an affinoid perfectoid space over Fq and let S] =

Spa(R], R]+) be an untilt of S over E, giving rise to the closed immersion S] ↪→ XS. Let OXS (1)
be the line bundle on XS corresponding to the isocrystal (E, π−1). Then the map

G̃(R]+) ∼= R◦◦ → H0(YS ,OYS ) : X 7→
∑
i∈Z

πi[Xq−i ]

defines a natural isomorphism

G̃(R]+) ∼= H0(XS ,OXS (1)) = H0(YS ,OYS )ϕ=π.

Under this isomorphism, the map

H0(XS ,OXS (1))→ H0(S],OS]) = R]

of evaluation at S] is given by the logarithm map

logG : G̃(R]+)→ G(R]+)→ R].

Proof. The compatibility with the logarithm map is clear from the explicit formulas. Assume
first that E is of characteristic p. Then H0(YS ,OYS ), where Y = D∗S is a punctured open unit
disc over S, can be explicitly understood as certain power series

∑
i∈Z riπ

i with coefficients ri ∈ R
(subject to convergence conditions as i→ ±∞). Then

H0(XS ,OXS (1)) = H0(YS ,OYS )ϕ=π

amounts to those series such that ri = rqi+1 for all i ∈ Z. Thus, all ri are determined by r0, which
in turn can be any topologically nilpotent element of R. This gives the desired isomorphism

H0(XS ,OXS (1)) ∼= R◦◦ = G̃(R+) = G̃(R]+)

(as G̃ = SpaOE [[X̃1/p∞ ]] and R] = R).
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If E is p-adic, then we argue as follows. First, as in the proof of Proposition II.2.5 below, one
can rewrite H0(XS ,OXS (1)) as Bϕ=π

R,[1,∞] where

BR,[1,∞] = O(Y[1,∞]), for Y[1,∞] = {|[$]| ≤ |π| 6= 0} ⊂ SpaWOE (R+).

By the contracting property of Frobenius, one can also replace BR,[1,∞] with the crystalline period

ring B+
crys of R]+/π here, and then [SW13, Theorem A] gives the desired

Bϕ=π
R,[1,∞] = HomOE (E/OE , G(R]+/π))[ 1

π ] = G̃(R]+/π) = G̃(R]+).

That this agrees with the explicit formula follows from [SW13, Lemma 3.5.1]. �

Recall also that the field E∞ obtained as the completion of the union of all En is perfectoid — in

fact, one has a closed immersion Spf OE∞ ↪→ G̃ = Spf OE [[X̃1/p∞ ]], which induces an isomorphism

Spf O[E∞ ∼= Spf Fq[[X1/p∞ ]]. Over E∞, we have an isomorphism OE ∼= (TπG)(OE∞) ⊂ G̃(OE∞). By

the proposition, if S] lives over E∞, we get a nonzero section of OXS (1), vanishing at S] ⊂ XS .

Proposition II.2.3. For any perfectoid space S with untilt S] over E∞, the above construction
construction defines an exact sequence

0→ OXS → OXS (1)→ OS] → 0

of OXS -modules.

Proof. The above constructions show that one has a map OXS → I(1) where I ⊂ OXS is
the ideal sheaf of S], which by Proposition II.1.18 is a line bundle. To see that this map is an
isomorphism, it suffices to check on geometric points, so we can assume that S = SpaC for some
complete algebraically closed extension C of Fq. We have now fixed some nonzero global section
of OXS (1), which by the above corresponds to some nonzero topologically nilpotent X = $ ∈ C,
explicitly given by

f =
∑
i∈Z

πi[Xq−i ] ∈ H0(YC ,OYC )ϕ=π.

This is the base change of the function∑
i∈Z

πiXq−i ∈ O((SpaOE [[X1/p∞ ]])E \ V (X)),

so it is enough to determine the vanishing locus of this function. But note that under the identifi-

cation G̃ = Spf OE [[X1/p∞ ]], this is precisely the logarithm function

logG : G̃ad
E \ {0} → Gad

a,E ;

thus, it is enough to determine the vanishing locus of the logarithm function. But this is precisely⊔
n

SpaE∞ ⊂ G̃ad
E \ {0},

with a simple zero at each of these points. This gives exactly the claimed statement (the Z many
copies are translates under π, which are also translates under ϕ as ϕ(f) = πf). �
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Corollary II.2.4 ([Far18a, Proposition 2.12]). There is a well-defined map BC(O(1))\{0} →
Div1 sending a nonzero section f ∈ H0(XS ,OXS (1)) to the closed Cartier divisor given by V (f).
This descends to an isomorphism

(BC(O(1)) \ {0})/E× ∼= Div1.

Proof. Note that BC(O(1)) ∼= SpdFq[[X1/p∞ ]] by Proposition II.2.2, and hence BC(O(1)) \
{0} ∼= SpaFq((X1/p∞)) is representable by a perfectoid space. In fact, it is naturally isomorphic

to SpdE∞ = SpaE[∞, and the previous proposition ensures that the map to Div1 is well-defined
and corresponds to the projection SpdE∞ → SpdE → SpdE/ϕZ = Div1. Here, the first map
SpdE∞ → SpdE is a quotient under O×E , and the second map SpdE → Spd /ϕZ then corresponds

to the quotient by πZ, as ϕ = π on BC(O(1)). �

In particular, if one works on Perfk, then Div1 = Spd Ĕ/ϕZ, whose πét
1 is given by the absolute

Galois group of E. On the other hand, the preceding gives a canonical E×-torsor, giving a natural
map from the absolute Galois group of E to the profinite completion of E×. By comparison with
Lubin–Tate theory, this is the usual Artin reciprocity map, see [Far18a, Section 2.3] for more
details.

II.2.2. Absolute Banach–Colmez spaces. In this section, we analyze the Banach–Colmez
spaces in the case E = E(D) for some isocrystal D = (D,ϕ). We then sometimes write BC(D) and
BC(D[1]) for the corresponding functors on Perfk; or also BC(O(λ)), BC(O(λ)[1]) for λ ∈ Q when
D = D−λ. These are in fact already defined for all S ∈ PerfFq .

Proposition II.2.5. Let λ ∈ Q.

(i) If λ < 0, then H0(XS ,OXS (λ)) = 0 for all S ∈ PerfFq . Moreover, the projection from

BC(O(λ)[1]) : S 7→ H1(XS ,OXS (λ))

to the point ∗ is relatively representable in locally spatial diamonds, partially proper, and cohomo-
logically smooth.

(ii) For λ = 0, the map
E → BC(O)

is an isomorphism of pro-étale sheaves, and the pro-étale sheafification of S 7→ H1(XS ,OXS ) van-
ishes. In particular, for all S one gets an isomorphism

RΓproét(S,E)→ RΓ(XS ,OXS ).

(iii) For λ > 0, one has H1(XS ,OXS (λ)) = 0 for all affinoid S ∈ PerfFq , and the projection from

BC(O(λ)) : S 7→ H0(XS ,OXS (λ))

to the point ∗ is relatively representable in locally spatial diamonds, partially proper, and cohomo-
logically smooth.

(iv) If 0 < λ ≤ [E : Qp] (resp. for all positive λ if E is of equal characteristic), there is an
isomorphism

BC(O(λ)) ∼= Spd k[[x
1/p∞

1 , . . . , x1/p∞
r ]]

where λ = r/s with coprime integers r, s > 0.
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Proof. For all statements, we can reduce to the case λ = n ∈ Z by replacing E by its
unramified extension of degree s. Regarding the vanishing of H1(XS ,OXS (n)) for n > 0 and
S = Spa(R,R+) affinoid, pick a pseudouniformizer $ ∈ R. In terms of the presentation of XS as
gluing YS,[1,q] along ϕ : YS,[1,1]

∼= YS,[q,q], it suffices to see that

ϕ− πn : BR,[1,q] → BR,[1,1]

is surjective. Any element of BR,[1,1] can be written as the sum of an element of BR,[0,1][
1
π ] and an

element of [$]BR,[1,∞], corresponding to the affinoid subsets

YS,[0,1] = {|π| ≤ |[$]| 6= 0} ⊂ SpaWOE (R+)

resp.
YS,[1,∞] = {|[$]| ≤ |π| 6= 0} ⊂ SpaWOE (R+).

If f ∈ BR,[0,1], then the series

g = ϕ−1(f) + πnϕ−2(f) + π2nϕ−3(f) + . . .

converges in BR,[0,q] and thus in BR,[1,q], and f = ϕ(g) − πng. The same then applies to elements

of BR,[0,1][
1
π ]. On the other hand, if f ∈ [$]BR,[1,∞], then the series

g = −π−nf − ϕ(f)− πnϕ2(f)− . . .
converges in BR,[1,q], and f = ϕ(g)− πng.

In fact, the same arguments prove that the map

[BR,[1,∞]
ϕ−πn−−−→ BR,[1,∞]]→ [BR,[1,q]

ϕ=πn−−−→ BR,[1,1]]

is a quasi-isomorphism. Indeed, we have a short exact sequence

0→WOE (R+)[ 1
π ]→ BR,[1,∞] ⊕BR,[0,q][ 1

π ]→ BR,[1,q] → 0

(obtained from sheafyness of WOE (R+)[ 1
π ] when endowed with the π-adic topology on WOE (R+)),

and similarly
0→WOE (R+)[ 1

π ]→ BR,[1,∞] ⊕BR,[0,1][
1
π ]→ BR,[1,1] → 0.

Therefore, it suffices to see that the maps

BR,[0,q][
1
π ]

ϕ−πn−−−→ BR,[0,1][
1
π ]

and

WOE (R+)[ 1
π ]

ϕ−πn−−−→WOE (R+)[ 1
π ]

are isomorphisms. In both cases, this follows from convergence of ϕ−1 + πnϕ−2 + π2nϕ−3 + . . . on
these algebras, giving an explicit inverse.

For part (iv), note that in equal characteristic one can describe O(YS,I) = BR,I , for S =
Spa(R,R+) affinoid, explicitly as power series

∑
i∈Z riπ

i with ri ∈ R, satisfying some convergence
conditions as i→ ±∞. Taking the part where ϕ = πn, we require ϕ(ri) = ri+n, and we see that we
can freely choose r1, . . . , rn. The required convergence holds precisely when all ri are topologically
nilpotent, giving the isomorphism in that case. If E is p-adic, we can reduce to E = Qp (but now
λ rational, 0 < λ ≤ 1), taking a pushforward of the sheaf along XS,E = XS,Qp ×Qp E → XS,Qp .

In that case, the result follows from the equality H0(XS ,OXS (λ)) = Bϕr=ps

R,[1,∞] proved above, and

[SW13, Theorem A, Proposition 3.1.3 (iii)].
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In particular, for affinoid S we can choose a fibrewise nonzero map OXS → OXS (1), by taking

a map S → BC(O(1)) ∼= SpdFq[[x1/p∞ ]] sending x to a pseudouniformizer. By Proposition II.2.3,
for any n ∈ Z, we get an exact sequence

0→ OXS (n)→ OXS (n+ 1)→ OS] → 0.

Applying this for n > 0, we get inductively an exact sequence

0→ BC(O(n))|S → BC(O(n+ 1))|S → (A1
S])
♦ → 0.

Starting with the base case n = 1 already handled, this allows one to prove part (iii) by induction,
using [Sch17a, Proposition 23.13].

Now for part (ii), we use the sequence for n = 0. In that case, for S = Spa(R,R+), we get an
exact sequence

0→ H0(XS ,OXS )→ H0(XS ,OXS (1))→ R] → H1(XS ,OXS )→ 0

where the map in the middle can be identified with the logarithm map of the universal cover of the
Lubin–Tate formal group. This is pro-étale locally surjective, with kernel given by E, proving (ii).

Finally, for part (i), we first treat the case n = −1, where we get an exact sequence

0→ E → (A1
S])
♦ → BC(O(−1)[1])|S → 0

showing in particular the vanishing of H0(XS ,OXS (−1)) = 0. As E → (A1
S]

)♦ is a closed immer-
sion, the result follows from [Sch17a, Proposition 24.2]. Now for n < −1, the result follows by
induction from the sequence

0→ (A1
S])
♦ → BC(O(−n)[1])|S → BC(O(−n+ 1)[1])|S → 0

and [Sch17a, Proposition 23.13]. �

II.2.3. The algebraic curve. We recall the following important ampleness result.

Theorem II.2.6 ([KL15, Proposition 6.2.4]). Let S = Spa(R,R+) be an affinoid perfectoid
space over Fq and let E be any vector bundle on XS. Then there is an integer n0 such that for all
n ≥ n0, the vector bundle E(n) is globally generated, i.e. there is a surjective map

OmXS → E(n)

for some m ≥ 0, and moreover H1(XS , E(n)) = 0.

Proof. Pick a pseudouniformizer $ ∈ R, thus defining a radius function on YS . Write XS

as the quotient of YS,[1,q] along the isomorphism ϕ : YS,[1,1]
∼= YS,[q,q]. Correspondingly, E is given

by some finite projective BR,[1,q]-module M[1,q], with base changes M[1,1] and M[q,q] to BR,[1,1] and
BR,[q,q], and an isomorphism ϕM : M[q,q]

∼= M[1,1], linear over ϕ : BR,[q,q] ∼= BR,[1,1].

For convenience, we first reduce to the case that M[1,q] is free (cf. [KL15, Corollary 1.5.3]).
Indeed, pick a surjection ψ : F[1,q] := Bm

R,[1,q] →M[1,q]. We want to endow the source with a similar
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ϕ-module structure ϕF : F[q,q]
∼= F[1,1] (with obvious notation), making ψ equivariant. For this, we

would like to find a lift

F[q,q]
ϕF //

ψ

��

F[1,1]

ψ

��
M[q,q]

ϕM // M[1,1]

such that ϕF is an isomorphism. Let N[1,q] = ker(ψ), with base change N[q,q], N[1,1]. Choosing a
splitting F[1,q]

∼= M[1,q] ⊕N[1,q], we see that we could find ϕF if there is an isomorphism ϕ∗N[q,q]
∼=

N[1,1] of BR,[1,1]-modules. But in the Grothendieck group of BR,[1,1]-modules, both are given by
[Bm

R,[1,1]]−[M[1,1]]. Thus, after possibly adding a free module (i.e. increasingm), they are isomorphic,

giving the claim.

Thus, we can assume that M[1,q]
∼= Bm

R,[1,q] is a free BR,[1,q]-module, and then

ϕM = A−1ϕ

for some matrix A ∈ GLm(BR,[1,1]). Actually, repeating the above argument starting with the
presentation of XS as the quotient of YS,[q−1,q] via identifying YS,[q−1,1] with YS,[1,q], one can ensure
that

A ∈ GLm(BR,[q−1,1]).

Twisting by OXS (n) amounts to replacing A by Aπn. Let us choose integers N and N ′ such that

• the matrix A has entries in πNWOE (R+)〈( [$]
π )±1〉

• the matrix A−1 has entries in π−N
′
WOE (R+)〈 π[$] ,

[$]1/q

π 〉.

By twisting, we can replace N and N ′ by N + n and N ′ + n; we can thus arrange that qN > N ′,
N > 0.

Fix some rational r such that 1 < r ≤ q. We will now show that there are m elements

v1, . . . , vm ∈ (Bm
R,[1,q])

ϕ=A = H0(XS , E)

that form a basis of Bm
R,[r,q]. Repeating the above analysis for different strips (and different choices

of pseudouniformizers $ ∈ R to get overlapping strips), we can then get global generation of E .

In fact, we will choose vi to be of the form [$]Mei − v′i, for some positive integer M chosen
later, where ei ∈ Bm

R,[1,q] is the i-th basis vector and v′i is such that

||v′i||BR,[r,q] ≤ ||[$]M+1||BR,[r,q] = q−M−1.

Here, we endow all BR,I with the spectral norm, normalizing the norms on all completed residue

fields via ||[$]|| = 1
q . These v1, . . . , vm restrict to a basis of Bm

R,[r,q] since the base change matrix

from the canonical basis is given by an element of

[$M ](Id + [$]Mm(B◦R,[r,q])) ⊂ GLm(BR,[r,q]).

In order to find the v′i, it suffices to prove that the map

ϕ−A : Bm
R,[1,q] → Bm

R,[1,1]
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is surjective (yielding H1(XS , E) = 0), in the following quantitative way: If, for some positive
integer M chosen later,

w ∈ πMWOE (R+)〈( [$]
π )±1〉m ⊂ Bm

R,[1,1],

then there is some
v ∈ Bm

R,[1,q]

such that

(II.2.1) (ϕ−A)v = w and ||v||BR,[r,q] ≤ q
−M−1.

Indeed, we can then apply this to wi = (ϕ − A)([$]Mei) (since N > 0 and thus A has entries in

WOE (R+)〈( [$]
π )±1〉), getting some v′i with wi = (ϕ−A)(v′i) and

||v′i||BR,[r,q] ≤ q
−M−1,

as desired.

Thus, take any

w ∈ πMWOE (R+)〈( [$]
π )±1〉m.

We can write

w = w1 + w2 where w1 ∈ [$]N−1πM−N+1WOE (R+)〈 π[$]〉
m, w2 ∈ [$]NπM−NWOE (R+)〈 [$]

π 〉
m.

Let

v = ϕ−1(w1)−A−1w2 ∈ Bm
R,[1,q] so that w′ := w − ϕ(v) +Av = ϕ(A−1w2) +Aϕ−1(w1).

Note that (as N > 0)

Aϕ−1(w1) ∈ πN [$](N−1)/qπM−N+1WOE (R+)〈 π
[$]1/q

〉m ⊂ πM+1WOE (R+)〈( [$]
π )±1〉m

and also (as qN > N ′)

ϕ(A−1w2) ∈ π−N ′ [$]NqπMWOE (R+)〈 [$]q

π 〉
m ⊂ πM+1WOE (R+)〈( [$]

π )±1〉m

so that

w′ ∈ πM+1WOE (R+)〈( [$]

π
)±1〉m.

If one can thus prove the required bounds on v, this process will converge and prove the desired
statement. It remains to estimate v. On the one hand, its norm is clearly bounded in terms of the
norm of w (as both w1 and w2 are, and ϕ−1 and A−1 are bounded operators), and thus, since when
one iterates w goes to zero, v goes to zero, and the process converges by summing to obtain some
v such that (ϕ−A)v = w. But we need an improved estimate over BR,[r,q] to obtain (II.2.1). Note

that the norm of ϕ−1(w1) is bounded above by the norm of [$](N−1)/qπM−N+1, which in BR,[r,q] is

given by q−(N−1)/q−rM+rN−r. This is at most q−M−1 once M is large enough. On the other hand,

w2 ∈ πMWOE (R+)〈 [$]
π 〉

m and so the norm of A−1w2 is bounded by the norm of π−N
′
πM , which in

BR,[r,q] is given by qrN
′−rM . Again, this is at most q−M−1 once M is large enough. Thus, taking

M large enough (depending only on N , N ′ and r > 1), the process above converges, giving the
desired result. �

We have the following general GAGA theorem. Its proof is an axiomatization of [KL15, The-
orem 6.3.9].
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Proposition II.2.7 (GAGA). Let (X,OX) be a locally ringed spectral space equipped with a
line bundle OX(1) such that for any vector bundle E on X, there is some n0 such that for all
n ≥ n0, the bundle E(n) is globally generated. Moreover, assume that for i > 0, the cohomology
group H i(X, E(n)) = 0 vanishes for all sufficiently large n.

Let P =
⊕

n≥0H
0(X,OX(n)) be the graded ring and Xalg = Proj(P ). There is a natural

map (X,OX) → Xalg of locally ringed topological spaces, and pullback along this map induces an
equivalence of categories between vector bundles on Xalg and vector bundles on (X,OX). Moreover,
for any vector bundle Ealg on Xalg with pullback E to X, the map

H i(Xalg, Ealg)→ H i(X, E)

is an isomorphism for all i ≥ 0.

Recall that for any graded ring P =
⊕

n≥0 Pn, one can define a separated scheme Proj(P )

by gluing SpecP [f−1]0 for all f ∈ Pn, n > 0, where P [f−1]0 = lim−→i
f−iPin is the degree 0 part

of P [f−1]. In our situation, if n is large enough so that OX(n) is globally generated, then it
is enough to consider only f ∈ Pn for this given n, and in fact only a finite set of them (as
X is quasicompact); in particular, Proj(P ) is quasicompact. Moreover, one sees that there is a
tautological line bundle OProj(P )(n) for all sufficiently large n, compatible with tensor products;
thus, there is also a tautological line bundle OProj(P )(1), which is an ample line bundle on Proj(P ).
The pullback of OProj(P )(1) is then given by OX(1).

Proof. The construction of the map f : (X,OX)→ Xalg is formal (and does not rely on any
assumptions): if g ∈ Pn, then on the non-vanishing locus U = D(g) ⊂ X, there is an isomorphism

g|U : OU
∼−→ OU (n). Now, for x = a

gk
∈ P [g−1]0, g−k|U ◦ a ∈ O(U), and this defines a morphism of

rings P [g−1]0 → O(U). One deduces a morphism of locally ringed spaces U → D+(g), and those
glue when g varies to a morphism of locally ringed spaces (X,OX)→ Xalg.

We consider the functor taking any vector bundle E on X to the quasicoherent OXalg -module E
associated to the graded P -module

⊕
n≥0H

0(X, E(n)). This functor is exact as H1(X, E(n)) = 0

for all sufficiently large n, and it commutes with twisting by O(1). We claim that it takes values
in vector bundles on Xalg. To see this, take a surjection OmX → E(n) with kernel F , again a vector
bundle. The map OmX → E(n) splits after twisting, i.e. for any f ∈ Pn′ with n′ large enough, there
is a map E(n − n′) → OmX such that E(n − n′) → OmX → E(n) is multiplication by f . Indeed,
the obstruction to such a splitting is a class in H1(X,Hom(E ,F)(n′)) which vanishes for n′ large
enough. This implies that E is a vector bundle on SpecP [f−1]0 for any such f , and these cover
Xalg.

There is a natural map f∗E → E , and the preceding arguments show that this is an isomorphism
(on the preimage of any SpecP [f−1]0, and thus globally). It now remains to show that if Ealg is
any vector bundle on Xalg, the map

H i(Xalg, Ealg)→ H i(X, E)

is an isomorphism for all i ≥ 0. By ampleness of OXalg(1), there is some surjection OXalg(−n)m →
(Ealg)∨, with kernel a vector bundle F . Dualizing, we get an injection E → OXalg(n)m with cokernel
a vector bundle. This already gives injectivity on H0 by reduction to OXalg(n) where it is clear.
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Applying this injectivity also for F , we then get bijectivity on H0. This already implies that we
get an equivalence of categories (exact in both directions). Finally, picking f1, . . . , fm ∈ Pn so
that the SpecP [f−1

i ]0 cover Xalg, we can look at the corresponding Čech complex. Each term is a
filtered colimit of global sections of vector bundles E(n) along multiplication by products of powers
of fi’s. This reduces the assertion to the case of H0 and the vanishing of H i(X, E(n)) for n large
enough. �

Remark II.2.8. One can check that Xalg is up to canonical isomorphism independent of the
choice of a line bundle OX(1) satisfying the preceding properties.

In particular, for any affinoid perfectoid space S over Fq, we can define the algebraic curve

Xalg
S = Proj

⊕
n≥0

H0(XS ,OXS (n)).

There is a well-defined map XS → Xalg
S of locally ringed spectral spaces, pullback along which

defines an equivalence of categories of vector bundles, and is compatible with cohomology.

Notably, this connects the present discussion to the original definition of the Fargues–Fontaine
curve as given in [FF18], where the case S = Spa(F,OF ) is considered, for a perfectoid field F of
characteristic p. We will restrict ourselves, as above, to the case that F = C is algebraically closed.

Proposition II.2.9. Let C be a complete algebraically closed nonarchimedean field over Fq.
Then Xalg

C is a connected regular noetherian scheme of Krull dimension 1, and the map |XC | →
|Xalg

C | induces a bijection between |XC |cl and the closed points of |Xalg
C |. Moreover, for any classical

point x ∈ |XC |, the complement Xalg
C \ {x} is the spectrum of a principal ideal domain.

Proof. Let x ∈ |XC |cl be any classical point, corresponding to some untilt C] over E of C.
Using Lubin–Tate formal groups, we see that there is an exact sequence

0→ OXC → OXC (1)→ OC] → 0

on XC . The corresponding section f ∈ H0(XC ,OXC (1)) defines its vanishing locus in Xalg
C , which

is then also given by SpecC]. In particular, x defines a closed point of |Xalg
C |. Now we want to

show that P [f−1]0 is a principal ideal domain. Thus, take any nonzero g ∈ H0(XC ,OXC (n)).
This has finitely many zeroes on XC , all at classical points x1, . . . , xm. For each xi, we have
a section fxi ∈ H0(XC ,OXC (1)) as before, and then g = fn1

1 · · · fnmm h for some ni ≥ 1, and
some h ∈ H0(XC ,OXC (n′)) that is everywhere nonzero. In particular, h defines an isomorphism
OXC → OXC (n′), whence n′ = 0, and h ∈ E×. This decomposition implies easily that P [f−1]0 is
indeed a principal ideal domain, and it shows that all maximal ideals arise from classical points of
|XC |, finishing the proof. �

II.2.4. Classification of vector bundles. At this point, we can recall the classification of
vector bundles over XC ; so here we take S = SpaC for a complete algebraically closed nonar-
chimedean field C over Fq. First, one classifies line bundles.

Proposition II.2.10. The map Z→ Pic(XC), n 7→ OXC (n), is an isomorphism.
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Proof. By Proposition II.2.9, any line bundle becomes trivial after removing one closed point

x ∈ Xalg
C . As the local rings of Xalg

C are discrete valuation rings, this implies that any line bundle
is of the form OXC (n[x]) for some n ∈ Z. But OXC ([x]) ∼= OXC (1) by Proposition II.2.2, so the
result follows. �

In particular, one can define the degree of any vector bundle E on XC via

deg(E) = deg(det(E)) ∈ Z
where det(E) is the determinant line bundle, and deg : Pic(XC) ∼= Z is the isomorphism from the
proposition. Of course, one can also define the rank rk(E) of any vector bundle, and thus for any
nonzero vector bundle its slope

µ(E) =
deg(E)

rk(E)
∈ Q.

It is easy to see that this satisfies the Harder–Narasimhan axiomatics (for example, rank and
degree are additive in short exact sequences). In particular, one can define semistable vector bundles
as those vector bundles E such that for all proper nonzero F ⊂ E , one has µ(F) ≤ µ(E). One says
that E is stable if in fact µ(F) < µ(E) for all such F .

Example II.2.11. For any λ ∈ Q, the bundle OXC (λ) is stable of slope λ. Indeed, assume that
0 6= F ( OXC (λ) is a proper nonzero subbundle, and let r = rk(F), s = deg(F). Passing to r-th
wedge powers, we get an injection

det(F) ∼= OXC (s) ↪→ OXC (rλ)m,

using that
∧rOXC (λ) is a direct sum of copies of OXC (rλ). This implies that s ≤ rλ. Moreover, if

we have equality, then r is at least the denominator of λ, which is the rank of OXC (λ), i.e. F has
the same rank as OXC (λ). Thus, OXC (λ) is stable.

Proposition II.2.12. Any vector bundle E on XC admits a unique exhaustive separating Q-
indexed filtration by saturated subbundles E≥λ ⊂ E, called the Harder–Narasimhan filtration, such
that

Eλ := E≥λ/E>λ, where E>λ =
⋃
λ′>λ

E≥λ′ ,

is semistable of slope λ. The formation of the Harder–Narasimhan filtration is functorial in E. �

As a preparation for the next theorem, we note that the Harder–Narasimhan filtration is also
compatible with change of C.

Proposition II.2.13. Let E be a vector bundle on XC , and let C ′|C be an extension of complete
algebraically closed nonarchimedean fields, with pullback E ′ of E to XC′. Then (E ′)≥λ is the pullback
of E≥λ.

Similarly, if E′|E is a finite separable extension of degree r, and E ′ is the pullback of E along

XC,E′ = XC,E ⊗E E′ → XC,E = XC , then (E ′)≥λ is the pullback of E≥λ/r.

Proof. Consider the case of C ′|C. By uniqueness of the Harder–Narasimhan filtration, it
suffices to see that pullbacks of semistable vector bundles remain semistable. Thus, assume that E
is semistable, and assume by way of contradiction that E ′ is not semistable. By induction on the
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rank, we can assume that the formation of the Harder–Narasimhan filtration of E ′ is compatible
with any base change. Consider the first nontrivial piece of the Harder–Narasimhan filtration
0 6= F ( E . This is a vector bundle on XC′ with µ(F) > µ(E). We claim that F descends to XC .
By Proposition II.2.1, it suffices to see that the two pullbacks of F to XC′⊗̂CC′ agree. This is true

as there are no nonzero maps from F to E ′/F after base change to XR for any perfectoid C ′-algebra
R: If there were such a nonzero map, there would also be a nonzero map for some choice of R = C ′′

a complete algebraically closed nonarchimedean field. But then F is still semistable and all pieces
of the Harder–Narasimhan filtration of E ′/F are of smaller slope, so such maps do not exist.

For an extension E′|E, the similar arguments work, using Galois descent instead (noting that
one may assume that E′|E is Galois by passing to Galois hulls). Note that the pullback of OXC,E (1)
is OXC,E′ (r), causing the mismatch in slopes. �

The main theorem on the classification of vector bundles is the following. Our proof follows
the arguments of Hartl-Pink, [HP04], to reduce to Lemma II.2.15 below. However, we give a new
and direct proof of this key lemma, which avoids any hard computations by using the geometry of
diamonds and v-descent. We thus get a new proof of the classification theorem.3

Theorem II.2.14. Any vector bundle E on XC is isomorphic to a direct sum of vector bundles
of the form OXC (λ) with λ ∈ Q. If E is semistable of slope λ, then E ∼= OXC (λ)m for some m ≥ 0.

Proof. We argue by induction on the rank n of E , so assume the theorem in rank ≤ n −
1 (and for all choices of E); the case n = 1 has been handled already. By the vanishing of
H1(XC ,OXC (λ)) = 0 for λ > 0, the theorem follows for E if E is not semistable. Thus assume
E is semistable of slope λ = s

r with s ∈ Z and r > 0 coprime. It suffices to find a nonzero map
OXC (λ)→ E : Indeed, by stability of OXC (λ), the map is necessarily injective (the category of semi-
stable vector bundles of slope λ is abelian with simple objects the stable vector bundles of slope
λ), and the quotient will then again be semistable of slope λ, and thus by induction isomorphic to
OXC (λ)m−1. One finishes by observing that Ext1

XC
(OXC (λ),OXC (λ)) = 0 by Proposition II.2.5 (ii).

Thus, it suffices to find a nonzero map OXC (λ) → E . Let E′|E be the unramified extension
of degree r, and consider the covering f : XC,E′ = XC,E ⊗E E′ → XC,E = XC . Then OXC (λ) =
f∗OXC,E′ (s), and so it suffices to find a nonzero map OXC,E′ (s) → f∗E . In other words, up to

changing E, we can assume that λ ∈ Z. Then by twisting, we can assume λ = 0.

Next, we observe that we are free to replace C by an extension. Indeed, consider the v-sheaf
sending S ∈ PerfC to the isomorphisms E ∼= OnXC . This is a v-quasitorsor under GLn(E) (using

Proposition II.2.5 (ii)). If there is some extension of C where we can find a nonzero section of E
(and thus also trivialize E), then it is a v-torsor under GLn(E). By v-descent of GLn(E)-torsors,

cf. [Sch17a, Lemma 10.13], it is then representable by a space pro-étale over SpaC, and thus
admits a section.

3First, it has been proven for E of equal characteristic in [HP04] and for p-adic E by Kedlaya in [Ked04];
both of these proofs used heavy computations to prove Lemma II.2.15. A more elegant proof was given by Fargues–
Fontaine [FF18] (for all E) by reducing to the description of the Lubin–Tate and Drinfeld moduli spaces of π-
divisibleOE-modules, and their Grothendieck–Messing period morphisms (which arguably also involve some nontrivial
computations). Finally, for p-adic E a proof is implicit in Colmez’ work [Col02] on Banach–Colmez spaces.
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Let d ≥ 0 be minimal such that there is an injection OXC (−d) ↪→ E , possibly after base
enlarging C; by Theorem II.2.6 some such d exists. We want to see that d = 0, so assume d > 0 by
way of contradiction. By minimality of d, the quotient F = E/OXC (−d) is a vector bundle, and by
induction the classification theorem holds true for F .

If d ≥ 2, then we can by induction find an injection OXC (−d + 2) ↪→ F ; taking the pullback
defines an extension

OXC (−d)→ G → OXC (−d+ 2).

so by twisting
OXC (−1)→ G(d− 1)→ OXC (1).

By the key lemma, Lemma II.2.15 below, we would, possibly after enlarging C, get an injection
OXC ↪→ G(d− 1), and hence an injection OXC (−d+ 1) ↪→ G ↪→ E , contradicting our choice of d.

Thus, we may assume that d = 1. If F is not semistable, then it admits a subbundle F ′ ⊂ F
of degree ≥ 1 and rank ≤ n− 2. Applying the classification theorem to the pullback

0→ OXC (−1)→ E ′ → F ′ → 0

of F ′, which is of slope ≥ 0, we then get that E ′ ⊂ E has a global section.

It remains the case that d = −1 and that F is semistable, thus necessarily isomorphic to
OXC ( 1

n−1). This is the content of the next lemma. �

Lemma II.2.15. Let
0→ OXC (−1)→ E → OXC ( 1

n)→ 0

be an extension of vector bundles on XC , for some n ≥ 1. Then there is some extension C ′|C of
complete algebraically closed nonarchimedean fields such that H0(XC′ , E|XC′ ) 6= 0.

Proof. Assume the contrary. Passing to Banach–Colmez spaces, we find an injection of v-
sheaves

f : BC(OXC ( 1
n)) ↪→ BC(OXC (−1)[1]).

The image cannot be contained in the classical points (as these form a totally disconnected subset
while the source is connected), so the image contains some non-classical point. After base change to
some C ′|C, we thus find that the image contains some nonempty open subset of BC(OXC (−1)[1]),
as follows from the presentation

BC(OXC (−1)[1]) = (A1
C])
♦/E

and the similar behaviour of non-classical points of A1
C]

. Translating this nonempty open subset to
the origin, we find that the image of f contains an open neighborhood of 0, and then by rescaling
by the contracting of E×, we find that the map f must be surjective, and thus an isomorphism.

In particular, this would mean that BC(OXC (−1)[1]) is a perfectoid space. This is patently
absurd if E is p-adic, as then the given presentation shows that (A1

C]
)♦ is pro-étale over a perfectoid

space and thus itself a perfectoid space, but A1
C]

is clearly not a perfectoid space.4

In general, we can argue as follows. There is a nonzero map

BC(OXC ( 1
n))→ (A1

C])
♦

4We believe that also when E is of equal characteristic, BC(OXC (−1)[1]) is not a perfectoid space, but we were
not able to settle this easily.
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as H0(OXC ( 1
n)) maps nontrivially to its fibre at the chosen untilt SpaC] ↪→ XC . If f is an

isomorphism, we would then get a nonzero map

(A1
C])
♦/E ∼= BC(OXC (−1)[1])

f−1

−−→ BC(OXC ( 1
n))→ (A1

C])
♦.

On the other hand, one can classify all E-linear maps (A1
C]

)♦ → (A1
C]

)♦. The latter are the

same as maps A1
C]
→ A1

C]
if E is p-adic (by [SW20, Proposition 10.2.3]), respectively maps

A1
C,perf → A1

C,perf if E is of equal characteristic. Thus, they are given by some convergent power

series g(X) that is additive, i.e. g(X + Y ) = g(X) + g(Y ), and satisfies g(aX) = ag(X) for all

a ∈ E. (If E is of characteristic p, then g may a priori involve fractional powers X1/pi .) The
equation g(πX) = πg(X) alone in fact shows that only the linear coefficient of g may be nonzero,
so g(X) = cX for some c ∈ C], and thus g is either an isomorphism or zero. But our given map is
nonzero with nontrivial kernel, giving a contradiction. �

II.2.5. Families of vector bundles. Using the ampleness of O(1), we can now prove the
following result on relative Banach–Colmez spaces.

Proposition II.2.16. Let S be a perfectoid space over Fq. Let E be a vector bundle on XS.
Then the Banach–Colmez space

BC(E) : T 7→ H0(XT , E|XT )

is a locally spatial diamond, partially proper over S. Moreover, the projectivized Banach–Colmez
space

(BC(E) \ {0})/E×

is a locally spatial diamond, proper over S.

Proof. Note that BC(E) → S is separated: As it is a group, it suffices to see that the zero
section is closed, but being zero can be checked through the vanishing at all untilts T ] of T , where
it defines Zariski closed conditions. Using Theorem II.2.6, choose a surjection OXS (−n)m → E∨.
Dualizing, we get an exact sequence

0→ E → OXS (n)m → F → 0

for some vector bundle F . As BC(F) is separated, we see that BC(E) ⊂ BC(OXS (n)m) is closed,
so the first part follows from Proposition II.2.5 (iii). For the second part, we may assume that S
is qcqs. It is also enough to prove the similar result for (BC(E) \ {0})/πZ as the O×E -action is free

(so one can apply the last part of [Sch17a, Proposition 11.24]). This follows from the following
general lemma about contracting group actions on locally spectral spaces, noting that checking
the conditions formally reduces to the case of BC(OXS (n)m) and from there to A1

S]
by evaluating

sections at some collection of untilts. �

Lemma II.2.17. Let X be a taut locally spectral space such that for any x ∈ X, the set Xx ⊂ X
of generalizations of x is a totally ordered chain under specialization. Let γ : X

∼−→ X be an
automorphism of X such that the subset X0 ⊂ X of fixed points is a spectral space. Moreover,
assume that

(i) for all x ∈ X, the sequence γn(x) for n→∞ converges towards X0, i.e. for all open neighborhoods
U of X0, one has γn(x) ∈ U for all sufficiently positive n;
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(ii) for all x ∈ X \ X0, the sequence γn(x) for n → −∞ diverges, i.e. for all quasicompact open
subspaces U ⊂ X, one has γn(x) 6∈ U for all sufficiently negative n.

Then X0 ⊂ X is a closed subspace, the action of γ on X \X0 is free and totally discontinuous
(i.e. the action map (X \X0)×Z→ (X \X0)× (X \X0) is a closed immersion), and the quotient
(X \X0)/γZ is a spectral space.

Remark II.2.18. For applications of this lemma, we recall the following facts:

(i) If X is any locally spatial diamond, then |X| is a locally spectral space such that all for all
x ∈ |X|, the set of generalizations of x in |X| is a totally ordered chain under specialization.
Indeed, this follows from [Sch17a, Proposition 11.19] and the similar property for analytic adic
spaces.

(ii) If X is in addition partially proper over a spatial diamond, then |X| is taut by [Sch17a, Propo-
sition 18.10].

This means that the first sentence of the lemma is practically always satisfied.

Proof. Let U ⊂ X be some quasicompact open neighborhood of X0. First, we claim that one
can arrange that γ(U) ⊂ U . Indeed, one has

U ⊂ γ−1(U) ∪ γ−2(U) ∪ . . . ∪ γ−n(U) ∪ . . . ,
as for any x ∈ U ⊂ X, also γn(x) ∈ U for all sufficiently large n by assumption, and so x ∈ γ−n(U)
for some n > 0. By quasicompacity of U , this implies that U ⊂ γ−1(U) ∪ . . . ∪ γ−n(U) for some
n, and then U ′ = U ∪ γ−1(U) ∪ . . . ∪ γ−n+1(U) is a quasicompact open neighborhood of X0 with
γ(U ′) ⊂ U ′.

Now fix a quasicompact open neighborhood U of X0 with γ(U) ⊂ U . We claim that

X0 =
⋂
n≥0

γn(U).

Indeed, if x ∈ X \X0, then by assumption there is some positive n such that γ−n(x) 6∈ U , giving
the result.

In particular, for any other quasicompact open neighborhood V of X0, there is some n such
that γn(U) ⊂ V . Indeed, the sequence of spaces γn(U) \ V is a decreasing sequence of spectral
spaces with empty inverse limit, and so one of the terms is empty.

Consider the closure U ⊂ X of U in X. As X is taut, this is still quasicompact. Repeating the
above argument, we see that for some n > 0, one has

U ⊂ γ−1(U) ∪ . . . ∪ γ−n(U) = γ−n(U).

This implies that the sequences {γn(U)}n≥0 and {γn(U)}n≥0 are cofinal. In particular,

X0 =
⋂
n≥0

γn(U) =
⋂
n≥0

γn(U)

is a closed subset of X.

Next, we check that any point x ∈ X \X0 has an open neighborhood V such that {γn(V )}n∈Z
are pairwise disjoint; for this it suffices to arrange that V ∩ γi(V ) = ∅ for all i > 0. For this,
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note that if n is chosen such that γn(U) ⊂ U , then up to rescaling by a power of γ, we can
assume that x ∈ U \ γn+1(U). Let V ⊂ U \ γn+1(U) be a quasicompact open neighborhood of
x. Then γi(V ) ∩ V = ∅ as soon as i ≥ n + 1. For the finitely many i = 1, . . . , n, we can use a
quasicompacity argument, and reduce to proving that if Xx is the localization of X at x (i.e., the
set of all generalizations of x), then Xx ∩ γi(Xx) = ∅ for i = 1, . . . , n. By our assumption on X,
the space Xx has a unique generic point η ∈ Xx (Xx is pro-constructible in a spectral space thus
spectral and by our hypothesis Xx is irreducible), which must then also be the unique generic point
of γi(Xx) if Xx ∩ γi(Xx) 6= ∅. Thus, if Xx ∩ γi(Xx) 6= ∅, then γi(η) = η, so η ∈ X0. But X0 is
closed, so that x ∈ X0, which is a contradiction.

In particular, the action of γ on X \ X0 is free and totally discontinuous, and the quotient
X = (X \ X0)/γZ is a locally spectral space which is locally isomorphic to X \ X0. A basis of
open neighborhoods of X is given by the image of quasicompact open subsets V ⊂ X \ X0 for
which {γn(V )}n∈Z are pairwise disjoint; it follows that these are quasicompact open subsets of X.
Also, the intersection of two such subsets is of the same form, so the quotient X is quasiseparated.
Finally, note that U \ γ(U) → X is a bijective continuous map, and the source is a spectral
space (as γ(U) ⊂ U is a quasicompact open subspace of the spectral space U), and in particular
quasicompact, and so X is quasicompact. �

The result on properness of the projectivized Banach–Colmez space enables us to give quick
proofs of the main results of [KL15] (including an extension to the case of general E, in particular
of equal characteristic).

Theorem II.2.19 ([KL15, Theorem 7.4.5, Theorem 7.4.9, Theorem 7.3.7, Proposition 7.3.6]).
Let S be a perfectoid space over Fq and let E be a vector bundle over XS of constant rank n.

(i) The function taking a geometric point SpaC → S of S to the Harder–Narasimhan polygon of
E|XC is upper semicontinuous.

(ii) Assume that the Harder–Narasimhan polygon of E is constant. Then there exists a global (sep-
arated exhaustive decreasing) Harder–Narasimhan filtration

E≥λ ⊂ E
specializing to the Harder–Narasimhan filtration at each point. Moreover, after replacing S by a
pro-étale cover, the Harder–Narasimhan filtration can be split, and there are isomorphisms

Eλ ∼= OXS (λ)nλ

for some integers nλ ≥ 0.

Proof. Note that the Harder–Narasimhan polygon can be described as the convex hull of the
points (i, di) for i = 0, . . . , n, where di is the maximal integer such that H0(XC , (∧iE)(−di)|XC ) 6= 0.
To prove part (i), it therefore suffices to show that for any vector bundle F on XS , the locus of
all geometric points SpaC → S for which H0(XC ,F|XC ) 6= 0 is closed in S. But note that this is
precisely the image of

(BC(F) \ {0})/E× → S.

As this map is proper by Proposition II.2.16 (ii), its image is closed. To see that the endpoint of
the Harder–Narasimhan polygon is locally constant, apply the preceding also to the dual of the
determinant of E .
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For part (ii), it is enough to prove that v-locally on S, there exists an isomorphism E ∼=⊕
λOXS (λ)nλ . Indeed, the desired global Harder–Narasimhan filtration will then exist v-locally,

and it necessarily descends. The trivialization of each Eλ amounts to a torsor under some locally
profinite group, and can thus be done after a pro-étale cover by [Sch17a, Lemma 10.13]. Then the
ability to split the filtration follows from Proposition II.2.5 (i).

We argue by induction on the rank of E . Let λ be the maximal slope of E . We claim that
v-locally on S, there is a map OXS (λ) → E that is nonzero in each fibre. Indeed, finding such a
map is equivalent to finding a fibrewise nonzero map OXS → F =Hom(OXS (λ), E). But then

BC(F) \ {0} → (BC(F) \ {0})/E× → S

is a v-cover over which such a map exists: The first map is an E×-torsor and thus a v-cover, while
the second map is proper and surjective on geometric points, thus surjective by [Sch17a, Lemma
12.11]. The dual map E∨ → OXS (−λ) is surjective as can be checked over geometric points (using
that OXC (−λ) is stable), thus the cokernel of OXS (λ) → E is a vector bundle E ′, that again has
constant Harder–Narasimhan polygon. By induction, one can find an isomorphism

E ′ ∼=
⊕
λ′≤λ
OXS (λ′)n

′
λ′ .

By Proposition II.2.5 (i)–(ii), the extension

0→ OXC (λ)→ E →
⊕
λ′≤λ
OXS (λ′)n

′
λ′ → 0

can be split after a further pro-étale cover, finishing the proof. �

Let us explicitly note the following corollary.

Corollary II.2.20 ([KL15, Theorem 8.5.12]). Let S be a perfectoid space. The category of
pro-étale E-local systems L is equivalent to the category of vector bundles on XS whose Harder–
Narasimhan polygon is constant 0, via L 7→ L⊗E OXS .

Proof. First, the functor is fully faithful, as we can see by pro-étale descent (to assume L is
trivial) and Proposition II.2.5. Now essential surjectivity follows from Theorem II.2.19. �

II.3. Further results on Banach–Colmez spaces

We include some further results on Banach–Colmez spaces.

II.3.1. Cohomology of families of vector bundles. First, we generalize the vanishing
results of Proposition II.2.5 to families of vector bundles. A key tool is given by the following
result, which is a small strengthening of [KL15, Lemma 8.8.13].

Proposition II.3.1. Let S be a perfectoid space over Fq, and let E be a vector bundle on XS

such that all Harder–Narasimhan slopes of E at all geometric points are nonnegative. Then locally
(in the analytic topology) on S, there is an exact sequence

0→ OXS (−1)d → F → E → 0

where F is semistable of degree 0 at all geometric points.
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Proof. We may assume that the degree of E is constant, given by some d ≥ 0. We can assume

S = Spa(R,R+) is affinoid perfectoid and pick d untilts S]i = Spa(R]i , R
]+
i ) over E, i = 1, . . . , d,

such that S]1, . . . , S
]
d ⊂ XS are pairwise disjoint; more precisely, choose d maps S → BC(O(1))\{0}.

Let Wi be the fibre of E over R]i , which is a finite projective R]i-module. For any rank 1 quotients

Wi → R]i , we can pull back the sequence

0→ OXS (−1)d → OdXS →
d⊕
i=1

O
S]i
→ 0,

obtained from Proposition II.2.3, along

E →
d⊕
i=1

E ⊗OXS OS]i =
d⊕
i=1

Wi ⊗R]i OS]i →
d⊕
i=1

Od
S]i

to get an extension

0→ OXS (−1)d → E ′ → E → 0.

We claim that one can choose, locally on S, the rank 1 quotients so that E ′ is semistable of
degree 0. For this, we argue by induction on i = 1, . . . , d that one can choose (locally on S) the
quotients of W1, . . . ,Wi so that the modification

0→ OXS (−1)i → Ei → E → 0,

invoking only the quotients of W1, . . . ,Wi, has the property that the Harder–Narasimhan slopes of
Ei at all geometric points are nonnegative. It is in fact enough to handle the case i = 1, as the
inductive step then reduces to the similar assertion for the bundle E1 which is of smaller degree.

First, we handle the case that S = Spa(K,K+) for a perfectoid field K (not necessarily alge-
braically closed). Then E has a Harder–Narasimhan filtration, and look at the subbundle E≥λ ⊂ E
of maximal slope, where necessarily λ > 0. Also recall that any nonsplit extension

0→ OXS (−1)→ G → E≥λ → 0

necessarily has nonnegative Harder–Narasimhan slopes (by looking at the Harder–Narasimhan poly-
gon, which has to lie strictly above the −1-line). Thus, it is enough to ensure that the pullback of
the extension to E≥λ is nonsplit. But if it splits, then the given map E≥λ → O

S]1
lifts to a map

E≥λ → OXS ; by consideration of slopes, this map is necessarily trivial. Thus, if we let W ′1 ⊂ W1

be the fibre of E≥λ ⊂ E at S]1, it suffices to pick a quotient W1 → K]
1 whose restriction to W ′1 is

nonzero.

Going back to general affinoid S, pick any point s ∈ S. By the preceding argument, we can

locally on S find a quotient W1 → R]1 such that the corresponding extension E1 has the property
that the Harder–Narasimhan slopes at s are still nonnegative. By Theorem II.2.19, the same is
true in an open neighborhood, finishing the proof. �

In applications, it is often more useful to have the following variant, switching which of the
two bundles is trivialized, at the expense of assuming strictly positive slopes (and allowing étale
localizations in place of analytic localizations — this is probably unnecessary).



76 II. THE FARGUES–FONTAINE CURVE AND VECTOR BUNDLES

Proposition II.3.2. Let S be a perfectoid space over Fq and let E be a vector bundle on XS

such that at all geometric points of S, all Harder–Narasimhan slopes of E are positive. Then étale
locally on S, there is a short exact sequence

0→ G → OmXS → E → 0

where G is semistable of slope −1 at all geometric points.

Proof. We can assume that E has constant degree d and rank r; we set m = d + r. Inside
BC(E)m, we can look at the locus U ⊂ BC(E)m of those maps OmXS → E that are surjective and

whose kernel is semistable of slope −1. This is an open subdiamond of BC(E)m: This is clear for
the condition of surjectivity (say, as the cokernel of the universal map OnXT → E|XT is supported

on a closed subset of XT , whose image is then closed in T ), and then the locus where the kernel
is semistable of slope −1 is open by Theorem II.2.19. By Proposition II.3.1, we see moreover that
all geometric fibres of U → S are nonempty. It thus suffices to prove that for any geometric point
T = Spa(C,C+)→ S, given as a cofiltered inverse limit of étale maps Si = Spa(Ri, R

+
i )→ S, and

any section s ∈ BC(E)(T ), one can find a sequence of i’s and sections si ∈ BC(E)(Si) such that
si|T → s as i → ∞. Indeed, applying this to Em in place of E and some section of U over T , one
of the si will then lie in U(Si), giving the desired short exact sequence.

To prove that one can approximate s, we argue in a way similar to the proof of Theorem II.2.6.
To facilitate the estimates, it is useful to assume that all Harder–Narasimhan slopes of E at T are
integral; this can always be achieved through pulling back E to a cover f : XS,E′ = XS⊗EE′ → XS

for some unramified extension E′|E (as this pullback multiplies slopes by [E′ : E]), noting that E
is a direct factor of f∗f

∗E = E ⊗E E′. We analyze E in terms of its pullback to YS,[1,q] and the
isomorphism over YS,[q,q] ∼= YS,[1,1]. Note that as BC,[1,q] is a principal ideal domain, the pullback of
E to YC,[1,q] is necessarily free, and by approximation we can already find a basis over some YSi,[1,q];
replacing S by Si we can then assume that the pullback of E to YS,[1,q] is free. The descent datum

is then given by A−1ϕ for some matrix A ∈ GLn(BR,[1,1]). After pullback to T , by Theorem II.2.14
and the assumption of integral slopes, one can in fact choose a basis so that A is a diagonal matrix
D with positive powers of π along the diagonal. Approximating this basis, we can assume that
A−D ∈ πNB+

(R,R+),[1,1]
for any chosen N > 0.

Now the map

ϕ−D : Br
R,[1,q] → Br

R,[1,1]

is surjective by Proposition II.2.5, and in fact there is some M (depending only on D, not on R)
such that for any x ∈ (B+

(R,R+),[1,1]
)r, there is some y ∈ π−M (B+

(R,R+),[1,q]
)r with x = (ϕ −D)(y).

There are two ways to see the existence of M : Either by an explicit reading of the proof of
Proposition II.2.5, or as follows. Assume no such M exists; then we can find perfectoid algebras
R0, R1, . . . with integral elements R+

i ⊂ Ri and pseudouniformizers $i ∈ Ri, and sections xi ∈
(B+

(Ri,R
+
i ),[1,1]

)r such that there is no yi ∈ π−2i(B+

(Ri,R
+
i ),[1,q]

)r with xi = (ϕ−D)(yi). Let R+ be the

product of all R+
i , and R = R+[ 1

$ ] where $ = ($i)i ∈ R+ =
∏
iR

+
i . Then all xi define elements

of (B+
(R,R+),[1,1]

)r, and x = x0 + πx1 + π2x2 + . . . another element. By surjectivity of ϕ−D, there

is some y ∈ (B(R,R+),[1,q])
r with x = (ϕ −D)(y). But then y ∈ π−i(B+

(R,R+),[1,q]
)r for some i, and

then projecting along (R,R+)→ (Ri, R
+
i ) contradicts the choice of xi.
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Taking N > M above, one sees that also

ϕ−A = ϕ−D + (D −A) : Br
R,[1,q] → Br

R,[1,1]

is surjective, with the same bound (in particular independent of R). But now the section s of E
over XT can be approximated by a section s′i of BRi,[1,q], so that its image under ϕ − A will be
small. By the preceding surjectivity, we can then replace s′i by si = s′i + εi for some still small εi
such that

si ∈ Bϕ=A
Ri,[1,q]

= H0(XSi , E|XSi ).
This gives the desired conclusion. �

One can prove the following variants.

Corollary II.3.3. Let S be a perfectoid space over Fq and let E be a vector bundle on XS.

(i) Assume that all Harder–Narasimhan slopes of E are ≥ 1
r . Then locally on S, for some m ≥ 0

there is a short exact sequence

0 −→ OmXS −→ F −→ E −→ 0,

where F is fibrewise semistable of slope 1
r .

(ii) Assume that all Harder–Narasimhan slopes of E are ≥ 1
r . Then locally on S, for some m ≥ 0

there is a short exact sequence

0 −→ OXS ( 1
2r )m −→ F −→ E −→ 0,

where F is fibrewise semistable of slope 1
r .

(iii) Assume that all Harder–Narasimhan slopes of E are > 1
r . Then étale locally on S, for some

m ≥ 0 there is a short exact sequence

0 −→ G −→ OXS (1
r )m −→ E −→ 0,

where G is fibrewise semistable of slope 0.

(iv) Assume that all Harder–Narasimhan slopes of E are > 1
r . Then étale locally on S, for some

m ≥ 0 there is a short exact sequence

0 −→ G −→ OXS (1
r )m −→ E −→ 0,

where G is fibrewise semistable of slope 1
2r .

Proof. We can suppose S is affinoid. We start with (i). Let πr : XS,r = YS/ϕ
rZ → XS be

the finite étale cover XS,Er = XS,E ⊗E Er → XS,E = XS , where Er is the unramified extension
of degree r of E. We apply Proposition II.3.1 to (π∗rE)(−1). We get, locally on S, a short exact
sequence

0→ Om′XS,Er → F
′ → π∗rE → 0

where F ′ is fiberwise semistable of slope 1. Thus, applying πr∗, we get a short exact sequence

0→ Om′rXS
→ πr∗F ′ → πr∗π

∗
rE → 0.

Here πr∗F ′ is fiberwise semistable of slope 1
r . As E is a direct summand of πr∗π

∗
rE = E ⊗E Er, we

get via pullback a similar exact sequence.
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Arguing similarly with (π∗2rE)(−2), we get part (ii) of the corollary. Invoking Proposition II.3.2
instead, we get parts (iii) and (iv). �

Proposition II.3.4. Let S ∈ PerfFq , and let E be a vector bundle on XS.

(i) If at all geometric points of S, all slopes of E are negative, then H0(XS , E) = 0.

(ii) If at all geometric points of S, all slopes of E are nonnegative, then there is a pro-étale cover

S̃ → S such that

H1(X
S̃
, E|X

S̃
) = 0.

(iii) If at all geometric points of S, all slopes of E are positive, then there is an étale cover S′ → S
such that for any affinoid perfectoid T over S′, one has H1(XT , E|XT ) = 0.

Proof. Part (i) can be checked on geometric points, where it follows from Theorem II.2.14
and Proposition II.2.5 (i). For part (ii), we use Proposition II.3.1 to produce locally on S an exact
sequence

0→ OXS (−1)d → E ′ → E → 0

where E ′ is everywhere semistable of degree 0. By Theorem II.2.19 we can find a pro-étale cover
of S over which E ′ ∼= OrXS . By the vanishing of H2, this induces a surjection from H1(XS ,OXS )r

onto H1(X, E). Since H1(XS ,OXS ) = H1
proét(S,E) by Proposition II.2.5 (ii), this vanishes pro-étale

locally on S.

For part (iii), we use Corollary II.3.3 (iii) to produce an étale cover of S over which there is an
exact sequence

0→ G → OXS (1
r )m → E → 0.

For any affinoid T |S, this induces a surjection from H1(XT ,OXT (1
r )m) onto H1(XT , E|XT ), so we

conclude by Proposition II.2.5 (iii). �

II.3.2. Families of Banach–Colmez spaces. We can now prove the following strengthening
of Proposition II.2.16.

Proposition II.3.5. Let S be a perfectoid space over Fq. Let [E1 → E0] be a map of vector
bundles on XS such that at all geometric points of S, the bundle E1 has only negative Harder–
Narasimhan slopes.

(i) The Banach–Colmez space

BC([E1 → E0]) : T 7→ H0(XT , [E1 → E0]|XT )

is a locally spatial diamond, partially proper over S.

(ii) The projectivized Banach–Colmez space

(BC([E1 → E0]) \ {0})/E×

is a locally spatial diamond, proper over S.

(iii) Assume that all Harder–Narasimhan slopes of E0 at all geometric points are positive. Then

BC([E1 → E0])→ S

is cohomologically smooth.
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Proof. All assertions are étale local (in fact v-local) on S. For parts (i) and (ii), let us first
simplify the form of the complex [E1 → E0]. By Theorem II.2.6, we can find (for S affinoid) some
d > 0 and a surjection

OXS (−d)m → E0.

Let E ′1 be the kernel of E1 ⊕OXS (−d)m → E0. Then we find a quasi-isomorphism

[E ′1 → OXS (−d)m]→ [E1 → E0].

Note also that E ′1 still satisfies the assumption on negative slopes. We get an exact sequence

0→ BC([E ′1 → OXS (−d)m])→ BC(E ′1[1])→ BC(OXS (−d)m[1]).

As BC(OXS (−d)m[1]) is separated by Proposition II.2.5 (i), we see that parts (i) and (ii) reduce to
the case of BC(E ′1[1]). Now applying Corollary II.3.3 (iv) to the dual of E ′1, we get (étale locally on
S) an exact sequence

0→ BC(E ′1[1])→ BC(OXS (−1
r )m[1])→ BC(G[1])

where G is semistable of slope 1
2r everywhere. In particular, BC(G[1]) is separated over S by pro-

étale descent and Proposition II.2.5 (i). Thus, BC(E ′1[1]) ⊂ BC(OXS (−1
r )m[1]) is a closed subfunctor,

finishing the proof of part (i) by applying Proposition II.2.5 (i) again. Part (ii) is then reduced to
the similar assertion for BC(OXS (−1

r )m[1]). Replacing E by its unramified extension of degree r,
this reduces to BC(OXS (−1)m[1]). Now, as in the proof of Proposition II.2.16, this follows from
Lemma II.2.17, where one checks the required contracting property of multiplication by π by using
the presentation

BC(OXS (−1)[1]) = (A1
S])
♦/E

for an untilt S] of S over E.

It remains to prove part (iii). Note that one has a short exact sequence

0→ BC(E0)→ BC([E1 → E0])→ BC(E1[1])→ 0;

by [Sch17a, Proposition 23.13], we can thus handle BC(E1[1]) and BC(E0) individually. For the
case of BC(E0), we use Corollary II.3.3 (iv) to get, pro-étale locally on S, an exact sequence

0→ OXS ( 1
2r )m

′ → OXS (1
r )m → E0 → 0,

inducing a similar sequence of Banach–Colmez spaces. Then the result follows from [Sch17a,
Proposition 23.13]. For the case of BC(E1[1]), choose a surjection OXS (−d)m → E∨1 for some d > 0;
we get an exact sequence

0→ E1 → OXS (d)m → F → 0

where necessarily all Harder–Narasimhan slopes of F are positive everywhere. This gives an exact
sequence

0→ BC(OXS (d)m)→ BC(F)→ BC(E1[1])→ 0,

so the result follows from [Sch17a, Proposition 23.13] and the case of positive slopes already
established. �
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II.3.3. Punctured absolute Banach–Colmez spaces. Finally, we analyze punctured ab-
solute Banach–Colmez spaces. Recall that, in the situation of Proposition II.2.5 (iv), one has

BC(O(d)) ∼= Spd(k[[x
1/p∞

1 , . . . , x
1/p∞

d ]]),

so the v-sheaf BC(O(d)) fails to be a perfectoid space, or even a diamond, as it contains the
non-analytic point Spd k. However, passing to the punctured Banach–Colmez space

BC(O(d)) \ {0} ∼= Spa(k[[x
1/p∞

1 , . . . , x
1/p∞

d ]])an

identifies with the analytic points, which form a perfectoid space; in fact, a qcqs perfectoid space.
These objects first showed up in [Far18a] in the case of positive slopes. It was remarked in
[Far18a] that the punctured version BC(O(d)) \ {0} is a diamond for all d ≥ 1, that is moreover
simply connected when d > 2. This plays a key role in [Far18a] since after base changing from
Spd k to SpaC this is not simply connected anymore. In the above example,

BC(O(d)) \ {0} = Spa(k[[x
1/p∞

1 , . . . , x
1/p∞

d ]]) \ V (x1, · · · , xd)
is a qcqs perfectoid space that is simply connected when d > 1. After base changing to Spa(C)
this is a punctured n-dimensional open ball over Spa(C) that is not quasicompact anymore, and
not simply connected. Thus, some new interesting phenomena appear when we consider absolute
Banach–Colmez spaces.

Let us first continue the discussion with the case of O(d) for d ≥ 1. In that case, there is a
relation to Cartier divisors. Recall that any closed Cartier divisor D ⊂ XS is given by a line bundle
I on XS together with an injection I ↪→ OXS with closed image. We will only consider the case of
relative Cartier divisors, so that this map stays injective after base change to any geometric point.
Now Theorem II.2.19 implies that after replacing S by an open and closed cover, I is of degree −d
for some integer d ≥ 0, and that there is an E×-torsor of isomorphisms I ∼= OXS (−d). This shows
that the v-sheaf Div sending any S to the closed relative Cartier divisors is given by

Div =
⊔
d≥0

Divd, Divd ∼= (BC(O(d)) \ {0})/E×.

Note that we are implicitly using a different definition of Div1 here, but Corollary II.2.4 shows that
they agree.

In particular, the moduli space Divd of degree d Cartier divisors is given by the projectivized
Banach–Colmez space for O(d). On the other hand, in terms of divisors we can see the following
proposition. Recall that one can take sums of Cartier divisors (by tensoring their ideal sheaves).

Proposition II.3.6. For any d ≥ 1, the sum map

(Div1)d → Divd : (D1, . . . , Dd) 7→ D1 + . . .+Dd

is a quasi-pro-étale cover, identifying

Divd = (Div1)d/Σd,

where Σd is the symmetric group. In particular, Divd is a diamond.

Proof. By Proposition II.2.16 (ii), all occuring spaces are proper over ∗. In particular, the sum
map is proper. To check surjectivity as v-sheaves, we can then check on geometric points, where it
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follows from Proposition II.2.9 (in whose proof we checked that any element of Pd is a product of
elements of P1). In fact, we even get bijectivity up to the Σd-action, and thus the isomorphism

Divd = (Div1)d/Σd

as v-sheaves. But the projection (Div1)d → (Div1)d/Σd is quasi-pro-étale by [Sch17a, Lemma
7.19, Definition 10.1 (i)]. As Div1 = SpdE/ϕZ is a diamond, it follows that Divd is a diamond by
[Sch17a, Proposition 11.4, Proposition 11.6]. �

Now we can analyze the case of general absolute Banach–Colmez spaces.

Proposition II.3.7. Let D be an isocrystal with only negative slopes (resp. with only positive
slopes), and work on Perfk.

(i) The punctured Banach–Colmez space BC(D) \ {0} (resp. BC(D[1]) \ {0}) is a spatial diamond.

(ii) The quotient (
BC(D) \ {0}

)
/E× −→ ∗

(
resp.

(
BC(D[1]) \ {0}

)
/E× −→ ∗

)
is proper, representable in spatial diamonds, and cohomologically smooth.

Proof. Part (ii) follows from Proposition II.3.5 and (for the cohomological smoothness after
taking the quotient by E×) [Sch17a, Proposition 24.2].

For part (i), we are going to apply Lemma II.3.8, so we first want to see that BC(D) \ {0} is a
spatial v-sheaf. By the Dieudonné–Manin classification, we can find a basis for D so that ϕ is E-
rational and U := ϕN is a diagonal matrix with entries powers of π for some N > 0; this essentially
means that V is decent in the sense of [RZ96, Definition 1.8]. Then BC(D) (resp. BC(D[1])) is
already defined on PerfFq , and the action of U agrees with the action of FrobN . Moreover, the

action of U−1 (resp. U) on | BC(D) ×Fq SpaFq((t1/p
∞

))| (resp. | BC(D[1]) ×Fq SpaFq((t1/p
∞

))|) still
satisfies the hypotheses of Lemma II.2.17. This implies that

(BC(D) \ {0})/ϕN ×Fq SpaFq((t1/p
∞

))

is a spatial diamond, which can be translated into

(BC(D) \ {0})×Fq SpaFq((t1/p
∞

))/ϕN

being a spatial diamond, as the absolute Frobenius acts trivially on the topological space. But
SpaFq((t1/p

∞
))/ϕN → ∗ is qcqs, even proper, and cohomologically smooth. We can thus apply

point (i) of Lemma II.3.8 to conclude that BC(D) \ {0} (resp. BC(D[1]) \ {0}, for which the same
argument applies) is spatial.

It remains to see that it is a diamond. One easily reduces to the case that D is simple, and
allowing ourselves to replace E by a finite unramified extension, to D of rank 1. The case of
positive Banach–Colmez spaces now follows from Proposition II.3.6, as it is an E×-torsor over a
diamond (so [Sch17a, Proposition 11.7] applies). It remains to prove that this is a diamond in
the case of a negative absolute Banach–Colmez spaces, i.e. for D = (E, πnϕ) with n > 0. Then
D := BC(D[1]) \ {0} classifies extensions

0 −→ OXS (−n) −→ E −→ OXS −→ 0
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that are geometrically fiberwise non split on S (remark that those extensions are rigid). We now
apply point (ii) of Lemma II.3.8 using the Harder–Narasimhan stratification of D defined by E . We
can pass to the subsheaf of D where E is, at each geometric point, isomorphic to a given rank 2
bundle, necessarily of the form OXS (−n+ i)⊕OXS (−i) for some 0 < i ≤ n

2 or to OXS (−n
2 ).

On such a stratum Dα ⊂ D there is a global Harder–Narasimhan filtration by Theorem II.2.19,

and trivializing the graded piece of lowest slope defines a pro-étale morphism D̃α → Dα. For

S → D̃α there is a morphism from OXS (−n) to this quotient of E by composing with the inclusion
OXS (−n) ↪→ E . Since the extension is non-split geometrically fiberwise on S, this morphism is

non-zero geometrically fiberwise. This defines a morphism from D̃α → X to a punctured positive
absolute Banach–Colmez space X, which is a diamond. Thus

D̃α ⊂ D̃α ×X

where the latter is a diamond as D̃α → ∗ is representable in diamonds, so [Sch17a, Proposition

11.10] shows that D̃α is a diamond. �

Lemma II.3.8. Let F be a small v-sheaf.

(i) Suppose there exists a surjective qcqs cohomologically smooth morphism D → F where D is a
spatial diamond. Then F is a spatial v-sheaf.

(ii) Suppose moreover there is a family of locally closed generalizing subsets (Xα)α, Xα ⊂ |F|, such
that for each α the associated subsheaf of F is a diamond. Then F is a spatial diamond.

Proof. For point (i), since D is qcqs and D → F qcqs surjective, F is qcqs. Since cohomo-
logically smooth implies universally open we can apply [Sch17a, Lemma 2.10] to conclude it is
spatial. For point (ii) we apply [Sch17a, Theorem 12.18]. Let Gα ⊂ F be associated to Xα. From
[Sch17a, Lemma 7.6] we deduce that Gα ↪→ F is quasi-pro-étale. This implies the result. �

Remark II.3.9. The proof of Proposition II.3.7 for negative absolute Banach–Colmez space goes
the same way as the proof of the fact that Gr≤µ is a spatial diamond, [SW20, Theorem 19.2.4].
One first proves this is a spatial v-sheaf and then one stratifies it by locally closed generalizing
subsets that are diamonds.

Remark II.3.10. One has to be careful that although the absolute BC(O(d)) \ {0} is a spatial
diamond, (BC(O(d))\{0})/πZ is not spatial anymore since not quasiseparated, [Far18a, Remarque
2.15]. In this context the good object is the morphism (BC(O(d))\{0})/πZ → ∗ that is representable
in spatial diamonds.

Remark II.3.11. In the equal characteristic case, E = Fq((π)), the structure of punctured posi-
tive absolute Banach–Colmez spaces is much simpler since they are perfectoid spaces. Nevertheless
the structure of the punctured negative one is not, they are only spatial diamonds. We will see
below that BC(O(−1)[1]) is stratified into the open part, which can be written as the quotient of
Spd k((t)) by the action of a profinite group, and a point Spd k. However, the degeneration to the
point happens at the boundary of the open unit disc as |t| → 1, not as |t| → 0 as in Spa k[[t]]. Thus
BC(O(−1)[1]) is a rather strange geometric object.5

5This example was critical in convincing us to not try to develop a version of the theory of diamonds that would
allow non-analytic test objects like Spa k[[t1/p

∞
]] and would thus make BC(O(1)) itself representable: After all, in the
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Example II.3.12. The absolute BC(O(−1)[1]) \ {0} classifies extensions

0 −→ OXS (−1) −→ E −→ OXS → 0

that are non-split fiberwise on S. Any such extension is, at each geometric point, isomorphic to
OXS (−1

2). Parametrizing isomorphisms E ∼= OXS (−1
2) defines a D×-torsor, where D is the quater-

nion algebra over E; here we use Theorem II.2.19. Remark that if 0 → OXS (−1) → OXS (−1
2) →

L → 0 is an extension, then taking the determinant automatically fixes an isomorphism L ∼= OXS ,
and thus the E×-torsor of isomorphisms between OXS and L is trivial. From this we deduce that

BC(O(−1)[1]) \ {0} ' (BC(O(1
2)) \ {0})/SL1(D)

with

BC(O(1
2)) \ {0} ' Spa(k((x1/p∞)))

the punctured universal cover of a 1-dimensional formal π-divisible OE-module of height 2.

Let us compare this with our previous description of BC(O(−1)[1]) after pullback to Spa(C),
fixing an untilt C] over E and t ∈ H0(XC ,OXC (1)) \ {0}: the exact sequence

0→ OXC (−1)→ OXC → OC] → 0

induces an isomorphism

BC(O(−1)[1])×k Spa(C) ∼= (A1
C])
♦/E.

We thus have

BC(O(−1)[1]) \ {0} ×k Spa(C) ∼= (ΩC])
♦/E

where Ω = A1
E \ E is Drinfeld’s upper half plane over E.

We deduce an isomorphism(
(BC(O(1

2)) \ {0})×k Spa(C)
)
/SL1(D) ∼= (ΩC])

♦/E.

This isomorphism is in fact deduced from the isomorphism between Lubin–Tate and Drinfeld tow-
ers. In fact, [SW13], the Lubin–Tate tower in infinite level, LT∞ over Spa(C]), is the moduli of
modifications O2

XS
↪→ OXS (1

2) at the point of the curve defined by the untilt C]. From this one

deduces a D×-equivariant isomorphism

LT[
∞

/(
1 E
0 E×

)
∼= (BC(O(1

2)) \ {0})×k Spa(C).

Dividing this isomorphism by SL1(D) one obtains the preceding isomorphism.

Example II.3.13. The absolute BC(O(−2)[1]) \ {0} classifies extensions

0 −→ OXS (−1) −→ E −→ OXS (1) −→ 0

that are non-split fiberwise on S. There is only one Harder–Narasimhan stratum and geometrically
fiberwise on S, E is a trivial vector bundle. The moduli of surjections O2

XS
� OXS (1) is the open

subset

U ⊂ (BC(O(1)) \ {0})×k (BC(O(1)) \ {0})

context of absolute Banach–Colmez spaces, BC(O(1)) = Spd k[[t1/p
∞

]] and BC(O(−1)[1]) play very similar roles, so
the formalism should also treat them similarly.
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equal to
U = (BC(O(1)) \ {0})2 \ (E× × 1).∆

where ∆ is the diagonal of (BC(O(1))\{0})2, that is to say couples (x, y) of sections ofH0(XS ,OXS (1))
that are fiberwise/S non-zero and linearly independent over E. Here (E××1).∆ is a locally profinite
union of copies of ∆.

Again, by consideration of determinants, ker(O2
XS
� OXS (1)) is canonically identified with

OXS (−1). This implies that

BC(O(−2)[1]) \ {0} = U/SL2(E).



CHAPTER III

BunG

Throughout this chapter, we fix a reductive group G over the nonarchimedean local field E.
As it will be important to study BunG over a geometric base point, we fix from now on a complete
algebraically closed field k over Fq and work with perfectoid spaces S over Spd k; write Perfk for
the category.

Definition III.0.1. Let BunG be the prestack taking a perfectoid space S ∈ Perfk to the groupoid
of G-bundles on XS.

The main results of this chapter are summarized in the following theorem.

Theorem III.0.2 (Proposition III.1.3; Theorem III.2.2; Theorem III.2.3 and Theorem III.2.7;
Theorem III.4.5; Proposition III.5.3). The prestack BunG satisfies the following properties.

(i) The prestack BunG is a small v-stack.

(ii) The points |BunG | are naturally in bijection with Kottwitz’ set B(G) of G-isocrystals.

(iii) The map

ν : |BunG | → B(G)→ (X∗(T )+
Q)Γ

is semicontinuous, and

κ : |BunG | → B(G)→ π1(GE)Γ

is locally constant. Equivalently, the map |BunG | → B(G) is continuous when B(G) is equipped
with the order topology.

(iv) The semistable locus Bunss
G ⊂ BunG is open, and given by

Bunss
G
∼=

⊔
b∈B(G)basic

[∗/Gb(E)].

(v) For any b ∈ B(G), the corresponding subfunctor

ib : BunbG = BunG×|BunG |{b} ⊂ BunG

is locally closed, and isomorphic to [∗/G̃b], where G̃b is a v-sheaf of groups such that G̃b → ∗ is

representable in locally spatial diamonds with π0G̃b = Gb(E). The connected component G̃◦b ⊂ G̃b
of the identity is cohomologically smooth of dimension 〈2ρ, νb〉.

The hardest part of this theorem is that κ is locally constant. We give two proofs of this
fact. If the derived group of G is simply connected, one can reduce to tori, which are not hard

to handle. In general, one approach is to use z-extensions G̃ → G to reduce to the case of simply
connected derived group. For this, one needs that Bun

G̃
→ BunG is a surjective map of v-stacks;

85
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we prove this using Beauville–Laszlo uniformization. Alternatively, at least for p-adic E, one can
use the abelianized Kottwitz set of Borovoi [Bor98], which we prove to behave well relatively over
a perfectoid space S.

III.1. Generalities

There is a good notion of G-torsors in p-adic geometry:

Definition/Proposition III.1.1 ([SW20, Proposition 19.5.1]1). Let X be a sousperfectoid
space over E. The following categories are naturally equivalent.

(i) The category of adic spaces T → X with a G-action such that étale locally on X, there is a
G-equivariant isomorphism T ∼= G×X.

(ii) The category of étale sheaves Q on X equipped with an action of G such that étale locally,
Q ∼= G.

(iii) The category of exact ⊗-functors

RepEG→ Bun(X)

to the category of vector bundles on X.

A G-bundle on X is an exact ⊗-functor

RepEG→ Bun(X);

by the preceding, it can equivalently be considered in a geometric or cohomological manner.

In particular, G-torsors up to isomorphism are classified by H1
ét(X,G). By Proposition II.2.1,

the following defines a v-stack.

Definition III.1.2. Let BunG be the v-stack taking a perfectoid space S ∈ Perfk to the groupoid
of G-bundles on XS.

Our goal in this chapter is to analyze this v-stack. Before going on, let us quickly observe that
it is small, i.e there are perfectoid spaces S, R with a v-surjection S → BunG and a v-surjection
R→ S ×BunG S.

Proposition III.1.3. The v-stack BunG is small.

Proof. It is enough to prove that if Si = Spa(Ri, R
+
i ), i ∈ I, is an ω1-cofiltered inverse system

of affinoid perfectoid spaces with inverse limit S = Spa(R,R+), then

BunG(S) = lim−→BunG(Si).

Indeed, then any section of BunG over an affinoid perfectoid space S = Spa(R,R+) factors over S′ =
Spa(R′, R′+) for some topologically countably generated perfectoid algebra R′. But there is only a
set worth of such R′ up to isomorphism, and then taking the disjoint union T =

⊔
S′,α∈BunG(S′) S

′

gives a perfectoid space that surjects onto BunG. Moreover, the equivalence relation T ×BunG T
satisfies the same limit property, and hence also admits a similar surjection.

1The reference applies in the case of Zp, but it extends verbatim to OE .
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To see the claim, note first that R = lim−→Ri as any Cauchy sequence already lies in some Ri.
The same applies to BR,I for any interval I, and hence one sees that

Bun(XS) = lim−→Bun(XSi).

Now the definition of G-torsors gives the claim. �

This proof uses virtually no knowledge about BunG and shows that any reasonable v-stack is
small.

III.2. The topological space |BunG|

III.2.1. Points. As a first step, we recall the classification of G-bundles on the Fargues–
Fontaine curve over geometric points. This is based on the following definition of Kottwitz, [Kot85].

Definition III.2.1. A G-isocrystal is an exact ⊗-functor

RepE G→ IsocE .

The set of isomorphism classes of G-isocrystals is denoted B(G).

By Steinberg’s theorem, the underlying fibre functor to Ĕ-vector spaces is isomorphic to the
standard fibre functor; this shows one can identify B(G) with the quotient of G(Ĕ) under σ-
conjugation.

Composing with the exact ⊗-functor

IsocE → Bun(XS) : D 7→ E(D)

any G-isocrystal defines a G-bundle on XS , for any S ∈ Perfk.

Theorem III.2.2 ([Far18b], [Ans19]). For any complete algebraically closed nonarchimedean
field C over k, the construction above defines a bijection

B(G)→ BunG(C)/ ∼= .

Proof. For the convenience of the reader, and as some of the constructions will resurface later,
we give a sketch of the proof in [Ans19]. AnyG-bundle onXC has its Harder–Narasimhan filtration,
and the formation of the Harder–Narasimhan filtration is compatible with tensor products. This
implies that any exact ⊗-functor RepE G → Bun(XC) lifts canonically to an exact ⊗-functor
RepE G → FilBun(XC) to Q-filtered vector bundles. To check exactness, note that if E is p-adic,
the category RepE G is semisimple and thus exactness reduces to additivity, which is clear. If E
is of equal characteristic, one needs to argue more carefully, and we refer to the proof of [Ans19,
Theorem 3.11].

We can now project RepE G → FilBun(XC) to the category GrBun(XC) of Q-graded vector
bundles, and note that the essential image of this functor is landing in the category of bundles⊕

λ Eλ such that each Eλ is semistable of slope λ. This category is in fact equivalent to IsocE by
Theorem II.2.14 and Proposition II.2.5 (ii). Thus, it suffices to see that the filtration on the exact
⊗-functor RepE G→ FilBun(XC) can be split.

Looking at splittings locally on XC , they exist, and form a torsor under a unipotent group
scheme U over XC , where U is parametrizing automorphisms of the filtered fibre functor that are
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trivial on the graded pieces. One can then filter U by vector bundles of positive slopes, and using
the vanishing of their H1, we get the desired splitting. �

In particular, using [Sch17a, Proposition 12.7] it follows that the map

B(G) −→ |BunG|
is a bijection.

III.2.2. Harder–Narasimhan stratification. Now we need to recall Kottwitz’s description
of B(G). This relies on two invariants, the Newton point and the Kottwitz point. Let E be a
separable closure of E and fix a maximal torus inside a Borel subgroup T ⊂ B ⊂ GE ; the set of
dominant cocharacters X∗(T )+ is naturally independent of the choice of T and B, and acquires an
action of Γ = Gal(E|E) via its identification with

Hom(GmE , GE)/G(E)−conjugacy.

The Newton point is a map

ν : B(G) −→ (X∗(T )+
Q)Γ

b 7−→ νb.

When G = GLn, then X∗(T ) ∼= Zn and the target is the set of nonincreasing sequences of rational
numbers, which are the slopes of the Newton polygon of the corresponding isocrystal. The Kottwitz
point is a map

κ : B(G) −→ π1(G)Γ

b 7−→ κ(b),

where π1(G) := π1(GQp
) = X∗(T )/(coroot lattice) is the Borovoi fundamental group. ForG = GLn,

this is naturally isomorphic to Z, and in this case κ(b) is the endpoint of the Newton polygon. In
general, this compatibility is expressed by saying that the images of κ(b) and νb in

π1(G)Γ
Q

agree (using an averaging operation for κ(b)). However, this means that in general κ(b) is not
determined by νb, as π1(GE)Γ may contain torsion.

The definition of κ is done in steps. First, one defines it for tori, where it is actually a bijection.
Then one defines it for G whose derived group is simply connected; in that case, it is simply done via

passage to the torus G/Gder which does not change π1. In general, one uses a z-extension G̃→ G

such that G̃ has simply connected derived group, observing that B(G̃)→ B(G) is surjective.

Borovoi, [Bor98], gave a more canonical construction of κ as an abelianization map that does
not use the choice of a z-extension, at least in the case of p-adic E. We will recall the construction
in Section III.2.4.2.

Finally, recall that (ν, κ) : B(G)→ (X∗(T )+
Q)Γ × π1(G)Γ is injective.

Let v 7→ v∗ = w0(−v) be the involution of the positive Weyl chamber X∗(T )+
Q where w0 is the

longest element of the Weyl group. The Harder–Narasimhan polygon of Eb is ν∗b . Its first Chern
class is −κ(b).
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We need to understand how ν and κ vary on B(G). The following result follows from Theo-
rem II.2.19 and [RR96, Lemma 2.2].

Theorem III.2.3 ([SW20, Corollary 22.5.1]). The map

ν∗ : |BunG| ∼= B(G)→ (X∗(T )+
Q)Γ

is upper semicontinuous.

We will later prove in Theorem III.2.7 that κ is locally constant on BunG.

III.2.3. Geometrically fiberwise trivial G-bundles. Let

[∗/G(E)]

be the classifying stack of pro-étale G(E)-torsors, and

Bun1
G ⊂ BunG

be the substack of geometrically fiberwise trivial G-bundles. One has H0(XS ,OXS ) = E(S) and
thus G(E) acts on the trivial G-bundle. From this we deduce a morphism

[∗/G(E)] −→ Bun1
G .

We are going to prove that this is an isomorphism. Let us note that, although this is an isomor-
phism at the level of geometric points, we can not apply [SW20, Lemma 12.5] since it is not clear
that it is qcqs.

Theorems III.2.3 and III.2.7 (to follow) taken together imply that the locus

Bun1
G ⊂ BunG

is an open substack. One of our proofs of Theorem III.2.7 will however require this statement as
an input. Of course, when π1(G)Γ is torsion free, that is to say H1(E,G) = {1}, Theorem III.2.3
is enough to obtain the openness.

Theorem III.2.4. The substack Bun1
G ⊂ BunG is open, and the map

[∗/G(E)]
∼−→ Bun1

G

defined above is an isomorphism.

Proof. Let S ∈ Perfk be qcqs with a map to BunG. We need to see that the subset of |S| over
which this map is trivial at any geometric point is open; and that if this is all of S, then the data
is equivalent to a pro-étale G(E)-torsor.

Let us check the openness assertion. If T → S is surjective with T qcqs then |T | → |S| is
a quotient map. We can thus assume that S is strictly totally disconnected. The locus where
the Newton point is identically zero is an open subset of S by Theorem III.2.3, so passing to
this open subset, we can assume that the Newton point is zero. In that case, for any algebraic
representation ρ : G → GLn, the corresponding rank n vector bundle on XS is trivial. Now,
geometrically fiberwise on S trivial vector bundles on XS are equivalent to E-local systems on S by
Corollary II.2.20. On the other hand, as S is strictly totally disconnected, all E-local systems on S
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are trivial (Lemma III.2.6 for G = GLn), and their category is equivalent to the category of finite
free modules over C0(|S|, E). Thus, the preceding discussion defines a fibre functor on RepE(G)
with values in C0(|S|, E) = C0(π0(S), E), i.e. a G-torsor over Spec(C0(π0(S), E)). Note that for all
s ∈ π0(S), the local ring lim−→U3s C

0(|U |, E) is henselian as the local ring of the analytic adic space

π0(S)×Spa(E) at s. This implies that if this G-torsor is trivial at some point of S, then it is trivial
in a neighborhood. This concludes the openness assertion.

Moreover, the preceding argument shows that the map ∗ → Bun1
G is a pro-étale cover. As

∗ ×Bun1
G
∗ = G(E), as automorphisms of the trivial G-torsor are given by G(E), we thus get the

desired isomorphism. �

Remark III.2.5 ([Sch17a, Lemma 10.13]). If S is a perfectoid space, and T → S is a pro-étale
G(E)-torsor then T is representable by a perfectoid space. In fact, T = lim←−K K\T where K goes

through the set of compact open subgroups of G(E). By descent of étale separated morphisms
([Sch17a, Proposition 9.7]), for each such K, K\T is represented by a separated étale perfectoid
space over S. The transition morphisms in the preceding limit are finite étale.

Lemma III.2.6. Let S be a strictly totally disconnected perfectoid space. Then any pro-étale
G(E)-torsor on S is trivial.

Proof. Let T → S be such a torsor. Fix a compact open subgroup K ⊂ G(E). Since
K\T → S is an étale cover of perfectoid spaces it has a section and we can assume T → S is in fact
a K-torsor. Now, T = lim←−U U\T where U goes through the set of distinguished open subgroups of

K. Each U\T → S is an étale K/U -torsor and is trivial. One concludes using that if U ′ ⊂ U then

K/U ′(S)→ K/U(S) is surjective. �

III.2.4. Local constancy of the Kottwitz invariant. A central result is the following.

Theorem III.2.7. The map

κ : |BunG| ∼= B(G)→ π1(G)Γ

is locally constant.

Let us note the following corollary. We give a new proof (and slight strengthening) of a result
of Rapoport–Richartz (when p | |π1(G)| the original proof used p-adic nearby cycles and relied on
a finite type hypothesis).

Corollary III.2.8 ([RR96, Corollary 3.11]). Let S be an Fq-scheme and E an G-isocrystal
on S. The map |S| → π1(G)Γ that sends a geometric point s̄→ S to κ(Es̄) is locally constant.

Proof. We can suppose S = Spec(R) is affine and defined over k. We get a small v-sheaf
Spd(R,R), and E defines a morphism Spd(R,R) → BunG. The induced map κ : |Spd(R,R)| →
|BunG | → π1(G)Γ is locally constant by Theorem III.2.7. As open and closed subsets of Spd(R,R)
are in bijection with open and closed subschemes of Spec(R) (by [SW20, Proposition 18.3.1] applied
to morphisms to ∗ t ∗), we can thus assume that κ : | Spd(R,R)| → |BunG | → π1(G)Γ is constant.
But now for any geometric point s̄ → S, the element κ(Es̄) ∈ π1(G)Γ agrees with the image of
∗ = | Spd(s̄, s̄)| → |Spd(R,R)| → |BunG | → π1(G)Γ, giving the desired result. �
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Remark III.2.9. There is a natural map | Spd(R,R)| → | Spa(R,R)|, the latter of which admits
two natural maps to |Spec(R)| (given by the support of the valuation, or the prime ideal of all
elements of norm < 1). However, the maps κ defined on | Spd(R,R)| and | Spec(R)| do not make
this diagram commute. Still, there is also the map |Spec(R)| → |Spd(R,R)|, used in the proof,
and this is continuous, and commutes with the κ maps.

We give two different proofs of Theorem III.2.7.

III.2.4.1. First proof. For the first proof of Theorem III.2.7, we also need the following lemma
that we will prove in the next section.

Lemma III.2.10. Let G̃→ G be a central extension with kernel a torus. Then

Bun
G̃
→ BunG

is a surjective map of v-stacks.

In fact, up to correctly interpreting all the relevant structure, if Z ⊂ G̃ is the kernel, then BunZ
is a Picard stack (as for commutative Z one can tensor Z-bundles) which acts on Bun

G̃
, and BunG

is the quotient stack. It is in fact clear that it is a quasitorsor, and the lemma ensures surjectivity.

First Proof of Theorem III.2.7. Picking a z-extension, we can by Lemma III.2.10 reduce
to the case that G has simply connected derived group. Then we may replace G by G/Gder, and so
reduce to the case that G is a torus. By a further application of Lemma III.2.10, we can reduce to
the case that G is an induced torus. In that case π1(G)Γ is torsion-free, and so the Kottwitz map
is determined by the Newton map, so the result follows from Theorem III.2.3, noting that in the
case of tori there are no nontrivial order relations so semicontinuity means local constancy. �

It remains to prove Lemma III.2.10. This will be done in the next section, using Beauville–
Laszlo uniformization.

III.2.4.2. Second proof. For this proof, we assume that E is p-adic (otherwise certain non-étale
finite flat group schemes may appear). We define

Bab(G) = H1(WE , [Gsc(Ĕ)→ G(Ĕ)]),

the abelianized Kottwitz set (cohomology with coefficient in a crossed module, see [Bor98] and
[Lab99, Appendix B]). There is an abelianization map

B(G) −→ Bab(G)

deduced from the morphism [1 → G] → [Gsc → G]. If T is a maximal torus in G with reciprocal
image Tsc in Gsc then

[Tsc → T ] −→ [Gsc → G]

is a homotopy equivalence. If Z, resp. Zsc, is the center of G, resp. Gsc, there is a homotopy
equivalence

[Zsc → Z] −→ [Gsc → G].
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Lemma III.2.11. There is an identification

Bab(G) = π1(G)Γ

through which Kottwitz map κ is identified with the abelianization map B(G)→ Bab(G).

Proof. Choose a maximal torus T in G. One has

Bab(G) = H1(WE , [Tsc(Ĕ)→ T (Ĕ)])

= coker
(
B(Tsc)→ B(T )

)
since H2(WE , Tsc(Ĕ)) = 0 (use [Ser94, Chapter II.3.3 example (c)] and [Ser94, Chapter III.2.3
Theorem 1’]). The result is deduced using Kottwitz description of B(Tsc) and B(T ) = X∗(T )Γ. �

For S ∈ Perfk there is a morphism of sites

τ : (XS)ét −→ Sét

deduced from the identifications

(XS)ét = (X♦S )ét = (Div1
S)ét

and the projection Div1
S → S. Equivalently, τ∗ takes any étale T → S to XT → XS , which is again

étale.

We now interpret some étale cohomology groups of the curve as Galois cohomology groups, as
in [Far18b] where this type of computation was done for the schematical curve attached to an
algebraically closed perfectoid field.

Proposition III.2.12. Let S ∈ Perfk.

(i) Let F be a locally constant sheaf of finite abelian groups on Spa(E)ét. One has

Rτ∗F|XS = RΓét(Spa(E),F)

as a constant complex on Sét.

(ii) If D is a diagonalizable algebraic group over E, the pro-étale sheaf associated to

T/S 7−→ H1
ét(XT , D)

is the constant sheaf with value H1(WE , D(Ĕ)).

Proof. Let us note G = F|XS . There is a natural morphism RΓét(Spa(E),F) → Rτ∗G. The

morphism Div1
S → S is proper and applying [Sch17a, Corollary 16.10 (ii)], we are reduced to prove

that
H•ét(Spa(E),F)

∼−→ H•ét(XC,C+ ,G)

when C is an algebraically closed field. Since XC,C+ is quasicompact quasiseparated

H•ét(XC,C+⊗̂EÊ,G) = lim−→
E′|E finite

H•(XC,C+ ⊗E E′,G),

and, using Galois descent, it thus suffices to prove that the left member vanishes in positive degrees,
and equals F|E in degree 0.
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Let K = Fq((T )) and X(C,C+),K the equal characteristic Fargues–Fontaine curve over Spa(K).

Identifying Ê
[

with K̂sep, one has

(X(C,C+),E⊗̂EÊ)[ = X(C,C+),K⊗̂K̂sep.

Using this we are reduced to prove that for any prime number n, for i > 0

H i
ét(X(C,C+),K⊗̂KK̂sep,Z/nZ) = 0.

This is reduced, as above, to prove that any class in H i
ét(X(C,C+),K ,Z/nZ) is killed by pullback to

a finite separable extension of K.

When n 6= p one has

RΓét(X(C,C+),K ,Z/nZ) = RΓ(ϕZ, RΓét(D∗C,C+ ,Z/nZ))

where T is the coordinate on the open punctured disk

D∗C,C+ = Spa(C,C+)× Spa(K).

One has Hk(D∗C,C+ ,Z/nZ)) = 0 for k > 1, and this is equal, via Kummer theory, to Z/nZ(−1) for

k = 1. The Kummer covering of D∗C,C+ induced by T 7→ Tn kills any class in H1(D∗C,C+ ,Z/nZ).

Also H0(D∗C,C+ ,Z/nZ) = Z/nZ and the class in H1(ϕZ,Z/nZ) = Z/nZ is killed by passing up

along an unramified extension of K of degree n.

When n = p we use Artin-Schreier theory. Since C is an algebraically closed field we have
H i(X(C,C+),K ,O) = 0 when i > 0. Since the adic space X(C,C+),K is noetherian we deduce that

H i
ét(X(C,C+),K ,O) = 0 for i > 0. Thus, H i

ét(X(C,C+),K ,Z/nZ) is 0 for i > 1 and coker(K
F−Id−−−→ K)

when i = 1, which is killed by pullback to an Artin-Schreier extension of K. This finishes the proof
of point (1).

For point (2). There is a natural morphism

H1(WE , D(Ĕ))→ H1(XS , D)

(see just after the proof of this proposition). Suppose first that D is a torus. Then point (2) is the
computation of the coarse moduli space of BunD as a pro-étale stack. This itself is a consequence
of Theorem III.2.4 using a translation argument from 1 to any [b] ∈ B(D) (use the Picard stack
structure on BunD).

For any D we use the exact sequence

1 −→ D0 −→ D −→ π0(D) −→ 1.

For T/S there is a diagram

H0(E, π0(D)) B(D0) H1(WE , D(Ĕ)) H1(E, π0(D)) 0

H0(XT , π0(D)) H1
ét(XT , D

0) H1
ét(XT , D) H1

ét(XT , π0(D))

since H2(WE , D
0(Ĕ)) = 0 and H•(WE , π0(D)(Ĕ)) = H•(WE , π0(D)(E)). The result is then de-

duced from part (1) and the torus case. �
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For S ∈ Perfk there is a natural morphism of groups

Bab(G) −→ H1
ét(XS , [Gsc → G]).

This is deduced from the natural continuous morphism of sites

(XS)ét −→ {discrete WE-sets}.

Proposition III.2.13. For S ∈ Perfk, the pro-étale sheaf on S associated with

T/S 7−→ H1
ét(XT , [Gsc → G])

is the constant sheaf with value Bab(G).

Proof. We use the homotopy equivalence [Zsc → Z]→ [Gsc → G]. There is a diagram

H1(WE , Zsc(Ĕ)) //

'
��

H1(WE , Z(Ĕ)) //

'
��

H1(WE , [Gsc(Ĕ)→ G(Ĕ)]) //

��

H2(WE , Zsc(Ĕ))

'
��

H1
ét(XT , Zsc) // H1

ét(XT , Z) // H1
ét(XT , [Zsc → Z]) // H2

ét(XT , Zsc)

// H2(WE , Z(Ĕ))
(

' //
� _

��

H2(E, π0(Z))
)

'
��

// H2
ét(XT , Z)

(
// H2

ét(XT , π0(Z))
)
.

Using Proposition III.2.12 and some diagram chasing we conclude. �

Second Proof of Theorem III.2.7. The theorem is now deduced from the preceding Propo-
sition III.2.13 and the abelianization map H1

ét(XS , G)→ H1
ét(XS , [Gsc → G]). �

Remark III.2.14. Let Xalg
C be the schematical curve associated to C|Fq algebraically closed.

The results of [Far18b] for the étale cohomology of torsion local systems, [Far18b, Theorem 3.7]
and the vanishing of the H2(XC , T ) for a torus T , [Far18b, Theorem 2.7], can be stated in a more

uniform way; if D is a diagonalizable group over E then H i(WE , D(Ĕ))
∼−→ H i

ét(XC , D) for 0 ≤
i ≤ 2. Weil cohomology of E is the natural cohomology theory that corresponds to étale cohomology

of the curve. For example Theorem III.2.2 can be restated as H1(WE , G(Ĕ))
∼−→ H1

ét(XC , G) for a
reductive group G.

III.2.5. The explicit description of |BunG |. Theorem III.2.3 and Theorem III.2.7 imply
that the map

|BunG | → B(G)

is continuous when the target is endowed with the topology induced by the order on (X∗(T )+
Q)Γ

and the discrete topology on π1(G)Γ.

Conjecture III.2.15. The map |BunG | → B(G) is a homeomorphism.
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In other words, whenever b, b′ ∈ B(G) such that b > b′, there should be a specialization from b
to b′ in |BunG |.

The conjecture is known for G = GLn by work of Hansen, [Han17], based on [BFH+17]. The
argument has been extended to some other classical groups in unpublished work of Hamann. While
finishing our manuscript, a proof for general G has been given by Viehmann [Vie21].

We will later prove some weak form of the conjecture in Corollary IV.1.23, determining the
connected components of BunG using simple geometric considerations.

III.3. Beauville–Laszlo uniformization

Recall from [SW20, Lecture XIX] the B+
dR-affine Grassmannian

GrG

of G over SpdE, sending an affinoid perfectoid S = Spa(R,R+) over SpdE to the G-torsors
over Spec(B+

dR(R])) with a trivialization over BdR(R]); here R]/E is the untilt of R given by

S → Spd(E). In [SW20] this was considered over Spa(C[) for some C|E algebraically closed but
we want now to consider it in a more “absolute” way over Spd(E).

Since any G-torsor over Spec(B+
dR(R])) is trivial locally on Spa(R,R+)ét, this coincides with

the étale sheaf associated to the presheaf (R,R+) 7→ G(BdR(R]))/G(B+
dR(R])).

This has an interpretation as a Beilinson–Drinfeld type affine Grassmannian. If E , E ′ ∈
BunG(S) and D ∈ Div1(S), a modification between E and E ′ at D is an isomorphism

E|XS\D
∼−−→ E ′|XS\D

that is meromorphic along D. The latter means that for any representation in RepE(G), the

associated isomorphism between vector bundles, F|XS\D
∼−−→ F ′|XS\D extends to a morphism

F → F ′(kD) for k � 0 via F ′ ↪→ F ′(kD). Beauville–Laszlo gluing then identifies

GrG /ϕ
Z −→ Div1

with the moduli of D ∈ Div1(S), E ∈ BunG(XS), and a modification between the trivial G-bundle
and E at D, cf. [SW20, Proposition 19.1.2]. This defines a morphism of v-stacks

GrG −→ BunG .

Proposition III.3.1. The Beauville–Laszlo morphism

GrG −→ BunG

is a surjective map of v-stacks; in fact, of pro-étale stacks.

Proof. Pick any S = Spa(R,R+) ∈ Perfk affinoid perfectoid with a map to BunG, given
by some G-bundle E on XS . Fix an untilt S] of S over Spa(E). To prove surjectivity as pro-
étale stacks, we can assume that S is strictly totally disconnected. By [Far18b, Théorème 7.1]
(in case G quasisplit) and [Ans19, Theorem 6.5] (for general G), for any connected component
Spa(C,C+) ⊂ S of S, the map GrG(C) → BunG(C) is surjective, so in particular, we can pick a
modification E ′C of E|XC,C+ at Spa(C], C],+) ↪→ XC,C+ such that E ′C is trivial.
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Now, since S is strictly totally disconnected, we can trivialize E at the completion at S]; as
GrG(S) → GrG(C) is surjective (Lemma III.3.2), we can lift E ′C to a modification E ′ of E . Now
Theorem III.2.4 implies that E ′ is trivial in a neighborhood of the given point, and as S is strictly
totally disconnected, the corresponding G(E)-torsor is trivial (Lemma III.2.6), so we can trivialize

E ′ in a neighborhood of the given point. This shows that locally on S, the bundle E is in the image
of GrG → BunG, as desired. �

Lemma III.3.2. For S = Spa(R,R+) a strictly totally disconnected perfectoid space over Spa(E),
and s ∈ S, the map GrG(R)→ GrG(K(s)) is surjective.

Proof. Set C = K(s). First note that R→ C is surjective, as any connected component of S
is an intersection of open and closed subsets, and thus Zariski closed.

Since C is algebraically closed, GrG(C) = G(BdR(C))/G(B+
dR(C)). For any finite degree exten-

sion E′|E in C, since S⊗EE′ → S is étale and S strictly totally disconnected, E′ can be embedded

in R. Fix such an E′ ⊂ R that splits G and a pair T ⊂ B inside GE′ . Let ξ ∈ WOE (R[,+) be a
generator of the kernel of θ. The Cartan decomposition

G(BdR(C)) =
∐

µ∈X∗(T )+

G(B+
dR(C))µ(ξ)G(B+

dR(C))

shows then that we only need to prove that G(B+
dR(R))→ G(B+

dR(C)) is surjective.

Let us first remark that G(R) → G(C) is surjective. In fact, since S is totally disconnected it
suffices to check that G(OS,s) → G(C) is surjective. But this is a consequence of the smoothness
of G and the fact that OS,s is Henselian (with residue field C).

Moreover G(B+
dR(R)) = lim←−n≥1

G(B+
dR(R)/Filn). Using the surjectivity of Lie(G) ⊗ R →

Lie(G)⊗ C the result is then deduced by an approximation argument. �

Remark III.3.3. In the “classical case” of the moduli of G-bundles over a proper smooth
algebraic curve over a field k, G/k, Proposition III.3.1 is true only when G is semi-simple ([DS95]).
Typically this is false for GLn in general. The main reason why it is true in our situation is that

Pic0(XC,C+) is trivial, equivalently that Xalg
C \ {x} is the spectrum of a principal ideal domain in

Proposition II.2.9.

Lemma III.3.4. If G is split then

GrG = lim−→
µ∈X∗(T )+

GrG,≤µ

as a v-sheaf, where the index set is a partially ordered set according to the dominance order (µ ≤ µ′
if µ′ − µ is a nonnegative integral sum of positive coroots).

Proof. Consider a morphism S → GrG with S quasicompact quasiseparated. Fix an embed-
ding G ↪→ GLn such that the image of T lies in the standard maximal torus of GLn. This induces
an embedding X∗(T )+ ↪→ Zn. One checks easily that the image of |S| → |GrGLn | lies in a finite
union of affine Schubert cells. Since the fibers of X∗(T )+ → Zn/Sn are finite we deduce that there
is a finite collection (µi)i, µi ∈ X∗(T )+, such that the image of |S| → |GrG| lies in ∪i|GrG,≤µi |. By
[SW20, Proposition 19.2.3], Si := S×GrG GrG,≤µi is closed in S and thus quasicompact. Since the
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morphism
∐
i Si → S is surjective at the level of points with quasicompact source it is quasicompact

and thus a v-cover. This allows us to conclude. �

Lemma III.3.5. Suppose G̃→ G is a central extension with kernel a torus. Then

Gr
G̃
→ GrG

is a surjective map of v-sheaves.

Proof. Up to replacing E by a finite degree extension we can suppose G and G̃ are split. Fix

T̃ → T inside G̃→ G. According to Lemma III.3.4 it is enough to prove that for any µ̃ ∈ X∗(T̃ )+,
if µ ∈ X∗(T )+ is its image in G, then Gr

G̃,≤µ̃ → GrG,≤µ is surjective. This is clearly surjective

at the level of points since, if D is the kernel of G̃ → G, then H1
ét(Spec(BdR(C)), D) = 0, and

thus G̃(BdR(C)) → G(BdR(C)) is surjective. Since Gr
G̃,≤µ̃ is quasicompact over Spd(E) and

GrG,≤µ quasiseparated over Spd(E) (both are proper according to [SW20, Proposition 19.2.3]),
Gr

G̃,≤µ̃ → GrG,≤µ is quasicompact and thus a v-cover by [Sch17a, Lemma 12.11]. �

Using Proposition III.3.1, we thus have now a proof of Lemma III.2.10.

Let us record a few facts we can deduce from the preceding results.

Proposition III.3.6. Suppose G is split.

(i) There is a locally constant map |GrG| → π1(G) inducing a decomposition in open/closed sub-
sheaves

GrG =
∐

α∈π1(G)

GrαG

characterized by GrG,µ ⊂ Grµ
]

G .

(ii) The composite

|GrG|
Beauville–Laszlo−−−−−−−−−−→ |BunG |

κ−−→ π1(G)

is the opposite of the preceding map.

(iii) For each α ∈ π1(G),
GrαG = lim−→

µ∈X∗(T )+,µ]=α

GrαG,≤µ

as a filtered colimit of v-sheaves.

Proof. Point (1) is reduced to the case when Gder is simply connected using Lemma III.3.5

and a z-extension. Now, if Gder is simply connected, for µ1, µ2 ∈ X∗(T )+, µ1 ≤ µ2 implies µ]1 = µ]2.
The result is then deduced from the fact that GrG,≤µ ⊂ GrG is closed for any µ.

Point (2) is can be similarly reduced first to the case that Gder is simply connected by passage
to a z-extension; then to the case of a torus by taking the quotient by Gder; then to the case of an
induced torus by another z-extension; and then to Gm by changing E. In that case, it follows from
Proposition II.2.3.

Point (3) is deduced from Lemma III.3.4 and the fact that for α ∈ π1(G), {µ ∈ X∗(T )+ | µ] = α}
is a filtered ordered set. �
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When G is not split, choosing E′|E Galois of finite degree splitting G, using the formula
GrG ×Spd(E) Spd(E′) = GrGE′ , one deduces:

(i) There is a decomposition GrG =
∐
ᾱ∈Γ\π1(G) GrᾱG and a formula GrG = lim−→µ̄∈Γ\X∗(T )+ GrG,≤µ̄

such that GrG,≤µ̄ ⊂ Grµ̄
]

G .

(ii) The composite |GrG|
BL−−→ |BunG |

κ−→ π1(G)Γ is induced by the opposite of Γ\π1(G)→ π1(G)Γ

and the preceding decomposition.

This description of the Kottwitz map, together with Proposition III.3.1, in fact gives another
proof of Theorem III.2.7.

III.4. The semistable locus

III.4.1. Pure inner twisting. Recall the following. In the particular case of non abelian
group cohomology this is called “torsion au moyen d’un cocycle” in [Ser94, I.5.3].

Proposition III.4.1. Let X be a topos, H a group in X and T an H-torsor. Let HT = Aut(T )
as a group in X. Then:

(i) HT is the “pure inner twisting” of H by T , HT = H
H
∧ T where H acts by conjugation on H.

In particular [HT ] ∈ H1(X,Had) is the image of [T ] via H1(X,H)→ H1(X,Had).

(ii) The morphism of stacks in X, [∗/H]→ [∗/HT ], that sends an H-torsor S to Isom(S, T ), is an
equivalence.

In the following we use the cohomological description of G-bundles on the curve as G-torsors
on the étale site of the sous-perfectoid space XS (here G is seen as an E-adic group, for (R,R+) a
sous-perfectoid E-algebra its Spa(R,R+)-points being G(R)).

Proposition III.4.2. Let S ∈ Perfk, b ∈ B(G) basic and Eb → XS the associated étale G-torsor.
Then the étale sheaf of groups Gb ×Spa(E) XS over XS is the pure inner twisting of G ×Spa(E) XS

by Eb.

Proof. One has
Eb = (GĔ ×Spa(Ĕ) YS)/((bσ)× ϕ)Z −→ XS

where bσ acts on GĔ by translation on the right. The G×XS = (GĔ ×Spa(Ĕ) YS)/(Id×ϕ)Z-torsor

structure is given by multiplication on the left on GĔ . The group Gb ×XS = (Gb × YS)/(Id× ϕ)Z

acts on this torsor on the right via the morphism Gb → GĔ , which gives a morphism

Gb ×XS → Aut(Eb).
After pullback via the étale cover YS → XS and evaluation on T = Spa(R,R+) → YS affinoid
sous-perfectoid, this is identified with the map

Gb(R) = {g ∈ G(Ĕ ⊗E R) | g · (bσ ⊗ 1) = (bσ ⊗ 1) · g} −→ G(R)

deduced from the Ĕ-algebra structure of R. But as b is basic, the natural map

Gb ×E Ĕ → G×E Ĕ
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is an isomorphism, cf. [RZ96, Corollary 1.14]. �

Thus, extended pure inner forms, as defined by Kottwitz, become pure inner forms, as defined
by Vogan, when pulled back to the curve.

Corollary III.4.3. For b basic there is an isomorphism of v-stacks

BunG ' BunGb

that induces an isomorphism BunbG ' Bun1
Gb

.

Example III.4.4. Take G = GLn and (D,ϕ) an isoclinic isocrystal of height n. Let B =
End(D,ϕ) be the associated simple algebra over E. Since (D,ϕ) is isoclinic the action of B

on E(D,ϕ) induces an isomorphism B ⊗E OXS
∼−→ End(E(D,ϕ)) for any S ∈ Perfk. The stack

BunB× is identified with the stack S 7→ {rank 1 locally free B⊗E OXS -modules}. There is then an
isomorphism (Morita equivalence)

BunGLn
∼−−→ BunB×

E 7−→ HomOXS
(E , E(D,ϕ)).

III.4.2. Description of the semi-stable locus. Recall from [Far18b] that a G-bundle over
XC,C+ is semistable if and only if it corresponds to some basic element of B(G). Also recall that
for any b ∈ B(G), the automorphism group of the corresponding G-isocrystal defines an algebraic
group Gb over G. If G is quasisplit, then Gb is an inner form of a Levi subgroup of G, and it is an
inner form of G precisely when b is basic. More generally Gb is an inner form of a Levi subgroup
of the quasisplit inner form of G.

Theorem III.4.5. The semistable locus

Bunss
G ⊂ BunG

is open, and there is a canonical decomposition as open/closed substacks

Bunss
G =

∐
b∈B(G)basic

BunbG.

For b basic there is an isomorphism

[∗/Gb(E)]
∼−→ BunbG.

Proof. Theorem III.2.3 implies that Bunss
G is open. Recall that the basic elements of B(G)

map isomorphically to π1(G)Γ via the Kottwitz map. Thus Theorem III.2.7 gives a disjoint decom-
position

Bunss
G =

∐
b∈B(G)basic

BunbG.

The result is then a consequence of Proposition III.4.2 and Theorem III.2.4. �

Example III.4.6. For a torus T , BunT = BunssT and there is an exact sequence of Picard stacks

0 −→ [∗/T (E)] −→ BunT −→ X∗(T )Γ −→ 0,
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where we recall that X∗(T )Γ = B(T ). The fiber of BunT → B(T ) over β is a gerbe banded

by T (E) over ∗ via the action Bun1
T . This gerbe is neutralized after choosing some b such that

[b] = β. In case there is a section of T (Ĕ) � B(T ), for example if B(T ) is torsion free, then
BunT ' [∗/T (E)]×X∗(T )Γ as a Picard stack.

III.4.3. Splittings of the Harder–Narasimhan filtration. We can also consider the fol-
lowing moduli problem, parametrizing G-bundles with a splitting of their Harder–Narasimhan
filtration.

Proposition III.4.7. Consider the functor BunHN-split
G taking each S ∈ Perfk to the groupoid

of exact ⊗-functors from RepE G to the category of Q-graded vector bundles E =
⊕

λ Eλ on XS

such that Eλ is everywhere semistable of slope λ for all λ ∈ Q. For any b ∈ B(G), the bundle Eb
naturally refines to a Q-graded bundle Egr

b , using the Q-grading on isocrystals, and for S affinoid
the natural map

Gb ×E Xalg
S → Aut(Egr

b )

of group schemes over Xalg
S is an isomorphism. In particular, we get a natural map⊔

b∈B(G)

[∗/Gb(E)]→ BunHN-split
G ,

and this is an isomorphism.

Proof. Recall that the natural map Gb ×E Ĕ → G ×E Ĕ, recording the map of underly-
ing Ĕ-vector spaces, is a closed immersion identifying Gb ×E Ĕ with the centralizer of the slope
homomorphism νb : D→ G×E Ĕ, cf. [RZ96, Corollary 1.14]. This implies that the natural map

Gb ×E Xalg
S → Aut(Egr

b )

is an isomorphism.

We get the evident functor from
⊔
b∈B(G)[∗/Gb(E)] to this moduli problem, and it is clearly fully

faithful. To see that it is surjective, take any strictly totally disconnected S and an exact ⊗-functor
Egr from RepE G to such Q-graded vector bundles. For any point s ∈ S, note that Q-graded vector
bundles of the given form on XK(s) are equivalent to IsocE , so at s ∈ S there is an isomorphism

with some Egr
b . The type of the Q-filtration is locally constant, so after replacing S by an open

neighborhood of s, we can assume that

Isom(Egr
b , E

gr)

defines an Aut(Egr
b )-torsor over Xalg

S , i.e. a Gb-torsor over S. This defines a map S → BunGb ,

taking s into Bun1
Gb

, and by Theorem III.2.4 and Lemma III.2.6 it follows that after replacing S
by an open neighborhood, we can assume that the torsor is trivial. This concludes the proof of
surjectivity. �
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III.5. Non-semistable points

III.5.1. Structure of Aut(Eb). Next, we aim to describe the non-semi-stable strata BunbG.

Thus, fix any b ∈ B(G) and consider the associated G-bundle Eb on XS . For any algebraic repre-
sentation ρ : G→ GLn, the corresponding vector bundle ρ∗Eb has its Harder–Narasimhan filtration
(ρ∗Eb)≥λ ⊂ ρ∗Eb, λ ∈ Q. If G is quasisplit and we fix a Borel B ⊂ G, then this defines a reduction
of Eb to a parabolic P ⊂ G containing B.

Now inside the automorphism v-sheaf

G̃b = Aut(Eb)
(which necessarily preserves the Harder–Narasimhan filtration of ρ∗Eb for any ρ ∈ RepE(G)) one
can consider for any λ > 0 the subgroup

G̃≥λb ⊂ G̃b
of all automorphisms γ : Eb

∼−→ Eb such that

(γ − 1)(ρ∗Eb)≥λ
′ ⊂ (ρ∗Eb)≥λ

′+λ

for all λ′ and all representations ρ of G. We also set G̃>λb =
⋃
λ′>λ G̃

≥λ′
b , noting that this union is

eventually constant.

As Gb(E) is the automorphism group of the isocrystal corresponding to b, and H0(XS ,OXS ) =
E(S), we have a natural injection

Gb(E) ↪→ G̃b.

Now, for any automorphism γ of Eb and any representation ρ, γ induces an automorphism of the
Q-graded vector bundle ⊕

λ∈Q
Grλ(ρ∗Eb).

Using Proposition III.4.7, we deduce that the preceding injection has a section and

G̃b = G̃>0
b oGb(E).

For a G-bundle E on XS we note ad E for its adjoint bundle deduced by pushforward by the adjoint
representation G→ GL(Lie(G)). This is in fact a Lie algebra bundle.

Proposition III.5.1. One has
G̃b = G̃>0

b oGb(E),

and for any λ > 0, there is a natural isomorphism

G̃≥λb /G̃>λb
∼−−→ BC((ad Eb)≥λ/(ad Eb)>λ),

the Banach–Colmez space associated to the slope −λ isoclinic part of (Lie(G)⊗E Ĕ,Ad(b)σ).

In particular, G̃b is an extension of Gb(E) by a successive extension of positive Banach–Colmez

spaces, and thus G̃b → ∗ is representable in locally spatial diamonds, of dimension 〈2ρ, νb〉 (where
as usual ρ is the half-sum of the positive roots).

We refer to [SR72, Section IV] and [Zie15] for some general discussion of filtered and graded
fibre functors.
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Proof. We already saw the first part. For the second part, suppose S = Spa(R,R+) is affinoid.

Let Xalg
R be the schematical curve. We use the GAGA correspondence, Proposition II.2.7. Now, we

apply Proposition III.5.2 to Xalg
R and the G-bundle Eb associated to b on Xalg

R . Let H be the inner

twisting of G×Xalg
R by Eb as a reductive group scheme over Xalg

R . It is equipped with a filtration

(H≥λ)λ≥0 satisfying

• H≥0/H>0 ∼= Gb ×E Xalg
R ,

• for λ > 0, H≥λ/H>λ = (ad Eb)≥λ/(ad Eb)>λ,

• G̃≥λb (S) = H≥λ(Xalg
R ),

functorially in (R,R+); the first part uses Proposition III.4.7. Since H1(Xalg
R ,O(µ)) = 0 as soon

as µ > 0, we deduce by induction on µ > 0, starting with µ � 0 and using the computation of

H≥µ/H>µ, that H1
ét(X

alg
R , H≥µ) = 0 for µ > 0. From this we deduce that

H≥λ(Xalg
R )/H>λ(Xalg

R ) = (H≥λ/H>λ)(Xalg
R ).

Finally, it remains to compute the dimension. This is given by∑
λ>0

λ · dim(ad Eb)≥λ/(ad Eb)>λ,

which is given by 〈2ρ, νb〉. �

Proposition III.5.2. Let G be a reductive group over a field K, and let X be a scheme
over K. Let E be a G-bundle on X with automorphism group scheme H/X (an inner form
of G ×K X, cf. Proposition III.4.1). Consider a Q-filtration on the fibre functor RepK(G) →
{Vector bundles on X} associated with E. Defining groups H≥λ ⊂ H for λ ≥ 0 as before, they are
smooth group schemes, H≥0 is a parabolic subgroup with unipotent radical H>0, the Lie algebra of

H≥λ is given by (adE)≥λ ⊂ Lie adE = Lie G̃, and the quotient H≥λ/H>λ is a vector group, thus

H≥λ/H>λ ∼= (ad E)≥λ/(ad E)>λ

Proof. The Lie algebra of H is ad E . All statements can be checked étale locally on X.
According to [Zie15, Theorem 1.3] the Q-filtration on the fiber functor is split locally on X.
Moreover E is split étale locally on X. We can thus suppose that E is the trivial G-bundle and the
filtration given by some ν : D/X → G×K X. Then the statement is easily checked, see [SR72]. �

III.5.1.1. The quasi-split case. Suppose now that G is moreover quasi-split. Fix A ⊂ T ⊂ B
with A a maximal split torus and T a maximal torus of G inside a Borel subgroup B. Up to
σ-conjugating b one can suppose that νb : D → A and νb ∈ X∗(A)+

Q. Let Mb be the centralizer of

νb and P+
b the parabolic subgroup associated to νb, the weights of νb in Lie(P+

b ) are ≥ 0. One has

B ⊂ P+
b , P+

b is a standard parabolic subgroup with standard Levi subgroup Mb. Let P−b be the

opposite parabolic subgroup, the weights of νb in Lie(P−b ) are ≤ 0. One has b ∈ Mb(Ĕ) and we

denote it bM as an element of Mb(Ĕ).
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Then, if

Q = EbM
Mb

× P−b ,

RuQ = EbM
Mb

× RuP
−
b

as Xalg
R -group-schemes, one has

G̃b(R,R
+) = Q(Xalg

R )

G̃>0
b (R,R+) = RuQ(Xalg

R ).

III.5.2. Description of Harder–Narasimhan strata. Now we can describe the structure
of the stratum BunbG.

Proposition III.5.3. Let b ∈ B(G) be any element given by some G-isocrystal. The induced

map xb : ∗ → BunbG is a surjective map of v-stacks, and ∗ ×BunbG
∗ ∼= G̃b, so that

BunbG
∼= [∗/G̃b]

is the classifying stack of G̃b-torsors. In particular, the map G̃b → π0G̃b ∼= Gb(E) induces a map

BunbG → [∗/Gb(E)]

that admits a splitting.

Proof. Let S = Spa(R,R+) ∈ Perfk be strictly totally disconnected and let E be a G-bundle

on Xalg
R , the schematical curve, all of whose geometric fibers are isomorphic to Eb. In particular,

the Harder–Narasimhan polygon of ρ∗E is constant for all representations ρ : G → GLn, and thus
by Theorem II.2.19, the vector bundle ρ∗E admits a relative Harder–Narasimhan filtration. This

defines a Q-filtration on the fiber functor RepE(G)→ {vector bundles on Xalg
R } defined by E , and

exactness can be checked on geometric points where it holds by the classification of G-bundles.
Since for any ρ, the Harder–Narasimhan polygon of ρ∗Eb and the one of ρ∗E are equal, the two
filtered fiber functors on RepE(G) defined by E and Eb are of the same type. Thus, étale locally on

Xalg
R those two filtered fiber functors are isomorphic. Let H = Aut(Eb) and H≥0 = Autfiltered(Eb)

as group schemes over Xalg
R , cf. Proposition III.5.1. Now, look at

T = Isomfiltered(Eb, E).

This is an H≥0-torsor over Xalg
R that is a reduction to H≥0 of the H-torsor Isom(Eb, E). Let us look

at the image of [T ] ∈ H1
ét(X

alg
R , H≥0) in H1

ét(X
alg
R , H≥0/H>0), that is to say the H≥0/H>0-torsor

T/H>0. This parametrizes isomorphisms of graded fiber functors between the two obtained by
semi-simplifying the filtered fiber functors attached to Eb and E . By Proposition III.4.7, this torsor

is locally trivial. Now the triviality of T follows from the vanishing of H1(Xalg
R , H>0). In fact, for

λ > 0, H1(Xalg
R , H≥λ/H>λ) = 0 since H1(Xalg

R ,O(λ)) = 0.

It is clear that ∗ ×BunbG
∗ is given by G̃b, so the rest follows formally. �
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Remark III.5.4 (Followup to Remark III.2.5). From the vanishing of H1
v (S, G̃>0

b ) for S affinoid

perfectoid one deduces that for such S, any G̃b-torsor is of the form T×G̃>0
b where T → S is aGb(E)-

torsor. Here the action of g1 o g2 ∈ Gb(E)o G̃>0
b on T × G̃>0

b is given by (x, y) 7→ (g1 ·x, g1g2yg
−1
1 ).

In particular any G̃b-torsor is representable in locally spatial diamonds.



CHAPTER IV

Geometry of diamonds

In this chapter, we extend various results on schemes to the setting of diamonds, showing that
many advanced results in étale cohomology of schemes have analogues for diamonds.

In Section IV.1, we introduce a notion of Artin v-stacks, and discuss some basic properties; in
particular, we show that BunG is a cohomologically smooth Artin v-stack. Moreover, we can define
a notion of dimension for Artin v-stacks, which we use to determine the connected components of
BunG. In Section IV.2, we develop the theory of universally locally acyclic sheaves. In Section IV.3,
we introduce a notion of formal smoothness for maps of v-stacks. In Section IV.4, we use the
previous sections to prove the Jacobian criterion for cohomological smoothness, by establishing
first formal smoothness, and universal local acyclicity. In Section IV.5, we prove a result on the
vanishing of certain partially compactly supported cohomology groups, ensuring that for example
Spd k[[x1, . . . , xd]] behaves like a strictly local scheme for Dét. In Section IV.6, we establish Braden’s
theorem on hyperbolic localization in the world of diamonds. Finally, in Section IV.7, we establish
several version of Drinfeld’s lemma in the present setup. The theme here is the idea π1((Div1)I) =
W I
E . Unfortunately, we know no definition of π1 making this true, but for example it becomes true

when considering Λ-local systems for any Λ.

IV.1. Artin stacks

IV.1.1. Generalities.

IV.1.1.1. Definition and basic properties. In this paper, we consider many small v-stacks like
BunG as above. However, they are stacky in some controlled way, in that they are Artin v-stacks
in the sense of the following definition.

Definition IV.1.1. An Artin v-stack is a small v-stack X such that the diagonal ∆X : X →
X × X is representable in locally spatial diamonds, and there is some surjective map f : U → X
from a locally spatial diamond U such that f is separated and cohomologically smooth.

Remark IV.1.2. We are making the assumption that f is separated, because only in this case
we have defined cohomological smoothness. This means that we are imposing some (probably
unwanted) very mild separatedness conditions on Artin v-stacks. In particular, it implies that ∆X

is quasiseparated: Let f : U → X be as in the definition, and assume without loss of generality
that U is a disjoint union of spatial diamonds (replacing it by an open cover if necessary), so in
particular U is quasiseparated. As f is separated, the map U ×X U → U is separated, and in
particular U ×X U is again quasiseparated. This is the pullback of ∆X : X → X × X along the
surjection U × U → X ×X, so ∆X is quasiseparated.

105
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Remark IV.1.3. The stack BunG is not quasiseparated. In fact, [∗/G(E)] is already not qua-

siseparated since the sheaf of automorphisms of the trivial G-bundle, G(E), is not quasicompact.
This is different from the “classical situation” of the stack of G-bundles on a proper smooth curve,
this one being quasiseparated (although not separated). In the “classical schematical case” of Artin
stacks it is a very mild assumption to suppose that Artin stacks are quasiseparated. In our situation
this would be a much too strong assumption, but it is still a very mild assumption to suppose that
the diagonal is quasiseparated.

Remark IV.1.4. By Remark IV.1.2, for any Artin v-stack X, the diagonal ∆X is quasisep-
arated. Conversely, let X be any small v-stack, and assume that there is some surjective map
U → X from a small v-sheaf. Then:

(i) If U is quasiseparated, then ∆X is quasiseparated, by the argument of Remark IV.1.2.

(ii) If U is a locally spatial diamond and U → X is representable in locally spatial diamonds, then
∆X is quasiseparated (as we may without loss of generality assume that U is quasiseparated, so
that (i) applies), and to check that ∆X is representable in locally spatial diamonds, it suffices to
see that ∆X is representable in diamonds. Indeed, [Sch17a, Proposition 13.4 (v)] shows that if ∆X

is quasiseparated and representable in diamonds, then representability in locally spatial diamonds
can be checked v-locally on the target. But the pullback of ∆X along U ×U → X ×X is U ×X U ,
which is a locally spatial diamond as we assumed that U → X is representable in locally spatial
diamonds.

(iii) Finally, in the situation of (ii), checking whether ∆X is representable in diamonds can be done
after pullback along a map V → X×X that is surjective as a map of pro-étale stacks, by [Sch17a,
Proposition 13.2 (iii)].

In particular, if there is a map f : U → X from a locally spatial diamond U such that f is
separated, cohomologically smooth, representable in locally spatial diamonds, and surjective as a
map of pro-étale stacks, then X is an Artin v-stack. If one only has a map f : U → X from a locally
spatial diamond such that f is separated, cohomologically smooth, representable in locally spatial
diamonds, and surjective as a map of v-stacks, then it remains to prove that ∆X is representable
in diamonds, which can be done after pullback along a map V → X × X that is surjective as a
map of pro-étale stacks.

Remark IV.1.5. Since cohomologically smooth morphisms are open, to prove that a separated,
representable in locally spatial diamonds, cohomologically smooth morphism U → X is surjective,
it suffices to verify it on geometric points.

Remark IV.1.6. If X is a small v-stack with a map g : X → S to some “base” small v-stack S,
one might introduce a notion of an “Artin v-stack over S”, asking instead that ∆X/S : X → X×SX
is representable in locally spatial diamonds; note that the condition on the chart f : U → X will
evidently remain the same as in the absolute case. We note that as long as the diagonal of S is
representable in locally spatial diamonds (for example, S is an Artin v-stack itself), this agrees
with the absolute notion. Indeed, if ∆X/S and ∆S are representable in locally spatial diamonds,
then also ∆X is representable in locally spatial diamonds, as X ×S X → X × X is a pullback of
∆S and thus representable in locally spatial diamonds, so ∆X is the composite of the two maps
X → X ×S X → X ×X both of which are representable in locally spatial diamonds. Conversely,
assume that X and S are such that their diagonals are representable in locally spatial diamonds.
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Then both X and X×SX are representable in locally spatial diamonds over X×X, thus any map
between them is.

Example IV.1.7. Any locally spatial diamond is an Artin v-stack.

Before giving other examples let us state a few properties.

Proposition IV.1.8.

(i) Any fibre product of Artin v-stacks is an Artin v-stack.

(ii) Let S → ∗ be a pro-étale surjective, representable in locally spatial diamonds, separated and
cohomologically smooth morphism of v-sheaves. The v-stack X is an Artin v-stack if and only if
X × S is an Artin v-stack.

(iii) If X is an Artin v-stack and f : Y → X is representable in locally spatial diamonds, then Y is
an Artin v-stack.

Proof. For point (1), if X = X2×X1X3 is such a fibre product and fi : Ui → Xi are separated,
representable in locally spatial diamonds, and cohomologically smooth surjective maps from locally
spatial diamonds Ui, then U = (U1 ×X2 U2) ×U2 (U2 ×X2 U3) is itself a locally spatial diamond
(using that ∆X2 is representable in locally spatial diamonds), and the projection f : U → X
is a separated, representable in locally spatial diamonds, and cohomologically smooth surjection.
For the diagonal, since ∆X2 and ∆X3 are representable in locally spatial diamonds, ∆X2 ×∆X3 :
X2 × X3 → (X2 × X3) × (X2 × X3) is representable in locally spatial diamonds. Since ∆X1 is
representable in locally spatial diamonds, its pullback by X2 × X3 → X1 × X1, that is to say
u : X2 ×X1 X3 → X2 ×X3, is representable in locally spatial diamonds. Thus, ∆X2×X1

X3 is a map

between stacks that are representable in locally spatial diamonds over (X2×X3)× (X2×X3), and
thus is representable in locally spatial diamonds.

For point (2), suppose X×S is an Artin v-stack. If U is a locally spatial diamond and U → X×S
is separated, representable in locally spatial diamonds, cohomologically smooth, and surjective, then
the composite U → X×S → X is too. It remains to see that ∆X is representable in locally spatial
diamonds. By Remark IV.1.4 it suffices to prove that the pullback of ∆X by X ×X ×S → X ×X
is representable in locally spatial diamonds. But this pullback is the composite of ∆X×S with
X ×X × S × S → X ×X × S, and we conclude since the projection S × S → S is representable in
locally spatial diamonds for evident reasons.

For point (3), if U is a locally spatial diamond and U → X is surjective, separated, representable
in locally spatial diamonds, and cohomologically smooth, then V = U ×X Y is a locally spatial
diamond, and V → Y is surjective, separated, representable in locally spatial diamonds, and
cohomologically smooth. It remains to see that ∆Y is representable in locally spatial diamonds.
By Remark IV.1.4, it suffices to see that ∆Y is representable in diamonds. But we can write ∆Y

as the composite Y → Y ×X Y → Y ×k Y . The first map is 0-truncated and injective and thus
representable in diamonds by [Sch17a, Proposition 11.10], while the second map is a pullback of
∆X . �

We can now give more examples.

Example IV.1.9.
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(i) According to point (2) of Proposition IV.1.8, the v-stack X is an Artin v-stack if and only if

X × SpdE, resp. X × Spa(Fq((t1/p
∞

))), is an Artin v-stack. To check that X is an Artin v-stack

we can thus replace the base point ∗ by SpdE, resp. SpaFq((t1/p
∞

)).

(ii) For example, any small v-sheaf X such that X → ∗ is representable in locally spatial diamonds
is an Artin v-stack; e.g. X = ∗.
(iii) Using point (3) of Proposition IV.1.8 and [Sch17a, Proposition 11.20] we deduce that any
locally closed substack of an Artin v-stack is an Artin v-stack.

(iv) Let G be a locally profinite group that admits a closed embedding into GLn(E) for some n.
Then the classifying stack [∗/G] is an Artin v-stack. For this it suffices to see that [SpdE/G] =

SpdE × [∗/G] is an Artin v-stack. Now let H = GL♦n,E ; then there is a closed immersion
G×SpdE ↪→ H. The map H → SpdE is representable in locally spatial diamonds, separated, and
cohomologically smooth; hence so is H/G→ [SpdE/G] (by [Sch17a, Proposition 13.4 (iv), Propo-
sition 23.15]), and H/G is a locally spatial diamond (itself cohomologically smooth over SpdE by
[Sch17a, Proposition 24.2] since this becomes cohomologically smooth over the separated étale
cover H/K → H/G for some compact open pro-p subgroup K of G). It is clear that the diagonal
of [∗/G] is representable in locally spatial diamonds.

Remark IV.1.10. If G is a smooth algebraic group over the field k then Spec(k)→ [Spec(k)/G]
is a smooth presentation of the Artin stack [Spec(k)/G]. However, in the situation of point (4)
of Example IV.1.9 the map f : ∗ → [∗/G] is not cohomologically smooth since for its pullback

f̃ : G→ ∗, the sheaf f̃ !Λ is the sheaf of distributions on G with values in Λ.

IV.1.1.2. Smooth morphisms of Artin v-stacks. Notions that can be checked locally with respect
to cohomologically smooth maps can be extended to Artin v-stacks (except possibly for subtleties
regarding separatedness). In particular:

Definition IV.1.11. Let f : Y → X be a map of Artin v-stacks. Assume that there is some
separated, representable in locally spatial diamonds, and cohomologically smooth surjection g : V →
Y from a locally spatial diamond V such that f ◦g : V → X is separated. Then f is cohomologically
smooth if for any (equivalently, one) such g, the map f ◦ g : V → X (which is separated by
assumption, and automatically representable in locally spatial diamonds) is cohomologically smooth.

In the preceding definition the “equivalently, one” assertion is deduced from [Sch17a, Propo-
sition 23.13] that says that cohomological smoothness is “cohomologically smooth local on the
source”. More precisely, if checked for one then for all g : V → X separated cohomologically
smooth (not necessarily surjective) from a locally spatial diamond V , f ◦ g is separated cohomo-
logically smooth.

Convention IV.1.12. In the following, whenever we say that a map f : Y → X of Artin
v-stacks is cohomologically smooth, we demand that there is some separated, representable in
locally spatial diamonds, and cohomologically smooth surjection g : V → Y from a locally spatial
diamond V such that f ◦ g : V → X is separated. Note that this condition can be tested after
taking covers U → X by separated, representable in locally spatial diamonds, and cohomologically
smooth surjections; i.e. after replacing X by X ×Y U and Y by U . If X and Y have the property
that one can find a cover U → X, V → Y , as above with U and V perfectoid spaces, and ∆X is
representable in perfectoid spaces, then the condition is automatic, as all maps of perfectoid spaces
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are locally separated. That being said there is no reason that this is true in general since there are
morphisms of spatial diamonds that are not locally separated.

We will not try to give a completely general 6-functor formalism that includes functors Rf! and
Rf ! for stacky maps f (this would require some ∞-categorical setting). However, we can extend
the functor Rf ! to cohomologically smooth maps of Artin v-stacks. Let Λ be a ring killed by some
integer n prime to p, or an adic ring as in [Sch17a, Section 26].

Definition IV.1.13. Let f : Y → X be a cohomologically smooth map of Artin v-stacks. The
dualizing complex Rf !Λ ∈ Dét(Y,Λ) is the invertible object equipped with isomorphisms

Rg!(Rf !Λ) ∼= R(f ◦ g)!Λ

for all separated, representable in locally spatial diamonds, and cohomologically smooth maps g :
V → Y from a locally spatial diamond V , such that for all cohomologically smooth maps h : V ′ → V
between such g′ : V ′ → Y and g : V → Y , the composite isomorphism

R(g′)!(Rf !Λ) ∼= R(f ◦ g′)!Λ ∼= R(f ◦ g ◦ h)!Λ ∼= Rh!(R(f ◦ g)!Λ) ∼= Rh!(Rg!(Rf !Λ)) ∼= R(g′)!(Rf !Λ)

is the identity.

As Rf !Λ is locally concentrated in one degree, it is easy to see that Rf !Λ is unique up to
unique isomorphism. Let us be more precise. Let C be the category whose objects are separated
cohomologically smooth morphisms V → Y with V a locally spatial diamond, and morphisms

(V ′
g′−→ Y ) → (V

g−→ Y ) are couples (h, α) where h : V ′ → V is separated cohomologically smooth
and α : g ◦ h⇒ g′ is a 2-morphism. Then the rule

(V
g−→ Y ) 7−→ RHomΛ(Rg!Λ, R(f ◦ g)!Λ)

defines an element of

2- lim←−
(V→Y )∈C

{invertible objects in Dét(V,Λ)} ∼= {invertible objects in Dét(Y,Λ)}.

Remark IV.1.14. If g : V → Y is a compactifiable representable in locally spatial diamonds
morphism of small v-stacks with dim. trg g < ∞ such that f ◦ g satisfies the same hypothesis, it
is not clear that Rg!(Rf !Λ) ∼= R(f ◦ g)!Λ. This is a priori true only when V is a locally spatial
diamond and g is separated cohomologically smooth, the only case we will need.

Definition IV.1.15. Let f : Y → X be a cohomologically smooth map of Artin v-stacks. The
functor

Rf ! : Dét(X,Λ)→ Dét(Y,Λ)

is given by Rf ! = Rf !Λ⊗L
Λ f
∗.

Remark IV.1.16. Checking after a cohomologically smooth cover, one sees that Rf ! preserves
all limits (and colimits) and hence admits a left adjoint Rf!.

Definition IV.1.17. Let f : Y → X be a cohomologically smooth map of Artin v-stacks and let
` 6= p be a prime. Then f is pure of `-dimension d ∈ 1

2Z if Rf !F` sits locally in homological degree
2d.
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As Rf !F` is locally constant, any cohomologically smooth map f : Y → X of Artin v-stacks
decomposes uniquely into a disjoint union of fd : Yd → X that are pure of `-dimension d. A priori
this decomposition may depend on ` and include half-integers d, but this will not happen in any
examples that we study.

IV.1.2. The case of BunG.

IV.1.2.1. Smooth charts on BunG. One important example is the following. We use Beauville–
Laszlo uniformization to construct cohomologically smooth charts on BunG. More refined charts
will be constructed in Theorem V.3.7. For µ̄ ∈ X∗(T )+/Γ we note GrG,µ̄ for the subsheaf of GrG
such that GrG,µ̄×Spd(E) Spd(E′) =

∐
µ′≡µ GrG,µ′ where E′|E is a finite degree Galois extension

splitting G. We will use the following simple proposition.

Proposition IV.1.18. For any µ ∈ X∗(T )+, the open Schubert cell GrG,µ / SpdE′ is cohomo-
logically smooth of `-dimension 〈2ρ, µ〉.

We defer the proof to Proposition VI.2.4 as we do not want to make a digression on GrG here.

Theorem IV.1.19. The stack BunG is a cohomologically smooth Artin v-stack of `-dimension
0. The Beauville–Laszlo map defines a separated cohomologically smooth cover∐

µ̄∈X∗(T )+/Γ

[G(E)\GrG,µ̄] −→ BunG .

Proof. We check first that ∆BunG is representable in locally spatial diamonds. For this, it
suffices to see that for a perfectoid space S with two G-bundles E1, E2 on XS , the functor of
isomorphisms between E1 and E2 is representable by a locally spatial diamond over S. By the
Tannakian formalism, one can reduce to vector bundles. For example, according to Chevalley, one
can find a faithful linear representation ρ : G → GLn, a representation ρ′ : GLn → GL(W ), and a
line D ⊂W such that G is the stabilizer of D inside GL(V ). Then G-bundles on XS are the same
as a rank n vector bundle E together with a sub-line bundle L inside ρ′∗E . In terms of those data,

isomorphisms between (E1,L1) and (E2,L2) are given by a couple (α, β) where α : E1
∼−→ E2, and

β : L1
∼−→ L2 satisfy (ρ′∗α)|L1

= β. Since the category of locally spatial diamonds is stable under
finite projective limits we are reduced to the case of the linear group. Now the result is given by
Lemma IV.1.20.

It remains to construct cohomologically smooth charts for BunG. We first prove that the
morphism

π :
∐

µ̄∈X∗(T )+/Γ

[G(E)\GrG,µ̄] −→ BunG×k Spd Ĕ

is separated cohomologically smooth. Since this is surjective at the level of geometric points we
deduce that it is a v-cover, cf. Remark IV.1.5.

To verify this, note that for a perfectoid space S mapping to BunG×k Spd Ĕ corresponding to
a G-bundle E on XS as well as a map S → SpdE inducing an untilt S]/E and a closed immersion
i : S] → XS , the fibre of π over S parametrizes modifications of E of locally constant type that are
trivial at each geometric point. This is open in the space of all modifications of E of locally constant
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type, which is v-locally isomorphic to
⊔
µ̄ GrG,µ̄,E ×SpdES → S. Thus, Proposition IV.1.18 gives

the desired cohomological smoothness.

Moreover, the preceding argument shows that when restricted to [G(E)\GrG,µ̄], the map π has

`-dimension equal to 〈2ρ, µ〉. Thus, it now suffices to see that [G(E)\GrG,µ̄] is an `-cohomologically

smooth Artin v-stack of `-dimension equal to 〈2ρ, µ〉. But the map

[G(E)\GrG,µ̄]→ [SpdE/G(E)]

is representable in locally spatial diamonds and `-cohomologically smooth of `-dimension equal to
〈2ρ, µ〉, as GrG,µ̄ → ∗ is by Proposition IV.1.18. We conclude by using that [∗/G(E)] → ∗ is an

Artin v-stack, cohomologically smooth of `-dimension 0, by Example IV.1.9 (4). �

Lemma IV.1.20. For E1, E2 vector bundles on XS, the sheaf T/S 7→ {surjections E1|XT �
E2|XT }, resp. T/S 7→ Isom(E1|XT , E2|XT ), is representable by an open subdiamond of BC(E∨1 ⊗ E2).
In particular, those are locally spatial diamonds.

Proof. The case of isomorphisms is reduced to the case of surjections since a morphism u
of vector bundles is an isomorphisms if and only if u and u∨ are surjective. For any morphism
g : E1 → E2, the support of its cokernel is a closed subset of |XS |, whose image in |S| is thus closed;
this implies the result. �

Remark IV.1.21. It would be tempting to study Dét(BunG,Λ) using the preceding charts.
But, contrary to the sheaves coming from the geometric Satake correspondence, the sheaves on
GrG obtained via pullback from BunG are not locally constant on open Schubert strata. We will
prefer other smooth charts to study Dét(BunG,Λ), see Theorem V.3.7.

Moreover, each HN stratum BunbG gives another example.

Proposition IV.1.22. For every b ∈ B(G), the stratum BunbG is a cohomologically smooth
Artin v-stack of `-dimension −〈2ρ, νb〉.

Proof. Under the identification BunbG
∼= [∗/G̃b], note that we have a map [∗/G̃b]→ [∗/Gb(E)]

where the target is a cohomologically smooth Artin v-stack of dimension 0, while the fibre admits a
cohomologically smooth surjection from ∗ (as positive Banach–Colmez spaces are cohomologically
smooth) of `-dimension 〈2ρ, νb〉. This gives the result. �

IV.1.2.2. Connected components of BunG. A consequence is that we can classify the connected
components of BunG.

Corollary IV.1.23. The Kottwitz map induces a bijection

κ : π0(BunG)→ π1(G)Γ.

Proof. The Kottwitz map is well-defined and surjective. It remains to see that it is injective.
To see this, recall that the basic elements of B(G) biject via κ to π1(G)Γ. Thus, it suffices to see
that any nonempty open subsheaf U of BunG contains a basic point. Note that the topological
space (X∗(T )+

Q)Γ × π1(G)Γ equipped with the product topology given by the order on (X∗(T )+
Q)Γ

and the discrete topology on π1(G)Γ, is (T0), and an increasing union of finite open subspaces; and
|BunG | maps continuously to it. Pick some finite open V ⊂ (X∗(T )+

Q)Γ × π1(G)Γ such that its
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preimage in U is a nonempty open U ′ ⊂ U . Then U ′ is a nonempty finite (T0) space, and thus has
an open point by Lemma IV.1.24.

Thus, there is some b ∈ B(G) such that BunbG ⊂ U ⊂ BunG is open. Combining Theo-
rem IV.1.19 and Proposition IV.1.22, this forces −〈2ρ, νb〉 = 0, i.e. νb is central, which means that
b is basic. �

Lemma IV.1.24. If X is a nonempty finite spectral space, that is to say a finite (T0) topological
space, there exists an open point x ∈ X.

Proof. Take x maximal for the specialization relation, i.e. x is a maximal point. Then, since
X is (T0), X \ {x} = ∪y 6=x{y}, a finite union of closed spaces thus closed. �

IV.2. Universally locally acyclic sheaves

IV.2.1. Definition and basic properties. In many of our results, and in particular in the
(formulation and) proof of the geometric Satake equivalence, a critical role is played by the notion
of universally locally acyclic (ULA) sheaves. Roughly speaking, for a morphism f : X → S of
schemes, these are constructible complexes of étale sheaves A on X whose relative cohomology is
constant in all fibres of S, even locally. Technically, one requires that for all geometric points x of
X mapping to a geometric point s of S and a generization t of s in S, the natural map

RΓ(Xx, A)→ RΓ(Xx ×Ss t, A)

is an isomorphism, where Xx is the strict henselization of X at x (and Ss is defined similarly).
Moreover, the same property should hold universally after any base change along S′ → S.1 By
[Ill06, Corollary 3.5], universal local acyclicity is equivalent to asking that, again after any base
change, the map

RΓ(Xx, A)→ RΓ(Xx ×Ss St, A)

is an isomorphism; we prefer the latter formulation as strict henselizations admit analogues for adic
spaces, while the actual fibre over a point is only a pseudo-adic space in Huber’s sense [Hub96].

In the world of adic spaces, there are not enough specializations to make this an interesting
definition; for example, there are no specializations from GrG,µ into GrG,≤µ \GrG,µ. Thus, we need
to adapt the definition by adding a condition on preservation of constructibility that is automatic
in the scheme case under standard finiteness hypothesis, but becomes highly nontrivial in the case
of adic spaces.

Definition IV.2.1. Let f : X → S be a compactifiable map of locally spatial diamonds with
locally dim. trg f <∞ and let A ∈ Dét(X,Λ) for some Λ with nΛ = 0 with n prime to p.

(i) The sheaf of complexes A is f -locally acyclic if
(a) For all geometric points x of X with image s in S and a generization t of s, the map

RΓ(Xx, A)→ RΓ(Xx ×Ss St, A)

is an isomorphism.

1Recently, Gabber proved that this is automatic when S is noetherian and f is of finite type, cf. [LZ19, Corollary
6.6].
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(b) For all separated étale maps j : U → X such that f ◦ j is quasicompact, the complex R(f ◦
j)!(A|U ) ∈ Dét(S,Λ) is perfect-constructible.

(ii) The sheaf of complexes A is f -universally locally acyclic if for any map S′ → S of locally spatial
diamonds with base change f ′ : X ′ = X ×S S′ → S′ and A′ ∈ Dét(X

′,Λ) the pullback of A, the
sheaf of complexes A′ is f ′-locally acyclic.

Recall that if (K,K+) is an affinoid Huber field, S = Spa(K,K+), then |S| = | Spec(K+/K00)|
as a topological spectral space, that is identified with the totally ordered set of open prime ideals
in K+. For any s ∈ S, Ss ⊂ S is pro-constructible generalizing. For example, the maximal
generalization is Spa(K,OK) = ∩a∈OK{|a| ≤ 1}.

Remark IV.2.2. In the setup of condition (a), note that Xx is a strictly local space, i.e. of the
form Spa(C,C+) where C is algebraically closed and C+ ⊂ C is an open and bounded valuation
subring; thus, RΓ(Xx, A) = Ax is just the stalk of A. Moreover, St ⊂ Ss is a quasicompact
pro-constructible generalizing subspace, and thus Xx ×Ss St ⊂ Xx is itself a quasicompact pro-
constructible generalizing subset that is strictly local. Its closed point y is the minimal generization
of x mapping to t, and RΓ(Xx×Ss St, A) = Ay is the stalk at y. Thus, condition (a) means that A
is “overconvergent” along the horizontal lifts of generizations of S.

Remark IV.2.3.

(i) Another way to phrase the “relative overconvergence condition” (a), is to say that if s̄ is a
geometric point of S, t̄ a generization of s̄, j : X×S St̄ ↪→ X×S Ss̄, a pro-constructible generalizing
immersion, and B = A|X×SSs̄ , then B = Rj∗j

∗B (use quasicompact base change).

(ii) Still another way to phrase it is to say that for any Spa(C,C+) → S, if B = A|X×SSpa(C,C+),

and j : X ×S Spa(C,OC) ↪→ X ×S Spa(C,C+), then B = Rj∗j
∗B.

(iii) Still another way is to say that if x̄ 7→ s̄ and fx̄ : Xx̄ → Ss̄ then Rfx̄∗A|Xx̄ is overconvergent
i.e. constant.

In fact, asking for condition (a) universally, i.e. after any base change, amounts to asking that
A is overconvergent.

Proposition IV.2.4. Let f : X → S be a compactifiable map of locally spatial diamonds
with locally dim. trg f < ∞ and let A ∈ Dét(X,Λ) for some Λ with nΛ = 0 with n prime to p.
The condition (a) of Definition IV.2.1 holds after any base change S′ → S if and only if A is
overconvergent, i.e. for any specialization y  x of geometric points of X, the map Ax → Ay is an
isomorphism.

Proof. The condition is clearly sufficient. For necessity, take the base change along Xx → S.
Then x lifts to a section x′ : Xx → X ×S Xx, and applying the relative overconvergence condition
to x′ 7→ x and the generization y of x, we see that Ax → Ay is an isomorphism. �

Proposition IV.2.5. Local acyclicity descends along v-covers of the target. More precisely, in
the setup of Definition IV.2.1, if S′ → S is a v-cover and A′ is f ′-locally acyclic, then automatically
A is f -locally acyclic.

Proof. Condition (a) follows by lifting geometric points, and condition (b) descends by [Sch17a,
Proposition 20.13]. �



114 IV. GEOMETRY OF DIAMONDS

Proposition IV.2.6. Let Y be a spatial diamond.

(i) If F is a constructible étale sheaf of Λ-modules on Y , then F is locally constant if and only if
F is overconvergent.

(ii) If A ∈ Dét,pc(Y,Λ), then A is overconvergent if and only if it is locally a constant perfect complex
of Λ-modules.

Proof. For a geometric point y of Y , writing Yy = Spa(C,C+) = lim←−y→U U as a limit of the

étale neighborhoods, according to [Sch17a, Proposition 20.7],

2- lim−→
y→U

Cons(U,Λ) = Cons(Yy,Λ).

An étale sheaf on Yy = Spa(C,C+) is locally constant if and only if it is constant if and only if it
is overconvergent. This gives point (1). Point (2) goes the same way using [Sch17a, Proposition
20.15]. �

Remark IV.2.7. The preceding argument shows that if F is constructible on Y then F is
locally constant in a neighborhood of any maximal point of Y . For example, if Y = X♦ with X
a K-rigid space, then any constructible sheaf on Y is locally constant in a neighborhood of all
classical Tate points of X. Thus, the difference between constructible and locally constant sheaves
shows up at rank > 1 valuations.

Example IV.2.8. Let j : B1
K \{0} ↪→ B1

K be the inclusion of the punctured disk inside the disk.
Then j!Λ is not constructible since not locally constant around {0}. Nevertheless, if R ∈ |K×| and
x is the coordinate on B1

K , jR : {R ≤ |x| ≤ 1} ↪→ B1
K , jR!Λ is constructible and j!Λ = lim−→R→0

jR!Λ.
The category of étale sheaves of Λ-modules on a spatial diamond is the Ind-category of constructible
étale sheaves, cf. [Sch17a, Proposition 20.6].

Proposition IV.2.9. Assume that f : S → S is the identity. Then A ∈ Dét(S,Λ) is f -locally
acyclic if and only if it is locally constant with perfect fibres.

Proof. Applying part (b) of the definition, we see that A is perfect-constructible. On the
other hand, part (a) says that A is overconvergent. This implies that A is locally constant by
Proposition IV.2.6. �

Let us finish with a basic example of universally locally acyclic sheaves relevant to the smooth
base change theorem. A more general result will be given in Proposition IV.2.13.

Proposition IV.2.10. Assume that f : X → S is a separated map of locally spatial diamonds
that is `-cohomological smooth for all divisors ` of n, where nΛ = 0. If A ∈ Dét(X,Λ) is locally
constant with perfect fibres, then A is f -universally locally acyclic.

Proof. It is enough to show that A is f -locally acyclic, as the hypotheses are stable under base
change. Condition (a) follows directly from A being locally constant. Condition (b) follows from
the preservation of constructible sheaves of complexes under Rf! if f is quasicompact, separated
and cohomologically smooth, see [Sch17a, Proposition 23.12 (ii)]. �
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IV.2.2. Proper push-forward, smooth pull-back. In the “classical algebraic case”, if Y
g−→

X
f−→ S are morphisms of finite type between noetherian schemes, using proper and smooth base

change:

(i) if g is proper and A ∈ Db
c(Y,Λ) is f ◦ g -locally acyclic then Rg∗A is f -locally acyclic;

(ii) if g is smooth and A ∈ Db
c(X,Λ) is f -locally acyclic then g∗A is f ◦ g-locally acyclic. Moreover

if g is surjective then A ∈ Db
c(X,Λ) is f -locally acyclic if and only if g∗A is f ◦ g-locally acyclic.

We are going to see that the same phenomenon happens in our context. The fact that local
acyclicity is smooth local on the source is essential to define local acyclicity for morphisms of Artin
v-stacks, cf. Definition IV.2.31.

Proposition IV.2.11. Let g : Y → X, f : X → S be maps of locally spatial diamonds where g
is proper and f is compactifiable and locally dim. trg g,dim. trg f <∞. Assume that A ∈ Dét(Y,Λ)
is f ◦ g-locally acyclic (resp. f ◦ g-universally locally acylic). Then Rg∗A ∈ Dét(X,Λ) is f -locally
acyclic (resp. f -universally locally acyclic).

Proof. It is enough to consider the locally acyclic case, as the hypotheses are stable under
base change. For condition (a), we use Remark IV.2.3 (2). Let s̄ be a geometric point of S, with
Ss̄ = Spa(C,C+). Let us look at the cartesian diagram

Y ×Spa(C,C+) Spa(C,OC) Y

X ×Spa(C,C+) Spa(C,OC) X

k

g

j

one has by local acyclicity of f ◦ g, A = Rk∗k
∗A. Applying Rg∗, this gives the desired

Rg∗A = Rj∗j
∗(Rg∗A).

For condition (b), take any separated étale map j : U → X such that f ◦ j is quasicompact,
and set j′ : V = U ×X Y → Y , which is an étale map such that f ◦ g ◦ j′ is quasicompact. Let
g′ : V → U denote the pullback of g. Using proper base change and Rg∗ = Rg!, we see that

R(f ◦ j)!j
∗Rg∗A = R(f ◦ j)!Rg

′
!j
′∗A = R(f ◦ g ◦ j′)!j

′∗A,

which is perfect-constructible by the assumption that A is f ◦ g-locally acyclic. �

In particular we have the following that generalizes the “proper and smooth case”.

Corollary IV.2.12. Let f : X → S be a proper map of locally spatial diamonds with dim. trg f <
∞ and A ∈ Dét(X,Λ) that is f -locally acyclic. Then Rf∗A is locally a constant perfect complex of
Λ-modules.

Next proposition says that local acyclicity is “cohomologically smooth local” on the source.

Proposition IV.2.13. Let f : X → S be a compactifiable map of locally spatial diamonds with
locally dim. trg f <∞. For the statements in the locally acyclic case below, assume that S is spatial
and that the cohomological dimension of Uét for all quasicompact separated étale U → S is ≤ N
for some fixed integer N .
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Let A ∈ Dét(X,Λ) where nΛ = 0 for some n prime to p and let g : Y → X be a separated map
of locally spatial diamonds that is `-cohomologically smooth for all ` dividing n.

(i) If A is f -locally acyclic (resp. f -universally locally acyclic), then g∗A is f ◦ g-locally acyclic
(resp. f ◦ g-universally locally acyclic).

(ii) Conversely, if g∗A is f◦g-locally acyclic (resp. f◦g-universally locally acyclic) and g is surjective,
then A is f -locally acyclic (resp. f -universally locally acyclic).

Proof. It is enough to handle the locally acyclic case with the assumption on S; then the
universally locally acyclic case follows by testing after pullbacks to strictly totally disconnected
spaces. Let us treat point (i). We can assume that X and Y are qcqs, i.e. spatial. In fact, this
is clear for condition (a). For condition (b), if j : V → Y is separated étale such that f ◦ g ◦ j is
quasicompact, up to replacing S by an open cover we can suppose that S is spatial and thus V
is spatial (since f , g, and j are separated, f ◦ g ◦ j is separated quasicompact, and thus S spatial
implies X spatial). Then one can replace Y , resp. X, by the quasicompact open subsets j(V ),
resp. (g ◦ j)(V ), that are separated over S and thus spatial too.

Condition (a) follows as pullbacks preserve stalks. For condition (b), let j : V → Y be any
quasicompact separated étale map. Then by the projection formula for g ◦ j, one has

R(f ◦ g ◦ j)!j
∗g∗A = Rf!(A⊗L

Λ R(g ◦ j)!Λ).

As g ◦ j : V → X is a quasicompact separated `-cohomologically smooth map, it follows that
R(g ◦ j)!Λ ∈ Dét(X,Λ) is perfect-constructible by [Sch17a, Proposition 23.12 (ii)]. Thus, the
desired result follows from Lemma IV.2.14.

In the converse direction, i.e. for part (ii), condition (a) of A being f -locally acyclic follows
by lifting geometric points from X to Y and noting that stalks do not change. For condi-
tion (b), we may replace X by U to reduce to the assertion that Rf!A ∈ Dét(S,Λ) is perfect-
constructible. Consider the thick triangulated subcategory C of Dét(X,Λ) of all B ∈ Dét(X,Λ)
such that Rf!(A⊗L

Λ B) ∈ Dét(S,Λ) is perfect-constructible. We have to see that Λ ∈ C. We know
that for all perfect-constructible C ∈ Dét(Y,Λ), the perfect-constructible complex Rg!C lies in C.
Indeed, using [Sch17a, Proposition 20.17], this reduces to the case C = j!Λ where j : U → Y is a
quasicompact separated étale map, and then

Rf!(A⊗L
Λ R(g ◦ j)!Λ) = R(f ◦ g)!(g

∗A⊗L
Λ Rj!Λ),

which is perfect-constructible as g∗A is f ◦ g-locally acyclic. Thus, it is enough to show that the
set of Rg!C ∈ Dét(X,Λ) with C ∈ Dét(Y,Λ) perfect constructible form a set of compact genera-
tors of Dét(X,Λ). Equivalently, for any complex B ∈ Dét(X,Λ) with RHomDét(X,Λ)(Rg!C,B) =
0 for all perfect-constructible C ∈ Dét(Y,Λ), then B = 0. The hypothesis is equivalent to
RHomDét(Y,Λ)(C,Rg

!B) = 0 for all such C. By [Sch17a, Proposition 20.17] and the standing

assumptions on finite cohomological dimension (on S, f and g), this implies that Rg!B = 0. As g is
`-cohomologically smooth, this is equivalent to g∗B = 0, which implies B = 0 as g is surjective. �

Lemma IV.2.14. Let f : X → S be a compactifiable map of locally spatial diamonds with
locally dim. trg f < ∞. Suppose there exists an integer N such that the cohomological dimension
of Uét is bounded by N for all U → X separated étale. Let A ∈ Dét(X,Λ) be f -locally acyclic
and B ∈ Dét(X,Λ) be perfect-constructible. Then A ⊗L

Λ B satisfies condition (ii) of Definition
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IV.2.1: for any j : U → X separated étale such that f ◦ j is quasicompact, R(f ◦ j)!j
∗(A⊗L

Λ B) is
perfect-constructible.

Proof. We can suppose X is spatial. According to [Sch17a, Proposition 20.17], B lies in the
triangulated subcategory generated by j′!Λ where j′ : U ′ → X is separated quasicompact étale.

For such a B, using the projection formula, A ⊗L
Λ Rj

′
!Λ = Rj′!j

′∗A. Thus, if V = U ×X U ′ with
projection k : U ×X U ′ → U ,

j∗Rj′!j
′∗A = Rk!k

∗j∗A.

We thus have

R(f ◦ j)!j
∗(A⊗L

Λ Rj
′
!B) = R(f ◦ j ◦ k)!(j ◦ k)∗(A)

and we can conclude. �

IV.2.3. Local acyclicity and duality. In this section, we prove that universal local acyclicity
behaves well with respect to Verdier duality.

IV.2.3.1. Compatibility with base change. We note that for f -ULA sheaves, the formation of
the (relative) Verdier dual

DX/S(A) := RHomΛ(A,Rf !Λ)

commutes with base change in S.

Proposition IV.2.15. Let f : X → S be a compactifiable map of locally spatial diamonds with
locally dim. trg f < ∞ and let A ∈ Dét(X,Λ) be f -universally locally acyclic. Let g : S′ → S be
a map of locally spatial diamonds with pullback f ′ : X ′ = X ×S S′ → S′, g̃ : X ′ → X. Then the
composite

g̃∗DX/S(A)→ DX′/S′(g̃∗A)

of the natural maps

g̃∗RHomΛ(A,Rf !Λ)→ RHomΛ(g̃∗A, g̃∗Rf !Λ)→ RHomΛ(g̃∗A,Rf ′!Λ)

is an isomorphism.

More generally, for any B ∈ Dét(S,Λ), the map

g̃∗RHomΛ(A,Rf !B)→ RHomΛ(g̃∗A,Rf ′!B)

is an isomorphism.

Proof. The assertion is local, so we may assume that X, S and S′ are spatial. By choosing a
strictly totally disconnected cover S′′ of S′, one reduces the result for S′ → S to the cases of S′′ → S′

and S′′ → S, so we may assume that S′ is strictly totally disconnected. In that case, by [Sch17a,
Proposition 20.17], whose hypothesis apply as X ′ → S′ is of finite dim. trg and S′ is strictly totally
disconnected, it suffices to check on global sections over all quasicompact separated étale maps
V ′ → X ′. According to Lemma IV.2.16 we can write S′ as a cofiltered limit of quasicompact open
subsets S′i of finite-dimensional balls over S. Then V ′ comes via pullback from a quasicompact
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separated étale map Vi → X ×S S′i for i large enough by [Sch17a, Proposition 11.23]. We thus
have a diagram with cartesian squares

V V ′

X ′ X ×S S′i X

S′ S′i S.

hi

The result we want to prove is immediate when S′ → S is cohomologically smooth. Up to replacing
X → S by V ′ → S′i we are thus reduced to prove that RΓ(X ′, g̃∗DX/S(A))

∼−→ RΓ(X ′,DX′/S′(g̃∗A)).

Thus, it suffices to check the result after applying Rf ′∗. In that case,

Rf ′∗g̃
∗RHomΛ(A,Rf !B) = g∗Rf∗RHomΛ(A,Rf !B)

= g∗RHomΛ(Rf!A,B),

using [Sch17a, Proposition 17.6, Theorem 1.8 (iv)]. On the other hand,

Rf ′∗RHomΛ(g̃∗A,Rf ′!B) = RHomΛ(Rf ′! g̃
∗A,B)

= RHomΛ(g∗Rf!A,B)

using [Sch17a, Theorem 1.8 (iv), Theorem 1.9 (ii)]. But by condition (b) of being f -locally acyclic,
the complex Rf!A ∈ Dét(S,Λ) is perfect-constructible, and thus the formation of RHomΛ(Rf!A,B)
commutes with any base change by Lemma IV.2.17. �

Lemma IV.2.16. Let S be a spatial diamond and X → S be a morphism from an affinoid
perfectoid space to S. Then one can write X = lim←−i Ui where Ui is a quasicompact open subset
inside a finite dimensional ball over S, and the projective limit is cofiltered.

Proof. If I = O(X)+, one has a closed immersion over S defined by elements of I, X ↪→ BIS
where BIS is the spatial diamond over S that represents the functor T/S 7→ (O(T )+)I (an “infinite
dimensional perfectoid ball over S” when S is perfectoid). Now,

BIS = lim←−
J⊂I

BJS

where J goes through the set of finite subsets of I and BIS → BJS is the corresponding projection.
For each such J the composite X ↪→ BIS � BJS is a spatial morphism of spatial diamonds. Its image
is a pro-constructible generalizing subset of BJS and can thus be written as

⋂
α∈AJ Uα where Uα is

a quasicompact open subset of BJS . Then one has

X = lim←−
J⊂I

lim←−
α∈AJ

Uα. �

Lemma IV.2.17. Let X be a spatial diamond and A ∈ Dét(X,Λ) perfect-constructible, and let
B ∈ Dét(X,Λ) be arbitrary. Then the formation of RHomΛ(A,B) commutes with any base change.
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Proof. Using [Sch17a, Proposition 20.16 (iii)] this is reduced to the case when A = j!(L|Z)
where j : U → X is separated quasicompact étale, Z ⊂ U closed constructible, and L ∈ Dét(U,Λ)
locally constant with perfect fibres. If j′ : U \ Z → X, that is again quasicompact (since Z is
constructible inside U) separated étale, using the exact sequence 0 → j′!L → j!L → j!(L|Z) → 0,

this is reduced to the case of A of the form j!L. In this case RHomΛ(A,−) is given by Rj∗(L∨⊗L
Λ−),

and this commutes with any base change by quasicompact base change, [Sch17a, Proposition
17.6]. �

One has to be careful that, in general, the naive dual of a perfect constructible complex is not
constructible. The following lemma says that in fact it is overconvergent, so never constructible
unless locally constant.

Lemma IV.2.18. For X a spatial diamond and A ∈ Dét(X,Λ) perfect constructible, RHomΛ(A,Λ)
is overconvergent.

Proof. Using Lemma IV.2.17 this is reduced to the case when X = Spa(C,C+). More-
over, one can assume that A = j!Λ for some quasicompact open immersion j : U → X. Then
RHomΛ(A,Λ) = Rj∗Λ = Λ, which is overconvergent. �

IV.2.3.2. Twisted inverse images. Also, if A is f -ULA, then one can relate appropriately A-
twisted versions of f∗ and Rf !.

Proposition IV.2.19. Let f : X → S be a compactifiable map of locally spatial diamonds
with locally dim. trg f < ∞ and let A ∈ Dét(X,Λ) be f -universally locally acyclic. Then for all
B ∈ Dét(S,Λ), the natural map

DX/S(A)⊗L
Λ f
∗B → RHomΛ(A,Rf !B)

given as the composite

RHomΛ(A,Rf !Λ)⊗L
Λ f
∗B → RHomΛ(A,Rf !Λ⊗L

Λ f
∗B)→ RHomΛ(A,Rf !B)

is an isomorphism.

Proof. First, we note that both sides commute with any base change, by Proposition IV.2.15.

It suffices to check that we get an isomorphism on stalks at all geometric points Spa(C,C+)
of X. For this, we may base change along the associated map Spa(C,C+) → S to reduce to the
case that S = Spa(C,C+) is strictly local, and we need to check that we get an isomorphism
at the stalk of a section s : S → X. We may also assume that X is spatial, in which case
X is of bounded cohomological dimension, so [Sch17a, Proposition 20.17] applies, and perfect-
constructible complexes are the same thing as compact objects in Dét(X,Λ) = D(Xét,Λ).

Next, we note that the functor B 7→ RHomΛ(A,Rf !B) is right adjoint to A′ 7→ Rf!(A⊗L
Λ A
′).

The latter functor preserves perfect-constructible complexes, i.e. compact objects, by condition
(b), see Lemma IV.2.14. Thus, B 7→ RHomΛ(A,Rf !B) commutes with arbitrary direct sums, see
Lemma IV.2.20. Obviously, the functor B 7→ DX/S(A)⊗L

Λ f
∗B also commutes with arbitrary direct

sums, so it follows that it suffices to check the assertion for B = j!Λ for some quasicompact open
immersion j : S′ = Spa(C,C ′+) → S (the shifts of those compact objects generate Dét(S,Λ)). If
S′ = S, then B = Λ and the result is clear. Otherwise, the stalk of j!Λ at the closed point is zero,
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and thus the stalk of the left-hand side DX/S(A)⊗L
Λ f
∗B at our fixed section is zero. It remains to

see that the stalk of

RHomΛ(A,Rf !j!Λ)

at the (closed point of) the section s : S → X is zero. This stalk is given by the filtered colimit
over all quasicompact open neighborhoods U ⊂ X of s(S) of

RHomDét(U,Λ)(A|U , Rf !j!Λ|U ) = RHomDét(S,Λ)(RfU !A|U , j!Λ),

where fU : U → S denotes the restriction of f (the possibility to use only open embeddings in place
of general étale maps results from the observation that the intersection of all these open subsets
is the strictly local space S already; the set of open neighborhoods of s(S) is cofinal among étale
neighborhoods of s(S)).

Now we claim that the inverse systems of all such U and of the compactifications U
/S

are

cofinal. Note that the intersection of all U
/S

(taken inside X
/S

) is simply s(S): Indeed, given any

point x ∈ X/S \ s(S), there are disjoint open neighborhoods x ∈ V and s(S) ⊂ U . In fact, the

maximal Hausdorff quotient |X/S |B is compact Hausdorff by [Sch17a, Proposition 13.11] and its

points can be identified with rank 1 points of X
/S

, which are the same as rank 1 points of X. But

as s(S) ⊂ X/S
is closed, no point outside s(S) admits the same rank 1 generalization, so x and s(S)

define distinct points of the Hausdorff spaces |X/S |, so that the desired disjoint open neighborhoods

exist x ∈ V and s(S) ⊂ U exist. Then x 6∈ U/S . Thus,

s(S) =
⋂

U⊃s(S)

U
/X
.

Now given any open neighborhood U of s(S), the complement |X/S | \ U is quasicompact, which

then implies that there is some U ′ such that U ′
/S ⊂ U . It follows that the direct systems of

RfU !A|U

and

Rf
U
/S∗
Ri!

U
/SA

are equivalent, where i
U
/S : U

/S → X and f
U
/S : U

/S → S are the evident maps. Now observe that

if j′X : Xη = X ×S Spa(C,OC) ↪→ X denotes the proconstructible generalizing immersion, then
condition (a) in being f -locally acyclic implies that A = Rj′X∗A|Xη (see Remark IV.2.3), and then

Rf
U
/S∗
Ri!

U
/SA = Rf

U
/S∗
Ri!

U
/SRj

′
X∗A|Xη

= Rf
U
/S∗
Rj′

U
/S∗
Ri!

U
/S
η

A|Xη

= Rj′S∗RfU/Sη ∗
Ri!

U
/S
η

A|Xη

with hopefully evident notation; in particular, j′S : Spa(C,OC) → S = Spa(C,C+) denotes the
pro-open immersion of the generic point on the base.
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In summary, we can rewrite the stalk of RHomΛ(A,Rf !j!Λ) at s(S) as the filtered colimit of

RHomDét(S,Λ)(Rj
′
S∗RfU/Sη ∗

Ri!
U
/S
η

A, j!Λ),

and we need to prove that this vanishes. This follows from the observation that for all M ∈
Dét(Spa(C,OC),Λ) = D(Λ), one has

RHomDét(S,Λ)(Rj
′
S∗M, j!Λ) = 0.

For this, note that Rj′S∗M = M is just the constant sheaf given by the complex of Λ-modules M ,
and one has a triangle

RHomDét(S,Λ)(M, j!Λ)→ RHomDét(S,Λ)(M,Λ)→ RHomDét(S,Λ)(M, i∗Λ),

where i denotes the complementary closed immersion. Both the second and last term are given by
RHomΛ(M,Λ), finishing the proof. �

We used the following classical lemma, cf. [Nee96, Theorem 5.1].

Lemma IV.2.20. Let C and D be triangulated categories such that C is compactly generated. Let
F : C → D and G : D → C be such that G is right adjoint to F . If F sends compact objects to
compact objects then G commutes with arbitrary direct sums.

Proof. Since C is compactly generated it suffices to prove that for any compact object A in
C and any collection (Bi)i of objects of D, Hom(A,⊕iG(Bi))

∼−→ Hom(A,G(⊕iBi)). By compact-
ness of A, Hom(A,⊕iG(Bi)) = ⊕i Hom(A,G(Bi)), by adjunction this is equal to ⊕i Hom(F (A), Bi),
since F (A) is compact this is equal to Hom(F (A),⊕iBi), and by adjunction this is Hom(A,G(⊕iBi)).

�

Remark IV.2.21.

(i) In fact, outside of the overconvergence condition (a) in Definition IV.2.1, the property of Propo-
sition IV.2.19 characterizes locally acyclic complexes under the assumption that locally on X the
exists an integer N such that for any U → X quasicompact separated étale the cohomological
dimension of Xét is bounded by N . More precisely, if j : U → X is separated étale with f ◦ j
quasicompact then RHomΛ(R(f ◦ j)!A,B) = RΓ(U,RHomΛ(A,Rf !B)). Thus, if for all B one has

DX/S(A)⊗L
Λ f
∗B

∼−→ RHomΛ(A,Rf !B) then R(f ◦ j)!A is compact since RΓ(U,−) commutes with
arbitrary direct sums.

(ii) Outside of the overconvergence condition (a) in Definition IV.2.1, the property of Proposi-
tion IV.2.19 universally on S characterize universally locally acyclic objects. In fact, using [Sch17a,
Proposition 20.13], the constructibility property is reduced to the case when the base is strictly
totally disconnected, in which case we can apply point (1).

Finally, let us note that all the previous results extend to the setting where the base S is a
general small v-stack, taking the following definition.

Definition IV.2.22. Let f : X → S be a map of small v-stacks that is compactifiable and
representable in locally spatial diamonds with locally dim. trg f < ∞. Let A ∈ Dét(X,Λ). Then
A is f -universally locally acyclic if for any map S′ → S from a locally spatial diamond S′ with
pullback f ′ : X ′ = X ×S S′ → S′, the complex A|X′ ∈ Dét(X

′,Λ) is f ′-locally acyclic.
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IV.2.3.3. Dualizability. From the previous two propositions, we can deduce an analogue of a
recent result of Lu-Zheng, [LZ20], characterizing universal local acyclicity in terms of dualizability
in a certain monoidal category. We actually propose a different such characterization closer to how
dualizability will appear later in the discussion of geometric Satake. In terms of applications to
abstract properties of universal local acyclicity, such as its preservation by Verdier duality, it leads
to the same results.

Fix a base small v-stack S, and a coefficient ring Λ (killed by some integer prime to p). We
define a 2-category CS as follows. The objects of CS are maps f : X → S of small v-stacks that
are compactifiable, representable in locally spatial diamonds, with locally dim. trg f <∞. For any
X,Y ∈ CS , the category of maps FunCS (X,Y ) is the category Dét(X ×S Y,Λ). Note that any such
A ∈ Dét(X ×S Y,Λ) defines in particular a functor

Dét(X,Λ)→ Dét(Y,Λ) : B 7→ Rπ2!(A⊗L
Λ π
∗
1B)

with kernel A, where π1 : X×S Y → X, π2 : X×S Y → Y are the two projections. The composition
in CS is now defined to be compatible with this association. More precisely, the composition

FunCS (X,Y )× FunCS (Y,Z)→ FunCS (X,Z)

is defined to be the functor

Dét(X ×S Y,Λ)×Dét(Y ×S Z,Λ)→ Dét(X ×S Z,Λ) : (A,B) 7→ A ? B = Rπ13!(π
∗
12A⊗L

Λ π
∗
23B)

where πij denotes the various projections on X ×S Y ×S Z. It follows from the projection formula
that this indeed defines a 2-category CS . The identity morphism is given by R∆!Λ = R∆∗Λ ∈
Dét(X ×S X,Λ), where ∆ : X ↪→ X ×S X is the diagonal. We note that CS is naturally equivalent
to Cop

S . Indeed, Dét(X ×S Y,Λ) is invariant under switching X and Y , and the definition of
composition (and coherences) is compatible with this switch.

Recall that in any 2-category C, there is a notion of adjoints. Namely, a morphism f : X → Y
is a left adjoint of g : Y → X if there are maps α : idX → gf and β : fg → idY such that the
composites

f
fα−−→ fgf

βf−→ f, g
αg−→ gfg

gβ−→ g

are the identity. If a right adjoint g of f exists, it is (together with the accompanying data)
moreover unique up to unique isomorphism. As is clear from the definition, any functor of 2-
categories preserves adjunctions. In particular, this applies to pullback functors CS → CS′ for maps
S′ → S of small v-stacks, or to the functor from CS to triangulated categories taking X to Dét(X,Λ)
and A ∈ FunCS (X,Y ) to the functor Rπ2!(A⊗L

Λ π
∗
1−) with kernel A.

Theorem IV.2.23. Let S be a small v-stack and X ∈ CS, and A ∈ Dét(X,Λ). The following
conditions are equivalent.

(i) The complex A is f -universally locally acyclic.

(ii) The natural map

p∗1DX/S(A)⊗L
Λ p
∗
2A→ RHomΛ(p∗1A,Rp

!
2A)

is an isomorphism, where p1, p2 : X ×S X → X are the two projections.

(iii) The object A ∈ FunCS (X,S) is a left adjoint in CS. In that case, its right adjoint is given by

DX/S(A) ∈ Dét(X,Λ) = FunCS (S,X).
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Proof. That (i) implies (ii) follows from Proposition IV.2.15 and Proposition IV.2.19. For (ii)
implies (iii), we claim that A ∈ FunCS (X,S) is indeed a left adjoint of DX/S(A) ∈ FunCS (A). The
composites are given by

A ? DX/S(A) = Rf!(DX/S(A)⊗L
Λ A) ∈ Dét(S,Λ) = FunCS (S, S)

and

DX/S(A) ? A = p∗1A⊗L
Λ p
∗
2DX/S(A) ∈ Dét(X ×S X,Λ) = FunCS (X,X).

Then we take β : A ? DX/S(A) → idS to be given by the map Rf!(DX/S(A) ⊗L
Λ A) → Λ adjoint

to the map DX/S(A) ⊗L
Λ A → Rf !Λ which is just the tautological pairing. On the other hand, for

α : idX → DX/S(A) ? A, we have to produce a map

R∆!Λ→ p∗1A⊗L
Λ p
∗
2DX/S(A).

Using (ii), the right-hand side is naturally isomorphic to RHomΛ(p∗1A,Rp
!
2A). Now maps from

R∆!Λ are adjoint to sections of

R∆!RHomΛ(p∗1A,Rp
!
2A) ∼= RHomΛ(A,A)

(using [Sch17a, Theorem 1.8 (v)]), which has the natural identity section. It remains to prove that
certain composites are the identity. This follows from a straightforward diagram chase.

Finally, it remains to prove that (iii) implies (i). We can assume that S is strictly totally
disconnected. It follows that the functor Rf!(A⊗L

Λ −) admits a right adjoint that commutes with
all colimits. This implies that condition (b) in Definition IV.2.1 is satisfied. In fact, more precisely
we see that the right adjoint RHomΛ(A,Rf !−) is given by A′⊗L

Λf
∗− for some A′ ∈ Dét(X,Λ), and

by using the self-duality of Cop
S , we also see that RHomΛ(A′, Rf !−) is given by A⊗L

Λ f
∗−. Applied

to the constant sheaf, this shows in particular that A ∼= RHomΛ(A′, Rf !Λ) is a Verdier dual.
For condition (a), we can assume that S = Spa(C,C+) and reduce to checking overconvergence
along sections s : S → X. In fact, using part (2) of Remark IV.2.3, let j : Spa(C,OC) →
Spa(C,C+) be the pro-open immersion, with pullback jX : X ×Spa(C,C+) Spa(C,OC) → X, and
fη : X ×Spa(C,C+) Spa(C,OC)→ Spa(C,OC) the restriction of f . To see the overconvergence, it is
enough to see that A ∼= RjX∗A0 for some A0. But

A ∼= RHomΛ(A′, Rf !Λ) ∼= RHomΛ(A′, Rf !Rj∗Λ)

∼= RHomΛ(A′, RjX∗Rf
!
ηΛ) ∼= RjX∗RHomΛ(j∗XA

′, Rf !
ηΛ),

giving the desired overconvergence. �

Before moving on, let us observe the following relative variant.

Proposition IV.2.24. Let S be a small v-stack and X,Y ∈ CS. If Y/S is proper and A ∈
FunCS (X,Y ) = Dét(X ×S Y,Λ) is p2-universally locally acyclic, then it is a left adjoint and the
right adjoint is given by

DX×SY/Y (A) ∈ Dét(X ×S Y,Λ) ∼= Dét(Y ×S X,Λ) = FunCS (Y,X).

The assumption that Y/S is proper is important here. Already if X = S and A = Λ ∈ Dét(Y,Λ),
which is always idY -universally locally acyclic, being a left adjoint in CS implies that there is some
B ∈ Dét(Y,Λ) for which Rf∗ ∼= Rf!(B ⊗L

Λ −).
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Proof. We need to produce the maps α and β again. Let us give the construction of α, which
is the harder part. First, using the various projections πij on X ×S Y ×S X, we have

DX×SY/Y (A) ? A ∼= Rπ13!(π
∗
12DX×SY/Y (A)⊗L

Λ π
∗
23A) ∼= Rπ13∗RHomΛ(π∗12A,Rπ

!
23A)

using that A is p2-universally locally acyclic, and properness of π13 (which is a base change of
Y → S). Now giving a map R∆!Λ→ DX×SY/Y (A)?A, for ∆ = ∆X/S , amounts to finding a section
of

R∆!Rπ13∗RHomΛ(π∗12A,Rπ
!
23A) ∼= Rp1∗R∆!

X×SY/YRHomΛ(π∗12A,Rπ
!
23A) ∼= Rp1∗RHomΛ(A,A),

where we can take the identity. �

Theorem IV.2.23 has the following notable consequences.

Corollary IV.2.25. Let f : X → S be a compactifiable map of locally spatial diamonds with
locally dim. trg f < ∞ and let A ∈ Dét(X,Λ) be f -universally locally acyclic. Then DX/S(A) is
again f -universally locally acyclic, and the biduality map

A→ DX/S(DX/S(A))

is an isomorphism.

If fi : Xi → S for i = 1, 2 are compactifiable maps of small v-stacks that are representable in
locally spatial diamonds with locally dim. trg fi <∞ and Ai ∈ Dét(Xi,Λ) are fi-universally locally
acyclic, then also A1�A2 ∈ Dét(X1×SX2,Λ) is f1×S f2-universally locally acyclic, and the natural
map

DX1/S(A1)� DX2/S(A2)→ DX1×SX2/S(A1 �A2)

is an isomorphism.

Proof. By Theorem IV.2.23, the object DX/S(A) ∈ FunCS (S,X) is a right adjoint of A ∈
FunCS (X,S). But CS ∼= Cop

S ; under this equivalence, this means that DX/S(A) ∈ FunCS (S,X) is a
left adjoint of A ∈ FunCS (S,X). Thus, applying Theorem IV.2.23 again, the result follows.

For the second statement, note that Ai ∈ Dét(Xi,Λ) define left adjoints, hence so does

A1 ? A2 = A1 �A2 ∈ Dét(X1 ×S X2,Λ) = FunCS (X1 ×S X2, S).

Its right adjoint is the similar composition, giving the claim. �

The final statement admits the following generalization concerning “compositions” of univer-
sally locally acyclic sheaves.

Proposition IV.2.26. Let g : Y → X and f : X → S be compactifiable maps of small
v-stacks representable in locally spatial diamonds with locally dim. trg f, dim. trg g < ∞, and let
A ∈ Dét(X,Λ) be f -universally acyclic and B ∈ Dét(Y,Λ) be g-universally locally acyclic. Then
g∗A⊗L

Λ B is f ◦ g-universally locally acyclic, and there is natural isomorphism

DY/S(g∗A⊗L
Λ B) ∼= g∗DX/S(A)⊗L

Λ DY/X(B).
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Proof. It is easy to see that condition (a) of being locally acyclic holds universally, so it suffices
to identify the functor RHomΛ(g∗A⊗L

Λ B,R(f ◦ g)!−). We compute:

RHomΛ(g∗A⊗L
Λ B,R(f ◦ g)!−) = RHomΛ(B,RHomΛ(g∗A,Rg!Rf !−))

= RHomΛ(B,Rg!RHomΛ(A,Rf !−))

= DY/X(B)⊗L
Λ g
∗RHom(A,Rf !−)

= DY/X(B)⊗L
Λ g
∗DX/S(A)⊗L

Λ g
∗f∗−,

implying that it commutes with colimits, hence its left adjoint preserves perfect-constructible com-
plexes (after reduction to strictly totally disconnected S andX and Y spatial). Moreover, evaluating
this functor at Λ gives the identification of the Verdier dual. �

Let us also note another corollary of Theorem IV.2.23 concerning retracts.

Corollary IV.2.27. Let f : X → S and g : Y → S be maps of small v-stacks that are
compactifiable and representable in locally spatial diamonds with locally dim. trg f, dim. trg g < ∞.
Assume that f is a retract of g over S, i.e. there are maps i : X → Y , r : Y → X over S such that
ri = idX . If Λ is g-universally locally acyclic, then Λ is f -universally locally acyclic.

Proof. One can check this directly from the definitions, or note that the map in CS given by
Λ ∈ Dét(X,Λ) = FunCS (X,S) is a retract of the map given by Λ ∈ Dét(Y,Λ) = FunCS (Y, S), from
which one can easily obtain adjointness. �

Moreover, in some cases the converse to Proposition IV.2.11 holds.

Proposition IV.2.28. Let g : Y → X, f : X → S be maps of locally spatial diamonds where g is
proper and quasi-pro-étale and f is compactifiable and locally dim. trg f <∞. Then A ∈ Dét(Y,Λ)
is f ◦ g-universally locally acyclic if and only if Rg∗A ∈ Dét(X,Λ) is f -universally locally acyclic.

Proof. One direction is given by Proposition IV.2.11. For the converse, assume that Rg∗A
is f -universally locally acylic. To see that A is h = f ◦ g-universally locally acyclic, it suffices by
Theorem IV.2.23 that the map

p∗1,YRHom(A,Rh!Λ)⊗L
Λ p
∗
2,YA→ RHom(p∗1,YA,Rp

!
2,YA)

in Dét(Y ×S Y,Λ) is an isomorphism, where p1,Y , p2,Y : Y ×S Y → Y are the two projections. As
g×S g : Y ×S Y → X×SX is proper and quasi-pro-étale, pushforward along g×S g is conservative:
By testing on stalks, this follows from the observation that for a profinite set T , the global sections
functor RΓ(T,−) is conservative on D(T,Λ) (as one can write any stalk as a filtered colimit of
functors that are direct summands of the global sections functor). Applying R(g×S g)∗ = R(g×S g)!

to the displayed map, we get the map

p∗1,XRHom(Rg∗A,Rf
!Λ)⊗L

Λ p
∗
1,YRg∗A→ RHom(p∗1,XRg∗A,Rp

!
2,XRg∗A)

where p1,X , p2,X : X ×S X → X are the two projections. This is an isomorphism precisely when
Rg∗A is f -universally locally acyclic. �

The following corollary shows that smooth base change generalizes to universally locally acyclic
maps. The general version of this corollary was suggested by David Hansen.
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Corollary IV.2.29 (ULA base change). Consider a cartesian diagram of small v-stacks

X ′
g̃ //

f ′

��

X

f
��

S′
g // S

with f representable in locally spatial diamonds, compactifiable, locally dim. trg f < ∞. Assume
that Λ is f -universally locally acyclic. Then the base change map

f∗Rg∗A→ Rg̃∗f
′∗A

is an isomorphism. More generally, if B ∈ Dét(X,Λ) is f -universally locally acyclic and A ∈
Dét(S

′,Λ), then

(f∗Rg∗A)⊗L
Λ B

∼−→ Rg̃∗(f
′∗A⊗L

Λ g̃
∗B).

Proof. We apply Proposition IV.2.19 to the universally locally acyclic DX/S(B), so that by
Corollary IV.2.25, we get

f∗Rg∗A⊗L
Λ B
∼= RHomΛ(DX/S(B), Rf !Rg∗A).

By [Sch17a, Theorem 1.9 (iii)], Rf !Rg∗A ∼= Rg̃∗Rf
′!A, and then one can rewrite further as

RHomΛ(DX/S(B), Rg̃∗Rf
′!A) ∼= Rg̃∗RHomΛ(g̃∗DX/S(B), Rf ′!A).

Now another application of Proposition IV.2.19 gives the result. �

Finally let us note the following consequence of Theorem IV.2.23 and [LZ20].

Proposition IV.2.30. Let K be a complete non-archimedean field with residue characteristic
p, f : X → S a separated morphism of K-schemes locally of finite type, and A ∈ Db

c(X,Λ). Then
A is f -universally acyclic if and only if its analytification Aad is fad,♦-universally locally acyclic,
where fad,♦ : Xad,♦ → Sad,♦.

Proof. The criterion of Theorem IV.2.23 (2) applies similarly in the algebraic case by [LZ20],
and all operations are compatible with passing to analytic adic spaces (and diamonds). �

For example, if S = SpecK then any A is f -universally locally acyclic and thus Aad is fad,♦-
universally acyclic. This gives plenty of examples of ULA sheaves.

IV.2.4. Local acyclicity for morphisms of Artin v-stacks. Using the descent results
Remark IV.2.2 and Proposition IV.2.13, one can extend the previous definition and results to the
case of maps of Artin v-stacks as follows.

Definition IV.2.31. Let f : X → S be a map of Artin v-stacks and assume that there is
some separated, representable in locally spatial diamonds, and cohomologically smooth surjection
g : U → X from a locally spatial diamond U such that f ◦ g : U → S is compactifiable with locally
dim. trg(f ◦ g) <∞. Then A ∈ Dét(X,Λ) is f -universally locally acyclic if g∗A is f ◦ g-universally
locally acyclic.
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All previous results concerning universally locally acyclic complexes also hold in this setting
(assuming that the relevant operations are defined in the case of interest – we did not define Rf!

and Rf ! for general stacky maps), and follow by the reduction to the case when S and X are locally
spatial diamonds. In particular, the characterization in terms of dualizability gives the following.

Proposition IV.2.32. Let f : X → S be a cohomologically smooth map of Artin v-stacks, and
let A ∈ Dét(X,Λ). Consider X ×S X with its two projections p1, p2 : X ×S X → X. Then A is
f -universally locally acyclic if and only if the natural map

p∗1RHomΛ(A,Λ)⊗L
Λ p
∗
2A→ RHomΛ(p∗1A, p

∗
2A)

is an isomorphism.

Proof. Taking a chart for S, we can assume that S is a locally spatial diamond, and then
taking a presentation for X we can assume that also X is a locally spatial diamond, noting that
the condition commutes with smooth base change. In that case, replacing some occurences of p∗2
by Rp!

2 using cohomological smoothness, the result follows from Theorem IV.2.23. �

There is a simple characterization of `-cohomological smoothness in terms of universal local
acyclicity.

Proposition IV.2.33. Let f : X → S be a compactifiable map of v-stacks that is representable
in locally spatial diamonds with locally dim. trg f <∞. Then f is `-cohomologically smooth if and
only if F` is f -universally locally acyclic and its Verdier dual Rf !F` is invertible.

Note that in checking whether F` is f -universally locally acyclic, condition (a) of Defini-
tion IV.2.1 is automatic. Also, by Theorem IV.2.23, the condition that F` is f -universally locally
acyclic is equivalent to the condition that the natural map

p∗1Rf
!F` → Rp!

2F`
is an isomorphism, where p1, p2 : X×SX → X are the two projections. Thus, f is `-cohomologically
smooth if and only if Rf !F` is invertible and its formation commutes with any base change.

Proof. The conditions are clearly necessary. For the converse, we may assume that S is strictly
totally disconnected. By Proposition IV.2.19, the natural transformation of functors

Rf !Λ⊗L
Λ f
∗ → Rf !

is an equivalence. As Rf !Λ is assumed to be invertible (it commutes with base change by Proposi-
tion IV.2.15), this shows that the condition of [Sch17a, Definition 23.8] is satisfied. �

In particular, we can resolve a question from [Sch17a].

Corollary IV.2.34. The map f : SpdOE → SpdFq is `-cohomologically smooth for all ` 6= p.

Proof. This is clear if E is of equal characteristic, so assume that E is p-adic. First, we prove
that F` is f -ULA. This follows from f ′ : SpdO

Ẽ
∼= SpdFq[[t1/p

∞
]]→ SpdFq being `-cohomologically

smooth, where Ẽ/E is some totally ramified Zp-extension, by the argument of the proof of [Sch17a,
Proposition 24.3] (in essence, the compactly supported pushforward for any base change of f are
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the Zp-invariants inside the compactly supported pushforward for the corresponding base change
of f ′, so constructibility of the latter implies constructibility of the former).

It remains to show that Rf !F` is invertible. If j : SpdE → SpdOE is the open immersion with
complement i : SpdFq → SpdOE , we have Ri!Rf !F` = F` by transitivity, and j∗Rf !F` ∼= F`(1)[2]
by [Sch17a, Proposition 24.5], so we get a triangle

i∗F` → Rf !F` → Rj∗F`(1)[2].

Using this, one computes Rf !F` ∼= F`(1)[2], as desired. �

IV.3. Formal smoothness

IV.3.1. Definition. A key step in the proof of Theorem IV.4.2, the Jacobian criterion of
cohomological smoothness, is the following notion of formal smoothness.

Definition IV.3.1. Let f : Y → X be a map of v-stacks. Then f is formally smooth if for
any affinoid perfectoid space S of characteristic p with a Zariski closed subspace S0 ⊂ S, and any
commutative diagram

S0
g0 //

��

Y

f
��

S
h // X,

there is some étale map S′ → S containing S0 in its image and a map g : S′ → Y fitting in a
commutative diagram

S′ ×S S0
//

��

S0
g0 //

��

Y

f
��

S′

g

55

// S
h // X.

This kind of formal smoothness is closely related to the notion of absolute neighborhood retracts
([Bor67], [Dol80]). In fact, suppose Y → X is formally smooth with Y and X affinoid perfectoid.
Choose a Zariski closed embedding Y ↪→ BIX for some set I. Then there exists an étale neighborhood
U → BIX of Y such that the closed embedding

i : Y ×BIX
U ↪→ U

admits a retraction r : U → Y ×BIX
U , r ◦ i = Id. Thus, Y/X is a retract of an (étale) neighborhood

inside a ball/X.

IV.3.2. Examples and basic properties. We will see that formally smooth morphisms
share analogous properties to cohomologically smooth morphisms. Let’s begin with the following
observations:

(i) The composite of two formally smooth morphisms is formally smooth,

(ii) The formally smooth property is stable under pullback: if Y → X is formally smooth and
X ′ → X is any map then Y ×X X ′ → X ′ is formally smooth.
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(iii) Separated étale maps are formally smooth.

(iv) For morphisms of locally spatial diamonds, formal smoothness is étale local on the source and
the target.

Let us observe that, like cohomologically smooth morphisms, formally smooth morphisms are
universally open.

Proposition IV.3.2. Formally smooth maps are universally open.

Proof. Let Y → X be formally smooth. We can suppose X is affinoid perfectoid. Since any
open subsheaf of Y is formally smooth over X we are reduced to prove that the image of Y → X
is open. Let S → Y be a morphism with S affinoid perfectoid. Choose a Zariski closed embedding
S ↪→ BIX for some set I. The formal smoothness assumption implies that there exists an étale
neighborhood U → BIX of S ⊂ BIX such that S ×BIX

U → S → Y extends to a map U → Y ; in

particular, the image of S → Y → X is contained in the image of U → Y → X, and it suffices to
prove that the latter is open. We can suppose U is quasicompact and separated over BIX . Writing
BIX = lim←−J B

J
X where J goes through the set of finite subsets of I, there exists a some J ⊂ I finite

and V → BJX such that U → BIX is the pullback of V → BJX via the projection BIX → BJX , cf.
[Sch17a, Proposition 6.4]. Since BIX → BJX is a v-cover,

Im(U → X) = Im(V → X).

Now, using that V → BJX → X is open, since cohomologically smooth for example, this is an open
subset of X. �

Let us begin with some concrete examples. In the following, B→ ∗ is the v-sheaf O+ on Perfk
and A1 → ∗ is the v-sheaf O.

Proposition IV.3.3. The morphisms B→ ∗, A1 → ∗ and SpdOE → ∗ are formally smooth.

Proof. Let S0 = Spa(R0, R
+
0 ) ↪→ S = Spa(R,R+) be a Zariski closed embedding of affinoid

perfectoid spaces. Then R → R0 is surjective, which immediately shows that A1 → ∗ is formally
smooth. The case of B → ∗ follows as B ⊂ A1 is open. For SpdOE , note that any untilt of S0

can be given by some element ξ ∈WOE (R+
0 ) of the form ξ0 = π +

∑∞
n=0 π

i[ri,0] where all ri ∈ R◦◦0 .
But R◦◦ → R◦◦0 is surjective (cf. the discussion after [Sch17a, Definition 5.7]), so one can lift all
ri,0 ∈ R◦◦0 to ri ∈ R◦◦, and then ξ = π+

∑∞
n=0 π

i[ri] defines an untilt of S over OE lifting the given
one on S0. �

Corollary IV.3.4. Is f : Y → X is a smooth morphism of analytic adic spaces over Zp then

f♦ : Y ♦ → X♦ is formally smooth.

Proof. Any smooth morphism is locally étale over a finite-dimensional ball. �

Let us remark the following.

Proposition IV.3.5. If f : Y → X is a formally smooth and surjective map of v-stacks, then
f is surjective as a map of étale stacks. Equivalently, in case X is a perfectoid space, the map f
splits over an étale cover of X.



130 IV. GEOMETRY OF DIAMONDS

Proof. We can suppose X is affinoid. There exists a surjective morphism X ′ → X with X ′

affinoid perfectoid and a section s : X ′ → Y of Y → X over X ′. Let us choose a Zariski closed
embedding X ′ ↪→ BIX . Applying the formal smoothness property we deduce there is an étale
neighborhood U → BIX of X ′ ⊂ BIX and a section over U of Y → X. It thus suffices to see that
U → X admits a section over an étale cover of X. As in the proof of Proposition IV.3.2 there exists
a finite subset J ⊂ I, and quasicompact étale map V → BJX such that U → BIX is the pullback
of V → BJX via the projection BIX → BJX . This reduces us to the case I is finite. We may also
replace V by its image in BJX . At geometric points, the splitting follows from [Sch17a, Lemma
9.5]. Approximating a section over a geometric point over an étale neighborhood then gives the
desired splitting on an étale cover. �

According to [Sch17a, Proposition 23.13] cohomological smoothness is cohomologically smooth
local on the source. The same holds for formally smooth morphisms.

Corollary IV.3.6. Let f : Y → X be a morphism of v-stacks. Suppose there exists a v-
surjective formally smooth morphism of v-stacks g : Y ′ → Y such that f ◦ g is formally smooth.
Then f is formally smooth.

Proof. Given a test diagram g0 : S0 → Y , h : S → X as in Definition IV.3.1, we can first
lift S0 → Y étale locally to Y ′ by Proposition IV.3.5, and the required étale neighborhoods lift to
S by [Sch17a, Proposition 6.4] applied to S0 as the intersection of all open neighborhoods in S.
Thus, the diagram can be lifted to a similar test diagram for Y ′ → X, which admits a solution by
assumption. �

Let us remark the following.

Proposition IV.3.7. The stack BunG → ∗ is formally smooth.

Proof. Let S0 = Spa(R0, R
+
0 ) ⊂ S = Spa(R,R+) be a Zariski closed immersion of affinoid

perfectoid spaces over Spd k, and fix a pseudouniformizer $ ∈ R. Let E0 be a G-bundle on XS0 .
Pick any geometric point Spa(C,C+) → S0; we intend to find an étale neighborhood U → S of
Spa(C,C+) in S such that the G-bundle over U ×S S0 extends to U .

Note that the pullback of E0 to YC,[1,q] is a trivial G-bundle, by Theorem III.2.2. From [GR03,

Proposition 5.4.21] (applied with R = lim−→V
O+(YV,[1,q]), t = π and I = 0, where V → S0 runs over

étale neighborhoods of Spa(C,C+) in S0; all of these lift to S) it follows that after passing to an
étale neighborhood as above, we can assume that the pullback of E0 to YS0,[1,q] is a trivial G-bundle.
In that case, E0 is given by some matrix A ∈ G(BR0,[1,1]) encoding the descent. Applying [GR03,
Proposition 5.4.21] again, with

R = lim−→
S0⊂U⊂S

O+(YU,[1,1]), t = π, I = ker(R→ lim−→
U

O+(YS0,[1,1])),

then shows that we may lift A into a neighborhood, as desired. �

The following is the analog of Proposition II.3.5 (iii).
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Proposition IV.3.8. Let S be a perfectoid space and let [E1 → E0] be a map of vector bundles
on XS such that E0 is everywhere of positive Harder–Narasimhan slopes, and E1 is everywhere of
negative Harder–Narasimhan slopes. Then BC([E1 → E0])→ S is formally smooth.

Proof. Using the exact sequence

0→ BC(E0)→ BC([E1 → E0])→ BC(E1[1])→ 0

and Proposition II.3.4 (iii), one reduces to the individual cases of BC(E0) and BC(E1[1]). For E = E0,
we can use Corollary II.3.3 to choose étale locally on S a short exact sequence

0→ G → OXS (1
r )m → E → 0

where G is fiberwise on S semistable of positive slope. Moreover, by Proposition II.3.4 (iii), one
can also ensure that H1(XS′ ,G|XS′ ) = 0 for all affinoid perfectoid spaces S′ → S. In particular, if

S0 ⊂ S is a Zariski closed immersion of affinoid perfectoid spaces, the map OXS (1
r )m(S0)→ E(S0)

is surjective, and we can replace E by OXS (1
r )m. But then Proposition II.2.5 (iv) shows that this

Banach–Colmez space is representable by a perfectoid open unit disc, which is formally smooth.

For E = E1, we can use Theorem II.2.6 to find a short exact sequence

0→ E → OXS (d)m → G → 0

for some d,m > 0, and this induces an exact sequence

0→ BC(G)→ BC(OXS (d)m)→ BC(E [1])→ 0

where the middle term is formally smooth by the preceding, and the map BC(OXS (d)m)→ BC(E [1])
is formally smooth (as étale locally surjective and its fibre BC(G) is formally smooth). We conclude
by Corollary IV.3.6. �

IV.4. A Jacobian criterion

The goal of this section is to prove that certain geometrically defined diamonds are cohomo-
logically smooth when one expects them to be. We regard this result as the most profound in the
theory of diamonds so far: While we cannot control much of the geometry of these diamonds, in
particular we have no way to relate them to (perfectoid) balls in any reasonable way, we can still
prove relative Poincaré duality for them. The spaces considered below also appear quite naturally
in a variety of contexts, so we expect the result to have many applications.

The setup is the following. Let S be a perfectoid space and let Z → XS be a smooth map of
sous-perfectoid adic spaces — defining this concept of smoothness will be done in a first subsection,
but it is essentially just a family of smooth rigid spaces over XS , in the usual sense. One can then
consider the v-sheaf MZ of sections of Z → XS , sending any perfectoid space S′ → S to the set
of maps XS′ → Z lifting XS′ → XS . In general, we cannot prove that MZ is a locally spatial
diamond, but this turns out to be true when Z is quasiprojective in the sense that it is a Zariski
closed subspace of an open subset of (the adic space) PnXS for some n ≥ 0.

In general, the space MZ → S is not (cohomologically) smooth: If tangent spaces of MZ → S
would exist, one would expect their fibre over S′ → MZ , given by some section s : XS′ → Z,
to be given by H0(XS′ , s

∗TZ/XS ), where TZ/XS is the tangent bundle of Z → XS ; and then an

obstruction space would be given by H1(XS′ , s
∗TZ/XS ). Thus, one can expect smoothness to hold
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only when H1(XS′ , s
∗TZ/XS ) vanishes. This holds true, locally on S′, if all slopes of s∗TZ/XS are

positive (by Proposition II.3.4 (iii)), suggesting the following definition.

Definition IV.4.1. Let Msm
Z ⊂ MZ be the open subfunctor of all sections s : XS′ → Z such

that s∗TZ/XS has everywhere positive Harder–Narasimhan slopes.

Roughly speaking, one expects Msm
Z to look infinitesimally like the Banach–Colmez space

BC(s∗TZ/XS ); these indeed are cohomologically smooth when all slopes are positive, by Propo-
sition II.3.5 (iii). Unfortunately, we are unable to prove a direct relation of this sort; however, we
will be able to relate these spaces via a “deformation to the normal cone”.

Our goal is to prove the following theorem.

Theorem IV.4.2. Let S be a perfectoid space and let Z → XS be a smooth map of sous-
perfectoid spaces such that Z admits a Zariski closed immersion into an open subset of (the adic
space) PnXS for some n ≥ 0. Then MZ is a locally spatial diamond, the map MZ → S is compact-
ifiable, and Msm

Z → S is cohomologically smooth.

Moreover, for a geometric point x : SpaC → Msm
Z given by a map SpaC → S and a section

s : XC → Z, the map Msm
Z → S is at x of `-dimension equal to the degree of s∗TZ/XS .

Remark IV.4.3. The mapMsm
Z → S is a natural example of a map that is only locally of finite

dimension, but not globally so (as there are many connected components of increasing dimension).

Remark IV.4.4. In the “classical context” of algebraic curves the preceding theorem is the
following (easy) result. Let X/k be a proper smooth curve and Z → X be quasi-projective smooth.
ConsiderMZ the functor on k-schemes that sends S to morphisms s : X×k S → Z over X. This is
representable by a quasi-projective scheme over Spec(k). LetMsm

Z be the open sub-scheme defined
by the condition that if s : X ×k S → Z is an S-point of MZ then the vector bundle s∗TZ/X has

no H1 fiberwise on S. Then MZ → Spec(k) is smooth.

Remark IV.4.5. Suppose that W is a smooth quasi-projective E-scheme. The moduli space
MZ with Z = W ×E XS classifies morphisms XS → W i.e. MZ is a moduli of morphisms from
families of Fargues–Fontaine curves to W . This is some kind of “Gromov–Witten” situation.

Remark IV.4.6. We could have made the a priori weaker assumption that Z admits a Zariski
closed immersion inside an open subset of P(E) where E is a vector bundle on XS . Nevertheless,
since the result is local on S and we can suppose it is affinoid perfectoid, and since when S is
affinoid perfectoid OXS (1) “is ample” i.e. there is a surjection OXS (−N)n � E for N,n� 0, this
assumption is equivalent to the one we made i.e. we can suppose E is free.

Example IV.4.7 (The Quot diamond). Let E be a vector bundle on XS . We denote by

QuotE −→ S

the moduli space over S of locally free quotients of E . Fixing the rank of such a quotient, one sees
that QuotE is a finite disjoint union of spaces MZ with Z → XS a Grassmannian of quotients of
E . This is thus representable in locally spatial diamonds, compactifiable, of locally finite dim. trg.

Let Quotsm
E ⊂ QuotE be the open subset parametrizing quotients u : E → F such that fiberwise,

the greatest slope of keru is strictly less than the smallest slope of F . According to Theorem IV.4.2
this is cohomologically smooth over S.
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Fix an integer n ≥ 1. For some N ∈ Z and r ∈ N≥1, let Quotn,sm,◦O(N)r be the open subset of

Quotsm
O(N)r where the quotient has rank n and its slopes are greater than N . When N and r

vary one constructs, as in the “classical case”, cohomologically smooth charts on BunGLn using
Quotn,sm,◦O(N)r . In fact, the morphism

Quotn,sm,◦O(N)r −→ BunGLn

given by the quotient of O(N)r is separated cohomologically smooth. When pulled back by a
morphism S → BunGLn with S perfectoid, this is an open subset of a positive Banach–Colmez
space.

We will not use the Quot diamond in the following. In section V.3, using the Jacobian criterion,
we will construct charts on BunG for any G that are better suited to our needs.

IV.4.1. Smooth maps of sous-perfectoid adic spaces. We need some background about
smooth morphisms of adic spaces in non-noetherian settings. We choose the setting of sous-
perfectoid adic spaces as defined by Hansen-Kedlaya, [HK20], cf. [SW20, Section 6.3]. Recall that
an adic space X is sous-perfectoid if it is analytic and admits an open cover by U = Spa(R,R+)

where each R is a sous-perfectoid Tate algebra, meaning that there is some perfectoid R-algebra R̃

such that R→ R̃ is a split injection in the category of topological R-modules.

The class of sous-perfectoid rings R is stable under passage to rational localizations, finite étale
maps, and R〈T1, . . . , Tn〉. As smooth maps should be built from these basic examples, we can hope
for a good theory of smooth maps of sous-perfectoid spaces.

Recall that a map f : Y → X of sous-perfectoid adic spaces is étale if locally on the source and
target it can be written as an open immersion followed by a finite étale map.

Definition IV.4.8. Let f : Y → X be a map of sous-perfectoid adic spaces. Then f is smooth
if one can cover Y by open subsets V ⊂ Y such that there are étale maps V → BdX for some integer
d ≥ 0.

It can immediately be checked that analytifications of smooth schemes satisfy this condition.

Proposition IV.4.9. Let X = Spa(A,A+) be an affinoid sous-perfectoid adic space, and let
f0 : Y0 → SpecA be a smooth map of schemes. Let f : Y → X be the analytification of f0 : Y0 →
SpecA, representing the functor taking Spa(B,B+) → Spa(A,A+) to the SpecB-valued points of
Y0 → SpecA. Then f : Y → X is smooth.

Proof. Locally, f0 is the composite of an étale and the projection from affine space. This
means that its analytification is locally étale over the projection from the analytification of affine
space, which is a union of balls, giving the result. �

Let us analyze some basic properties of smooth maps of sous-perfectoid adic spaces.

Proposition IV.4.10. Let f : Y → X and g : Z → Y be maps of sous-perfectoid adic
spaces.

(i) The property of f being smooth is local on Y .
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(ii) If f and g are smooth, then so is f ◦ g : Z → X.

(iii) If h : X ′ → X is any map of sous-perfectoid adic spaces and f is smooth, then the fibre product
Y ′ = Y ×X X ′ in adic spaces exists, is sous-perfectoid, and f ′ : Y ′ → X ′ is smooth.

(iv) The map f is universally open.

(v) If f is surjective, then there is some étale cover X ′ → X with a lift X ′ → Y .

Regarding part (1), we note that we will see in Proposition IV.4.18 that the property of f being
smooth is in fact étale local on Y (and thus smooth local on X and Y , using (5)).

Proof. Part (1) is clear from the definition. For part (2), the composite is locally a composite
of an étale map, a projection from a ball, an étale map, and another projection from a ball; but we
can swap the two middle maps, and use that composites of étale maps are étale. Part (3) is again
clear, by the stability properties of sous-perfectoid rings mentioned above. For part (4), it is now
enough to see that f is open, and we can assume that f is a composite of an étale map and the
projection from a ball, both of which are open. For part (5), using that f is open, we can work
locally on Y and thus assume again that it is a composite of an étale map and the projection from
a ball; we can then replace Y by its open image in the ball. By [Sch17a, Lemma 9.5], for any
geometric point Spa(C,C+) → X of X, we can find a lift to Y . Writing the geometric point as
the limit of affinoid étale neighborhoods, the map to Y ⊂ BdX can be approximated at some finite
stage, and then openness of Y ensures that it will still lie in Y . This gives the desired étale cover
of X over which f splits. �

Of course, the most important structure of a smooth morphism is its module of Kähler differ-
entials. Recall that if Y is sous-perfectoid, then one can define a stack (for the étale topology) of
vector bundles on Y , such that for Y = Spa(R,R+) affinoid with R sous-perfectoid, the category
of vector bundles is equivalent to the category of finite projective R-modules; see [KL15], [SW20,
Theorem 5.2.8, Proposition 6.3.4]. By definition, a vector bundle on Y is an OY -module that is
locally free of finite rank.

Definition IV.4.11. Let f : Y → X be a smooth map of sous-perfectoid adic spaces, with
diagonal ∆f : Y → Y ×X Y . Let IY/X ⊂ OY×XY be the ideal sheaf. Then

Ω1
Y/X := IY/X/I2

Y/X

considered as OY×XY /IY/X = OY -module.

It follows from the definition that there is a canonical OX -linear derivation d : OY → Ω1
Y/X ,

given by g 7→ g ⊗ 1− 1⊗ g.

Proposition IV.4.12. Let f : Y → X be a smooth map of sous-perfectoid adic spaces. Then
Ω1
Y/X is a vector bundle on Y . There is a unique open and closed decomposition Y = Y0tY1t. . .tYn

such that Ω1
Y/X |Yd is of rank d for all d = 0, . . . , n. In that case, for any open subset V ⊂ Yd with

an étale map V → Bd′X , necessarily d′ = d.

We will say that f is smooth of dimension d if Ω1
Y/X is of rank d. By the proposition, this is

equivalent to asking that Y can be covered by open subsets V that admit étale maps V → BdX . In
particular, f is smooth of dimension 0 if and only if it is étale.
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Proof. It is enough to show that if f is a composite of an étale map Y → BdX with the

projection to X, then Ω1
Y/X is isomorphic to OdY . Indeed, this implies that Ω1

Y/X is a vector bundle

in general, of the expected rank; and the decomposition into open and closed pieces is then a general
property of vector bundles.

Let Y ′ = BdX . Then Y ×X Y → Y ′ ×X Y ′ is étale, and the map Y → Y ′ ×Y ′×XY ′ (Y ×X Y ) is
an open immersion (as the diagonal of the étale map Y → Y ′). It follows that IY/X is the pullback
of IY ′/X′ . But Y ′ ↪→ Y ′ ×X Y ′ is of the form

Spa(R〈T1, . . . , Tn〉, R+〈T1, . . . , Tn〉) ↪→ Spa(R〈T (1)
1 , . . . , T (1)

n , T
(2)
1 , . . . , T (2)

n 〉, R+〈T (1)
1 , . . . , T (2)

n 〉)

if X = Spa(R,R+), and the ideal sheaf is given by (T
(1)
1 − T (2)

1 , . . . , T
(1)
n − T (2)

n ). This defines a
regular sequence after any étale localization, by the lemma below. This gives the claim. �

Lemma IV.4.13. Let X = Spa(R〈T1, . . . , Tn〉, R+〈T1, . . . , Tn〉) where R is a sous-perfectoid Tate
ring, let Y = Spa(S, S+) where S is a sous-perfectoid Tate ring, and let f : Y → X be a smooth
map. Then T1, . . . , Tn define a regular sequence on S and (T1, . . . , Tn)S ⊂ S is a closed ideal.

Proof. By induction, one can reduce to the case n = 1. The claim can be checked locally, so
we can assume that Y is étale over BdX for some d; replacing X by BdX , we can then assume that f is
étale. Let Y0 ⊂ Y be the base change to X0 = Spa(R,R+) = V (T ) ⊂ X; then Y and Y0×X0 X are
both étale over X and become isomorphic over X0 ⊂ X. By spreading of étale maps, this implies
that they are isomorphic after base change to X ′ = Spa(R〈T ′〉, R+〈T ′〉) where T ′ = $nT for some
n (and $ is a pseudouniformizer of R). This easily implies the result. �

Locally around a section, any smooth space is a ball:

Lemma IV.4.14. Let f : Y → X be a smooth map of sous-perfectoid spaces with a section
s : Spa(K,K+)→ Y for some point Spa(K,K+)→ X. Then there are open neighborhoods U ⊂ X
of Spa(K,K+) and V ⊂ Y of s(Spa(K,K+)) such that U ∼= BdV .

Proof. We can assume that X and Y are affinoid. If f is étale, then any section extends to a
small neighborhood (e.g. by [Sch17a, Lemma 15.6, Lemma 12.17]), and any section is necessarily
étale and thus open, giving the result in that case. In general, we may work locally around the given
section, so we can assume that f is the composite of an étale map Y → BdX and the projection to X.

Using the étale case already handled, we can assume that Y is an open subset of BdX . Any section

Spa(K,K+) → BdX has a cofinal system of neighborhoods that are small balls over open subsets
of X: The section is given by d elements T1, . . . , Td ∈ K+, and after picking a pseudouniformizer
$ and shrinking X, one can find global sections T ′1, . . . , T

′
d of O+

X(X) such that Ti ≡ T ′i mod $n.
Then {|T ′1|, . . . , |T ′d| ≤ |$|n} is a small ball over X, and the intersection of all these is Spa(K,K+).
Thus, one of these neighborhoods is contained in Y , as desired. �

Proposition IV.4.15. Let fi : Yi → X, i = 1, 2, be smooth maps of sous-perfectoid adic spaces,
and let g : Y1 → Y2 be a map over X.

(i) If g is smooth, then the sequence

0→ g∗Ω1
Y2/X

→ Ω1
Y1/X

→ Ω1
Y1/Y2

→ 0

is exact.
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(ii) Conversely, if g∗Ω1
Y2/X

→ Ω1
Y1/X

is a locally split injection, then g is smooth.

In particular, if g∗Ω1
Y2/X

→ Ω1
Y1/X

is an isomorphism, then g is étale.

Proof. Part (1) follows from a routine reduction to the case of projections from balls, where

it is clear. For part (2), we may assume that Y1 → Bd1
X and Y2 → Bd2

X are étale. It suffices

to see that the composite Y1 → Y2 → Bd2
X is smooth, as g is the composite of its base change

Y1 ×Bd2X
Y2 → Y2 with the section Y1 → Y1 ×Bd2X

Y2 of the étale map Y1 ×Bd2X
Y2 → Y1; any such

section is automatically itself étale. Thus, we may assume that Y2 = Bd2
X . Locally on Y1, we may

find a projection g′ : Bd1
X → Bd1−d2

X so that

(g′∗Ω1

Bd1−d2X /X
)|Y1

is an orthogonal complement of g∗Ω1
Y2/X

. Thus, we can assume that d1 = d2 =: d, and g∗Ω1
Y2/X

→
Ω1
Y1/X

is an isomorphism.

Our aim is now to prove that g : Y1 → Y2 = BdX is étale. We may assume that all of X, Y1 and
Y2 are affinoid. Passing to the fibre over a point S = Spa(K,K+)→ X, this follows from a result of
Huber, [Hub96, Proposition 1.6.9 (iii)]. The resulting étale map Y1,S → Y2,S deforms uniquely to
a quasicompact separated étale map Y ′1,U → Y2,U for a small enough neighborhood U ⊂ X of S, by

[Sch17a, Lemma 12.17]. Moreover, the map Y1,U → Y2,U lifts uniquely to Y1,U → Y ′1,U for U small

enough, by the same result. Replacing X by U , Y1 by Y1,U and Y2 by Y ′1,U , we can now assume
that g : Y1 → Y2 is a map between sous-perfectoid spaces smooth over X that is an isomorphism
on one fibre. It is enough to see that it is then an isomorphism in a neighborhood. To see this, we
may in fact work locally on Y2.

For this, we study Y1 ⊂ Y1 ×X Y2 → Y2: Here Y1 ×X Y2 → Y2 is smooth, and Y1 ⊂ Y1 ×X Y2

is locally the vanishing locus of d functions (as Y2 ⊂ Y2 ×X Y2 is). Moreover, over fibres lying over
the given point of X, the map Y1 → Y2 becomes an isomorphism, and in particular gives a section
of Y1 ×X Y2 → Y2. By Lemma IV.4.14, after shrinking Y2, we can assume that there is an open
neighborhood V ⊂ Y1×X Y2 such that V ∼= BdY2

. Inside there, Y1 is (locally) given by the vanishing
of d functions, and is only a point in one fibre. Now the result follows from the next lemma, using
Y2 in place of X. �

Lemma IV.4.16. Let X = Spa(A,A+) be a sous-perfectoid affinoid adic space with a point
X ′ = Spa(K,K+)→ X. Let f1, . . . , fn ∈ A+〈T1, . . . , Tn〉 be functions such that

K → K〈T1, . . . , Tn〉/(f1, . . . , fn)

is an isomorphism. Then, after replacing X by an open neighborhood of X ′, the map

A→ A〈T1, . . . , Tn〉/(f1, . . . , fn)

is an isomorphism.

Proof. For any ring B with elements g1, . . . , gn ∈ B, consider the homological Koszul complex

Kos(B, (gi)
n
i=1) = [B → Bn → . . .→ Bn (g1,...,gn)−−−−−−→ B].
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We claim that, after shrinking X, we can in fact arrange that

A→ Kos(A〈T1, . . . , Tn〉, (fi)ni=1)

is a quasi-isomorphism.

Note that all terms of these complexes are free Banach-A-modules, and thus the formation of
this complex commutes with all base changes; and one can use descent to establish the statement.
In particular, we can reduce first to the case that X is perfectoid, and then to the case that
X is strictly totally disconnected. In that case, the map A → K is automatically surjective,
and so we can arrange that under the isomorphism K ∼= K〈T1, . . . , Tn〉/(f1, . . . , fn), all Ti are
mapped to 0. Moreover, applying another change of basis, we can arrange that the image of fi
in K〈T1, . . . , Tn〉/(T1, . . . , Tn)2 is given by aiTi for some nonzero scalar ai ∈ K+. Note that we
are in fact allowed to also localize on BnX around the origin, as away from the origin the functions
f1, . . . , fn locally generate the unit ideal (in the fibre, but thus in a small neighborhood). Doing
such a localization, we can now arrange that fi ≡ Ti mod $ for some pseudouniformizer $ ∈ A+.
But now in fact

A+ → Kos(A+〈T1, . . . , Tn〉, (fi)ni=1)

is a quasi-isomorphism, as can be checked modulo $, where it is the quasi-isomorphism

A+/$ → Kos(A+/$[T1, . . . , Tn], (Ti)
n
i=1). �

Let us draw some consequences. First, we have the following form of the Jacobian criterion in
this setting.

Proposition IV.4.17. Let f : Y → X be a smooth map of sous-perfectoid adic spaces, and let
f1, . . . , fr ∈ OY (Y ) be global functions such that df1, . . . , dfr ∈ Ω1

Y/X(Y ) can locally be extended to

a basis of Ω1
Y/X . Then Z = V (f1, . . . , fr) ⊂ Y is a sous-perfectoid space smooth over X.

Proof. We can assume that all fi ∈ O+
Y (Y ) by rescaling, and we can locally find fr+1, . . . , fn ∈

O+
Y (Y ) such that df1, . . . , dfn is a basis of Ω1

Y/X . This induces an étale map Y → BnX , and then

V (f1, . . . , fr) ⊂ Y is the pullback of BrX ⊂ BnX , giving the desired result. �

Moreover, we can prove that being smooth is étale local on the source.

Proposition IV.4.18. Let f : Y → X be a map of sous-perfectoid adic spaces. Assume that
there is some étale cover j : V → Y such that f ◦ j is smooth. Then f is smooth.

Proof. By étale descent of vector bundles on sous-perfectoid adic spaces, Ω1
Y/X := IY/X/I2

Y/X

is a vector bundle, together with an OX -linear derivation d : OY → Ω1
Y/X . We claim that locally

we can find functions f1, . . . , fn ∈ OY such that df1, . . . , dfn ∈ Ω1
Y/X is a basis. To do this, it

suffices to find such functions over all fibres Spa(K,K+)→ X, as any approximation will then still
be a basis (small perturbations of a basis are still a basis). But over fibres, the equivalence of the
constructions in [Hub96, 1.6.2] shows that the df for f ∈ OX form generators of Ω1

Y/X .

Thus, assume that there are global sections f1, . . . , fn such that df1, . . . , dfn ∈ Ω1
Y/X are a

basis. Rescaling the fi if necessary, they define a map g : Y → BdX that induces an isomorphism
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g∗Ω1
BdX/X

→ Ω1
Y/X . By Proposition IV.4.15, the map Y → BdX is étale locally on Y étale. We may

assume that Y and X are affinoid; in particular, all maps are separated. Then by [Sch17a, Lemma
15.6, Proposition 11.30] also Y → BdX is étale. �

Finally, we note that if Y and Y ′ are both smooth over a sous-perfectoid space X, then the
concept of Zariski closed immersions Y ↪→ Y ′ over X is well-behaved.

Proposition IV.4.19. Let f : Y → X, f ′ : Y ′ → X be smooth maps of sous-perfectoid adic
spaces, and let g : Y → Y ′ be a map over X. The following conditions are equivalent.

(i) There is a cover of Y ′ by open affinoid V ′ = Spa(S′, S′+) such that V = Y ×Y ′ V ′ = Spa(S, S+)
is affinoid and S′ → S is surjective, with S+ ⊂ S the integral closure of the image of S′+.

(ii) For any open affinoid V ′ = Spa(S′, S′+) ⊂ Y ′, the preimage V = Y ×Y ′ V ′ = Spa(S, S+) is
affinoid and S′ → S is surjective, with S+ ⊂ S the integral closure of the image of S′+.

Moreover, in this case the ideal sheaf IY⊂Y ′ ⊂ OY ′ is pseudocoherent in the sense of [KL16],
and locally generated by sections f1, . . . , fr ∈ OY ′ such that df1, . . . , dfr ∈ Ω1

Y ′/X can locally be

extended to a basis.

Proof. We first analyze the local structure under condition (1), so assume that Y ′ = Spa(S′, S′+)
and Y = Spa(S, S+) are affinoid, with S′ → S surjective and S+ ⊂ S the integral closure of the
image of S′+. It follows that g∗Ω1

Y ′/X → Ω1
Y/X is surjective, and letting d′ and d be the respective

dimensions of Y ′ and Y (which we may assume to be constant), we see that r = d′−d ≥ 0 and that
locally we can find f1, . . . , fr ∈ IY⊂Y ′ so that df1, . . . , dfr generate the kernel of g∗Ω1

Y ′/X → Ω1
Y/X

(as the kernel is generated by the closure of the image of IY⊂Y ′). By Proposition IV.4.17, the van-
ishing locus of the fi defines a sous-perfectoid space Z ⊂ Y ′ that is smooth over X. The induced
map Y → Z induces an isomorphism on differentials, hence is étale by Proposition IV.4.15; but it
is also a closed immersion, hence locally an isomorphism.

We see that the ideal sheaf IY⊂Y ′ is locally generated by sections f1, . . . , fr as in the statement
of the proposition. By the proof of Proposition IV.4.17 and Lemma IV.4.13, it follows that the
ideal sheaf IY⊂Y ′ is pseudocoherent in the sense of [KL16].

To finish the proof, it suffices to show that (1) implies (2). By the gluing result for pseudocoher-
ent modules of [KL16], the pseudocoherent sheaf IY⊂Y ′ over V ′ corresponds to a pseudocoherent
module I ⊂ S′, and then necessarily V = Spa(S, S+) where S = S′/I with S+ ⊂ S the integral
closure of the image of S′+. �

Definition IV.4.20. In the setup of Proposition IV.4.19, the map g is a Zariski closed immer-
sion if the equivalent conditions are satisfied.

IV.4.2. Maps from XS into Pn. Our arguments make critical use of the assumption that in
Theorem IV.4.2, the space Z → XS is locally closed in PnXS . For this reason, we analyze the special
case of Pn in this section.

Proposition IV.4.21. Let n ≥ 0 and consider the small v-sheaf MPn taking any perfectoid
space S to the set of maps XS → PnE. Then MPn → ∗ is partially proper and representable in
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locally spatial diamonds, and admits a decomposition into open and closed subspaces

MPn =
⊔
m≥0

Mm
Pn

such that each Mm
Pn → ∗ has finite dim. trg, and the degree of the pullback of OPn(1) to XMm

Pn
is

m. In fact, there is a canonical open immersion

Mm
Pn ↪→ (BC(OXS (m)n+1) \ {0})/E×.

Proof. The degree of the pullback L/XS of OPn(1) to XS defines an open and closed decom-
position according to all m ∈ Z. Fix some m. Then over the corresponding subspace Mm

Pn , we
can fix a trivialization L ∼= OXS (m), which amounts to an E×-torsor. After this trivialization,
one parametrizes n + 1 sections of L ∼= OXS (m) without common zeroes. The condition of no
common zeroes is an open condition on S: Indeed, the common zeroes form a closed subspace of
|XS |, and the map |XS | → |S| is closed (see the proof of Lemma IV.1.20). This implies the desired
description. �

Proposition IV.4.22. Let S be a perfectoid space and let Z → XS be a smooth map of sous-
perfectoid adic spaces such that Z admits a Zariski closed embedding into an open subspace of PnXS .
Then the induced functor

MZ →MPnXS
is locally closed. More precisely, for any perfectoid space T → MPnXS

, the preimage of MZ is

representable by some perfectoid space TZ ⊂ T that is étale locally Zariski closed in T , i.e. there
is some étale cover of T by affinoid perfectoid T ′ = Spa(R,R+) → T such that TZ ×T T ′ =
Spa(RZ , R

+
Z ) is affinoid perfectoid, with R → RZ surjective and R+

Z ⊂ RZ the integral closure of
the image of R+.

In particular, the map MZ → S is representable in locally spatial diamonds and compactifiable,
of locally finite dim. trg.

Proof. Choose an open subspace W ⊂ PnXS such that Z is Zariski closed in W . For any
perfectoid space T with a map T →MPnXS

corresponding to a map XT → PnXS over XS , the locus

TW ⊂ T where the section factors over W is open. Indeed, this locus is the complement of the
image in |T | of the preimage of |PnXS \W | under |XT | → |PnXS |, and |XT | → |T | is closed.

Replacing T by TW , we can assume that the section XT → PnXS factors over W . We may also

assume that T = Spa(R,R+) is affinoid perfectoid and that S = T . Pick a pseudouniformizer
$ ∈ R, in particular defining the cover

YS,[1,q] = {|π|q ≤ |[$]| ≤ |π|} ⊂ SpaWOE (R+)

of XS . The pullback of the line bundle OPn(1) to XS along this section, and then to YS,[1,q], is étale
locally trivial, as when S is a geometric point, YS,[1,q] is affinoid with ring of functions a principal
ideal domain by Corollary II.1.12. Replacing W by a small étale neighborhood of this section and
correspondingly shrinking S, we can assume that the pullback of OPn(1) to W[1,q] = W ×XS YS,[1,q]
is trivial. In that case the pullback Z[1,q] → YS,[1,q] of Z → XS is Zariski closed in an open subset
of

An+1
YS,[1,q]

.
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Inside An+1
YS,[1,q]

, the image of YSpa(K,K+),[1,q] (via the given section) for a point Spa(K,K+) → S is

an intersection of small balls over YS′,[1,q] for small neighborhoods S′ ⊂ S of Spa(K,K+). Thus,
one of these balls is contained in the open subset of which Z[1,q] is a Zariski closed subset. Thus,
after this further localization, we can assume that there is a Zariski closed immersion

Z[1,q] ↪→ Bn+1
YS,[1,q]

,

and in particular Z[1,q] is affinoid and cut out by global functions on Bn+1
YS,[1,q]

by Proposition IV.4.19.

Pulling back these functions along the given section YS,[1,q] → Bn+1
YS,[1,q]

, it suffices to see that if

S = Spa(R,R+) is an affinoid perfectoid space of characteristic p with a choice of pseudouniformizer
$ ∈ R and

f ∈ BR,[1,q] = O(YS,[1,q])

is a function, then there is a universal perfectoid space S′ ⊂ S for which the pullback of f is zero,
and S′ ⊂ S is Zariski closed. This is given by Lemma IV.4.23. �

Lemma IV.4.23. Let S = Spa(R,R+) ∈ PerfFq be affinoid perfectoid with a fixed pseudo-
uniformizer $, I ⊂ (0,∞) a compact interval with rational ends, and Z ⊂ |YS,I | a closed subset
defined by the vanishing locus of an ideal J ⊂ O(YS,I). Then, via the open projection υ : |YS,I | → |S|,
the closed subset |S| \ υ(|YS,I | \ Z) is Zariski closed. The corresponding Zariski closed perfectoid
subspace of S is universal for perfectoid spaces T → S such that J 7→ 0 via O(YS,I)→ O(YT,I).

Proof. Since Y ♦S,I → S is cohomologically smooth, υ is open. We can suppose J = (f) with

f ∈ O(YS,I). For any untilt of Fq(($1/p∞)) over E such that |π|b ≤ |[$]]| ≤ |π|a if I = [a, b], we get

a corresponding untilt R] of R over E, with a map BR,I → R]. The locus where the image of f

in R] vanishes is Zariski closed by Proposition II.0.2. Intersecting these Zariski closed subsets over
varying such untilts gives the vanishing locus of f , as in any fibre, f vanishes as soon at it vanishes
at infinitely many untilts (e.g., by Corollary II.1.12), and all rings are sous-perfectoid, in particular
uniform, so vanishing at all points implies vanishing. �

IV.4.3. Formal smoothness of Msm
Z . The key result we need is the following.

Proposition IV.4.24. Let S = Spa(R,R+) be an affinoid perfectoid space over Fq and let
Z → XS be a smooth map of sous-perfectoid adic spaces that is Zariski closed in an open subspace
of PnXS . Then Msm

Z → S is formally smooth.

Proof. Pick a test diagram as in Definition IV.3.1; we can and do assume that the S from
there is the given S, replacing the S in this proposition if necessary. This means we have a diagram

Z

XS0 XS

s0

and, up to replacing S by an étale neighborhood of S0 we try to extend the section s0 to a section
over XS (the dotted line in the diagram). Fix a geometric point Spa(C,C+)→ S0; we will always
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allow ourselves to pass to étale neighborhoods of this point. Fix a pseudouniformizer $ ∈ R and
consider the affinoid cover YS,[1,q] → XS ; recall that

YS,[1,q] = {|π|q ≤ |[$]| ≤ |π|} ⊂ SpaWOE (R+)

and we also consider its boundary annuli

YS,[1,1] = {|[$]| = |π|}, YS,[q,q] = {|π|q = |[$]|} ⊂ YS,[1,q].
Let Z[1,q] → Z be its pullback; with pullback Z[1,1], Z[q,q] ⊂ Z[1,q] of YS,[1,1], YS,[q,q] ⊂ YS,[1,q]. In
particular, Z is obtained from Z[1,q] via identification of its open subsets Z[1,1], Z[q,q] along the
isomorphism ϕ : Z[1,1] → Z[q,q].

Arguing as in the proof of Proposition IV.4.22, we can after étale localization on S embed

Z[1,q] ↪→ Bn+1
YS,[1,q]

as a Zariski closed subset. We thus have a diagram

Z[1,q] Bn+1
YS,[1,q]

YS0,[1,q] YS,[1,q].

Zariski closed

In particular, Z[1,q] is affinoid.

Next, consider the Kähler differentials Ω1
Z[1,q]/YS,[1,q]

. Again, as BC,[1,q] is a principal ideal

domain, its restriction to the section YSpa(C,C+),[1,q] ⊂ Z[1,q] is trivial, and thus it is trivial in a small

neighborhood. It follows that after a further étale localization we can assume that Ω1
Z[1,q]/YS,[1,q]

∼=
OrZ[1,q]

is trivial. On the Zariski closed subset Z0,[1,q] ⊂ Z[1,q], this implies that we may find functions

f1, . . . , fr ∈ O(Z0,[1,q]) vanishing on the section YS0,[1,q] → Z0,[1,q] and locally generating the ideal
of this closed immersion (use Proposition IV.4.19). In particular,

df1, . . . , dfr ∈ Ω1
Z0,[1,q]/YS0,[1,q]

are generators at the image of the section YS0,[1,q] → Z0,[1,q], and thus in an open neighborhood.
Picking lifts of the fi to O(Z[1,q]) and shrinking Z[1,q], Proposition IV.4.15 implies that they define
an étale map

Z[1,q] → BrYS,[1,q] .
Moreover, over {0}YS0,[1,q]

⊂ BrYS,[1,q] , this map admits a section. Shrinking further around this

section, we can thus arrange that there are open immersions

(πNB)rYS,[1,q] ⊂ Z[1,q] ⊂ BrYS,[1,q] ,

and that the section over YS0,[1,q] is given by the zero section.

The isomorphism ϕ : Z[1,1] → Z[q,q] induces a map

ϕ′ : (πNB)rYS,[1,1]
→ BrYS,[q,q] .

Recall that for any compact interval I ⊂ (0,∞), the space

YS,I = Spa(BR,I , B
+
(R,R+),I

)
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is affinoid. The map ϕ′ is then given by a map

α : BR,[q,q]〈T1, . . . , Tr〉 → BR,[1,1]〈π−NT1, . . . , π
−NTr〉

linear over the isomorphism ϕ : BR,[q,q] → BR,[1,1]. The map α is determined by the images of
T1, . . . , Tn which are elements

αi ∈ B+
(R,R+),[1,1]

〈π−NT1, . . . , π
−NTr〉.

These have the property that on the quotient BR0,[1,1] they vanish at T1 = . . . = Tr = 0 (as over

S0, the zero section is ϕ-invariant). Moreover, over the geometric point Spa(C,C+)→ S0 fixed at
the beginning, we can apply a linear change of coordinates in order to ensure that the derivative
at the origin is given by a standard matrix for an isocrystal of negative slopes; i.e., there are cycles
1, . . . , r1; r1 + 1, . . . , r2; . . .; ra−1 + 1, . . . , ra = r and positive integers d1, . . . , da such that

αi ≡ Ti+1 in BC,[1,1][T1, . . . , Tr]/(T1, . . . , Tr)
2

if i 6= rj for some j = 1, . . . , a, and

αrj ≡ π−djTrj−1+1 in BC,[1,1][T1, . . . , Tr]/(T1, . . . , Tr)
2.

(Here, we set r0 = 0.) Approximating this linear change of basis over an étale neighborhood, we
respect the condition that the αi’s vanish at T1 = . . . = Tr = 0 over S0, while we can for any large
M arrange

αi ≡ Ti+1 in B+
(R,R+),[1,1]

/πM [π−NT1, . . . , π
−NTr]/(π

−NT1, . . . , π
−NTr)

2

if i 6= rj and

αrj ≡ π−djTrj−1+1 in B+
(R,R+),[1,1]

/πM [π−NT1, . . . , π
−NTr]/(π

−NT1, . . . , π
−NTr)

2.

Moreover, rescaling all Ti by powers of π, and passing to a smaller neighborhood around S0, we
can then even ensure that

αi ∈ Ti+1 + πMB+
(R,R+),[1,1]

〈T1, . . . , Tr〉

for i 6= rj and

αrj ∈ π−djTrj−1+1 + πMB+
(R,R+),[1,1]

〈T1, . . . , Tr〉.
At this point, the integers d1, . . . , da are fixed, while we allow ourselves to choose M later, depending
only on these.

From this point on, we will no longer change S and S0, and instead will merely change coordi-
nates in the balls (by automorphisms). More precisely, we study the effect of replacing Ti by Ti+ εi
for some

εi ∈ πd ker(B+
(R,R+),[1,q]

→ BR0,[1,q])

where we take d to be at least the maximum of all dj . This replaces αi by a new power series α′i,
given by

α′i(T1, . . . , Tr) = αi(T1, . . . , Ti + εi, . . . , Tr)− ϕ(εi)

and the α′i’s still vanish at T1 = . . . = Tr = 0 over S0. Their nonconstant coefficients will still have
the same properties as for αi (the linear coefficients are unchanged, while all other coefficients are
divisible by πM ), and the constant coefficient satisfies

α′i(0, . . . , 0) ≡ αi(0, . . . , 0) + εi+1 − ϕ(εi) in B+
(R,R+),[1,1]

/πM+d
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if i 6= rj and

α′rj (0, . . . , 0) ≡ αrj (0, . . . , 0) + π−dj εrj−1+1 − ϕ(εrj ) in B+
(R,R+),[1,1]

/πM+d.

Assume that by some inductive procedure we already achieved αi(0, . . . , 0) ∈ πN ′B+
(R,R+),[1,1]

for

some N ′ ≥ M . By Lemma IV.4.25 below, there is some constant c depending only on d1, . . . , da
such that we can then find εi ∈ πN

′−cB+
(R,R+),[1,1]

, vanishing over R0, with

αi(0, . . . , 0) = ϕ(εi)− εi+1

for i 6= rj and

αrj (0, . . . , 0) = ϕ(εrj )− π−dj εrj−1+1.

This means that α′i(0, . . . , 0) ∈ πM+N ′−cB+
(R,R+),[1,1]

, so if we choose M > c in the beginning (which

we can), then this inductive procedure converges, and in the limit we get a change of basis after
which the zero section defines a ϕ-invariant section of Z[1,q], thus a section s : XS → Z, as desired.
Note that we arranged that this section agrees with s0 over S0, as all coordinate changes did not
affect the situation over S0. �

We used the following quantitative version of vanishing of H1(XS , E) for E of positive slopes.

Lemma IV.4.25. Fix a standard Dieudonné module of negative slopes, given explicitly on a
basis e1, . . . , er by fixing cycles 1, . . . , r1; r1 +1 . . . , r2; . . .; ra−1 +1, . . . , ra = r and positive integers
d1, . . . , da > 0, via

ϕ(ei) = ei+1 for i 6= rj , ϕ(erj ) = π−djerj−1+1.

Then there is an integer c ≥ 0 with the following property.

Let S = Spa(R,R+) be an affinoid perfectoid space over Fq with Zariski closed subspace S0 =
Spa(R0, R

+
0 ), and a pseudouniformizer $ ∈ R. Let

I+
[1,q] = ker(B+

(R,R+),[1,q]
→ B+

(R0,R
+
0 ),[1,q]

), I+
[1,1] = ker(B+

(R,R+),[1,1]
→ B+

(R0,R
+
0 ),[1,1]

).

Then for all f1, . . . , fr ∈ I+
[1,1] one can find g1, . . . , gr ∈ π−cI+

[1,q] such that

fi = ϕ(gi)− gi+1 for i 6= rj , frj = ϕ(grj )− π−djgrj−1+1.

Proof. We may evidently assume that a = 1; set d = d1. By linearity, we can assume that all
but one of the fi’s is equal to zero. Thus, it suffices to see that for all positive integers r and N
there is c ≥ 0 such that for all f ∈ I+

[1,1] one can find some g ∈ π−cI+
[1,qr] (for the evident definition

of I+
[1,qr]) such that

f = ϕr(g)− π−dg.
Replacing E by its unramified extension of degree r, we can then assume that r = 1. At this point,
we want to reduce to the qualitative version given by Lemma IV.4.26 below, saying that the map

ϕ− π−d : I[1,q] → I[1,1]

is surjective. Indeed, assume a constant c as desired would not exist. Then for any integer i ≥ 0 we
can find some Zariski closed immersion S0,i = Spa(R0,i, R

+
0,i) ⊂ Si = Spa(Ri, R

+
i ), with choices of

pseudouniformizers $i ∈ Ri, as well as elements fi ∈ I+
[1,1],i such that there is no g ∈ π−2iI+

[1,q],i with
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fi = ϕ(gi)−π−dgi. Then we can define R+ =
∏
iR

+
i with $ = ($i)i ∈ R+, and R = R+[ 1

$ ], which
defines an affinoid perfectoid space S = Spa(R,R+), containing a Zariski closed subspace S0 ⊂ S
defined similarly. Moreover, the sequence (πifi)i defines an element of f ∈ I+

[1,1]. As ϕ − π−d :

I[1,q] → I[1,1] is surjective by Lemma IV.4.26, we can find some g ∈ I[1,q] with f = ϕ(g)−π−dg. Then

πcg ∈ I+
[1,q] for some c, and restricting g to S0,i ⊂ Si with i > c gives the desired contradiction. �

We reduced to the following qualitative version.

Lemma IV.4.26. Let d be a positive integer, let S0 = Spa(R0, R
+
0 ) ⊂ S = Spa(R,R+) be a

Zariski closed immersion of affinoid perfectoid spaces over Fq, and let $ ∈ R be a pseudouni-
formizer. Let

I[1,q] = ker(BR,[1,q] → BR0,[1,q]) , I[1,1] = ker(BR,[1,1] → BR0,[1,1]).

Then the map
ϕ− π−d : I[1,q] → I[1,1]

is surjective.

Proof. By the snake lemma and the vanishing H1(XS ,OXS (d)) = 0 (Proposition II.2.5 (iii)),
the lemma is equivalent to the surjectivity of

H0(XS ,OXS (d))→ H0(XS0 ,OXS0
(d)).

For d ≤ [E : Qp] (or if E is of equal characteristic), this follows directly from Proposition II.2.5 (iv)
and the surjectivity of R◦◦ → R◦◦0 . In general, we can either note that the proof of Proposi-
tion II.2.5 (iii) also proves the lemma, or argue by induction by choosing an exact sequence

0→ OXS (d− 2)→ OXS (d− 1)2 → OXS (d)→ 0

(the Koszul complex for two linearly independent sections of H0(XS ,OXS (1))), and use the van-
ishing of H1(XS0 ,OXS0

(d − 2)) = 0 for d > 2, Proposition II.2.5 (iii). This induction gets started

as long as E 6= Qp. For E = Qp, we can write OXS (d) as a direct summand of π∗π
∗OXS (d) for any

extension π : XS,E → XS with E 6= Qp. �

IV.4.4. Universal local acyclicity of Msm
Z → S. The next step in the proof of Theo-

rem IV.4.2 is to show that F` is universally locally acyclic.

Proposition IV.4.27. Let S be a perfectoid space and let Z → XS be a smooth map of sous-
perfectoid spaces such that Z is Zariski closed inside an open subset of PnXS for some n ≥ 0. Then,
for any ` 6= p, the sheaf F` is universally locally acyclic for the map

Msm
Z → S.

Proof. Recall from Proposition IV.4.22 thatMZ →MPnXS
is a locally closed immersion, and

the open embedding

MPnXS
↪→

⊔
m≥0

(BC(OXS (m)n+1) \ {0})/E×

from Proposition IV.4.21. In the following, we fix some m and work on the preimage of

(BC(OXS (m)n+1) \ {0})/E×.
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We choose a surjection T → BC(OXS (m)n+1 \ {0})/E× from a perfectoid space T as in
Lemma IV.4.28; in particular, g is separated, representable in locally spatial diamonds, coho-
mologically smooth, and formally smooth. Moreover, locally T admits a Zariski closed immersion

into the perfectoid ball B̃nS over S. Taking the pullback of T toMZ , we get a surjection TZ →MZ

for some perfectoid space TZ such that étale locally TZ admits a Zariski closed immersion into a

space étale over B̃nS .

It follows that one can cover MZ via maps h0 : T0 →MZ that are separated, representable in
locally spatial diamonds, cohomologically smooth, and formally smooth, and such that T0 admits

a Zariski closed immersion into some space étale over B̃nS . By Proposition IV.4.24, we can, up to
further replacement of T0 by an étale cover, assume that the map h0 extends to a map h : T →MZ

for some perfectoid space T étale over B̃nS . Moreover, as T0 → MZ is formally smooth, we can,
after a further étale localization, lift the map T →MZ to a retraction T → T0; thus, T0 is a retract
of a space that is étale over a perfectoid ball. Now the result follows from Corollary IV.2.27. �

We used the following presentation of certain projectivized Banach–Colmez spaces.

Lemma IV.4.28. Let S be a perfectoid space over Fq and let E be a vector bundle on XS that is
everywhere of nonnegative Harder–Narasimhan slopes. There is a perfectoid space T → S that is

locally Zariski closed in a perfectoid ball B̃nS over S and that admits a surjective map

T → (BC(E) \ {0})/E×

over S that is separated, representable in locally spatial diamonds, cohomologically smooth, and
formally smooth.

Proof. The target parametrizes line bundles L on XS of slope zero together with a section of
E ⊗ L that is nonzero fibrewise on S. Parametrizing in addition an injection L ↪→ OXS (1) defines
a map that is separated, representable in locally spatial diamonds, cohomologically smooth, and
formally smooth (by Proposition II.3.5 and Proposition IV.3.8). Over this cover, one has locally
on S an untilt S] over E corresponding to the support of the cokernel of L → OXS (1), and one
parametrizes nonzero sections of E(1) that vanish at S] ↪→ XS . This is Zariski closed (by [BS19,
Theorem 7.4, Remark 7.5]) inside the space of all sections of E(1). We see that it suffices to prove
the similar result with (BC(E) \ {0})/E× replaced by BC(E(1)) × SpdE, and this reduces to the
individual factors. For BC(E(1)), the result follows from the argument in Proposition IV.3.8. For
SpdE, there is nothing to do in equal characteristic, so assume that E is p-adic. Then we reduce
to [∗/O×E ] as the fibres of SpdE → [∗/O×E ] over perfectoid spaces are given by BC(L) \ {0} for

some line bundle L of slope 1, and this in turn admits covers of the desired form. Finally, for
[∗/O×E ], we can pass to the étale cover [∗/1 + p2OE ] ∼= [∗/OE ], or to [∗/E]. This, finally, admits a

surjection from a perfectoid open unit disc BC(OXS (1)) with the desired properties by passing to
Banach–Colmez spaces in an exact sequence

0→ OXS → OXS (1
2)→ OXS (1)→ 0

and using Proposition II.3.4. �
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IV.4.5. Deformation to the normal cone. The final step in the proof of Theorem IV.4.2
is a deformation to the normal cone.

By Proposition IV.4.22 and Proposition IV.4.27 (and Proposition IV.2.33), in order to prove
Theorem IV.4.2 it only remains to prove that Rf !F` is invertible and sitting in the expected co-
homological degree. Picking a v-cover T → Msm

Z by some perfectoid space T and using that the

formation of Rf !F` commutes with any base change by Proposition IV.2.15, it suffices to prove the
following result.

Proposition IV.4.29. Let S be a perfectoid space and let Z → XS be a smooth map of sous-
perfectoid spaces such that Z admits a Zariski closed immersion into an open subset of (the adic
space) PnXS for some n ≥ 0. Let f :MZ → S be the moduli space of sections of Z → XS. Moreover,
let s : XS → Z be a section such that s∗TZ/XS is everywhere of positive Harder–Narasimhan slopes,
and of degree d.

Let t : S → MZ be the section of f corresponding to s. Then t∗Rf !F` is étale locally on S
isomorphic to F`[2d].

Proof. We will prove this by deformation to the normal cone. In order to avoid a general
discussion of blow-ups etc., we will instead take an approach based on the local structure of Z near
a section as exhibited in the proof of Proposition IV.4.24.

We are free to make v-localizations on S (as being cohomologically smooth can be checked after
a v-cover), and replace Z by an open neighborhood of s(XS). With this freedom, we can follow the
proof of Proposition IV.4.24 and ensure that S = Spa(R,R+) is strictly totally disconnected with
pseudouniformizer $, the pullback Z[1,q] → YS,[1,q] of Z → XS to

YS,[1,q] = {|π|q ≤ |[$]| ≤ |π|} ⊂ SpaWOE (R+)

satisfies
πNBrYS,[1,q] ⊂ Z[1,q] ⊂ BrYS,[1,q]

and the gluing isomorphism is given by power series

αi ∈ Ti+1 + πMB+
(R,R+),[1,1]

〈T1, . . . , Tr〉
resp.

αrj ∈ π−djT rj−1+1 + πMB+
(R,R+),[1,1]

〈T1, . . . , Tr〉
with notation following the proof of Proposition IV.4.24. Moreover, the constant coefficients of all
αi vanish. These in fact define a map

ϕ : πdBrYS,[1,1]
→ BrYS,[q,q]

preserving the origin, where d is the maximum of the dj .

For any n ≥ N, d, we can look at the subset

Z
(n)
[1,q] = πnBrYS,[1,q] ∪ ϕ(πnBrYS,[1,1]

) ⊂ Z[1,q],

which descends to an open subset Z(n) ⊂ Z. Letting T
(n)
i = π−nTi, the gluing is then given by

power series α
(n)
i given by

α
(n)
i = π−nαi(π

nT1, . . . , π
nTn)
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which satisfy the same conditions, but the nonlinear coefficients of α
(n)
i become more divisible by

π. The limit

α
(∞)
i = lim−→

n→∞
α

(n)
i ∈ BR,[1,1]〈T1, . . . , Tr〉

exists, and is linear in the Ti.

Let S′ = S × N≥N ∪ {∞}, using the profinite set N≥N ∪ {∞}. Let Z ′ → XS′ be the smooth

map of sous-perfectoid spaces obtained by descending

Z ′[1,q] = BrYS′,[1,q] ∪ ϕ
′(BrYS′,[q,q])

along the isomorphism ϕ′ given by the power series

α′i = (α
(N)
i , α

(N+1)
i , . . . , α

(∞)
i ) ∈ BR′,[1,1]〈T1, . . . , Tr〉.

Then the fibre of Z ′ → XS′ over S × {n} is given by Z(n), while its fibre over S × {∞} is given

by an open subset Z(∞) of the Banach–Colmez space BC(s∗TZ/XS ). Moreover, letting S′(>N) ⊂ S′

be the complement of S × {N}, there is natural isomorphism γ : S′(>N) → S′ given by the shift
S × {n+ 1} ∼= S × {n}, and this lifts to an open immersion

γ : Z ′(>N) = Z ′ ×XS′ XS′(>N) ↪→ Z ′.

We need to check that Z ′ → XS′ still satisfies the relevant quasiprojectivity assumption.

Lemma IV.4.30. The space Z ′ → XS′ admits a Zariski closed immersion into an open subset
of PmXS′ for some m ≥ 0.

Proof. One may perform a parallel construction with Z replaced by an open subset of PmXS ,
reducing us to the case that Z is open in PmXS . In that case, the key observation is that the blow-up
of PmXS at the section s : XS → PmXS is still projective, which is an easy consequence of XS admitting
enough line bundles. �

Let f ′ :MZ′ → S′ be the projection, with fibres f (n) and f (∞). By Proposition IV.4.27, both
F` and Rf ′!F` are f ′-universally locally acyclic. In particular, the formation of Rf ′!F` commutes
with base change, and we see that the restriction of Rf ′!F` to the fibre over ∞ is étale locally
isomorphic to F`[2d], as an open subset of BC(s∗TZ/XS ). As S is strictly totally disonnected, one
can choose a global isomorphism with F`[2d].

The map from F`[2d] to the fibre of Rf ′!F` over ∞ extends to a small neighborhood; passing to
this small neighborhood, we can assume that there is a map

β : F`[2d]→ Rf ′!F`
that is an isomorphism in the fibre over∞. We can assume that this map is γ-equivariant (passing
to a smaller neighborhood). Let Q be the cone of β. Then Q is still f ′-universally locally acyclic,
as is its Verdier dual

DMZ′/S
′(Q) = RHomMZ′ (Q,Rf

′!F`).
In particular, Rf ′!DMZ′/S

′(Q) ∈ Dét(S
′,F`) is constructible, and its restriction to S×{∞} is trivial.

This implies (e.g. by [Sch17a, Proposition 20.7]) that its restriction to S × {n, n + 1, . . . ,∞} is
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trivial for some n � 0. Passing to this subset, we can assume that Rf ′!DMZ′/S
′(Q) = 0. Taking

Verdier duals and using Corollary IV.2.25, this implies that Rf ′∗Q = 0.

In particular, for all n ≥ n0, we have Rf
(n)
∗ Q|M

Z(n)
= 0. Using the γ-equivariance, this is

equivalent to

Rf
(n)
∗ (Q|M(n0)

Z

)|M
Z(n)

= 0,

regarding MZ(n) ⊂ MZ(n0) as an open subset. Taking the colimit over all n and using that the
system MZ(n) ⊂ MZ(n0) has intersection s(S) ⊂ MZ and is cofinal with a system of spatial
diamonds of finite cohomological dimension (as can be checked in the case of projective space),
[Sch17a, Proposition 14.9] implies that

s∗Q|M
Z(n0)

= lim−→
n

Rf
(n)
∗ (Q|M

Z(n0)
)|M

Z(n)
= 0

(by applying it to the global sections on any quasicompact separated étale S̃ → S), and thus the
map

s∗β|MZ
: F`[2d]→ s∗Rf !F`

is an isomorphism, as desired. This finishes the proof of Proposition IV.4.29 and thus of Theo-
rem IV.4.2. �

The idea of the preceding proof is the following. Let C → XS × A1 be the open subset of
the deformation to the normal cone of s : XS ↪→ Z (we did not develop the necessary formalism
to give a precise meaning to this in the context of smooth sous-perfectoid spaces, but it could be
done) whose fiber at 0 ∈ A1 is the normal cone of the immersion s (the divisor over 0 ∈ A1 of the
deformation to the normal cone is the union of two divisors: the projective completion of the normal
cone and the blow-up of Z along XS , both meeting at infinity inside the projective completion).
One has a diagram

XS × A1 � � //

$$

C

��
A1

where outside t = 0 ∈ A1 this is given by the section s : XS ↪→ Z, i.e. the pullback over Gm of the
preceding diagram gives the inclusion XS ×Gm ↪→ Z×Gm, and at t = 0 this is the inclusion of XS

inside the normal cone of the section s. Let us note moreover that C is equipped with a Gm-action
compatible with the one on A1.

This gives rise to an E×-equivariant morphism with an equivariant section

MC

g

��
S × E

s

CC

whose fiber at 0 ∈ E is the zero section of BC(s∗TZ/XS ) → S, and is isomorphic to MZ × E×

equipped with the section s outside of 0. Now, the complex s′∗Rg!F` is E×-equivariant on S × E.
Its fiber outside 0 ∈ E, i.e. its restriction to S × E×, is s∗Rf !F`, and its fiber at 0 is F`(d)[2d],
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d = deg(TZ/XS ) (since g is universally locally acyclic the dualizing complexe commutes with base
change).

Now one checks that one can replace the preceding diagram by a quasicompact OE \ {0}-
invariant open subset U ⊂MC together with an equivariant diagram

U

h
��

� � //MC
g

��
S ×OE

t

AA

� � // S × E.

s

CC

In the preceding proof one replaces OE by πN∪{∞} ⊂ OE , which does not change anything for
the argument. One concludes using that ×π “contracts everything to 0” and some constructibility
argument using the fact that U is spatial and some complexes are h-universally locally acyclic (see
the argument “Rf ′!DMZ′/S

′(Q) ∈ Dét(S
′,F`) is constructible” at the end of the proof of Proposition

IV.4.29).

IV.5. Partial compactly supported cohomology

Let us start by recalling the following basic vanishing result. Let C be a complete algebraically
closed nonarchimedean field C with pseudouniformizer $ ∈ C. Let SpaZ((t)) ×Z SpaC = D∗C be
the punctured open unit disc over C, and consider the subsets

j : U = {|t| ≤ |$|} ↪→ D∗C , j′ : U ′ = {|t| ≥ |$|} ↪→ D∗C
Note that the punctured open unit disc has two ends: Towards the origin, and towards the boundary.
The open subsets U and U ′ contain one end each.

Lemma IV.5.1. The partially compactly supported cohomology groups

RΓ(D∗C , j!Λ) = 0 = RΓ(D∗C , j′!Λ)

vanish.

As usual Λ is any coefficient ring killed by an integer n prime to p.

Proof. We treat the vanishing RΓ(D∗C , j!Λ) = 0, the other one being similar. Let k : D∗C ↪→ DC
be the inclusion. One has an exact triangle

(kj)!Λ −→ Rk∗j!Λ −→ i∗A
+1−−−→

where i : {0} ↪→ DC . One has H0(A) = Λ, H1(A) = Λ(1), H i(A) = 0 for i 6= 0, 1, since A =
lim−→n

RΓ(Un,Λ) with Un = {|t| ≤ |$n|} ⊂ D∗Cbeing a punctured disc. We thus have to prove that

the preceding triangle induces an isomorphism A
∼−→ RΓc(U,Λ)[1]. Let j̃ : P1 \ {0,∞} ↪→ P1 \ {0}.

There is a commutative diagram

RΓc(U,Λ) RΓ(D∗C , j!Λ) A

RΓc(P1 \ {0,∞},Λ) RΓ(P1 \ {0}, j̃!Λ) A .

'

+1

+1
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It thus suffices to check that
RΓ(P1 \ {0}, j̃!Λ) = 0,

for example in the algebraic setting using comparison theorems, which is an easy exercise. �

Our goal now is to prove a very general version of such a result. Fix an algebraically closed
field k|Fq and work on Perfk. Let X be a spatial diamond such that f : X → ∗ = Spd k is partially
proper with dim. trg f < ∞. Then the base change X ×k S of X to any spatial diamond S is not
itself quasicompact. Rather, it has two ends, and we will in this section study the cohomology with
compact support towards one of the ends.

To analyze the situation, pick quasi-pro-étale and universally open surjections X̃ → X and

S̃ → S from affinoid perfectoid spaces (using [Sch17a, Proposition 11.24]), and pick maps X̃ →
Spa k((t)) and S̃ → Spa k((u)) by choosing pseudouniformizers. We get a correspondence

X̃ × S̃

X × S Spa k((t))× Spa k((u)) = D∗k((u))

where all maps are qcqs, and the left map is (universally) open. Now Spa k((t)) × Spa k((u)) is a
punctured open unit disc over Spa k((u)), and one can write it as the increasing union of the affinoid
subspaces

{|u|b ≤ |t| ≤ |u|a} ⊂ Spa k((t))× Spa k((u))

for varying rational 0 < a ≤ b < ∞. For any two choices of pseudouniformizers, a power of one

divides the other, so it follows that if Ũa,b ⊂ X̃ × S̃ denotes the preimage of {|t|b ≤ |u| ≤ |t|a},
then the doubly-indexed ind-system {Ũa,b}0<a≤b<∞ is independent of the choice of the maps X̃ →
Spa k((t)), S̃ → Spa k((u)).

Let Ua,b ⊂ X × S be the image of Ũa,b. As X̃ × S̃ → X × S is open, this is a qcqs open subset
of X × S. Moreover, the doubly indexed ind-system {Ua,b}0<a≤b<∞ is independent of all choices
made.

We let Ua =
⋃
b<∞ Ua,b and Ub =

⋃
a>0 Ua,b and let

ja,b : Ua,b → X × S , ja : Ua → X × S , jb : Ub → X × S
be the open immersions. We can now define the cohomology groups of interest, or rather the version
of pushforward along β : X × S → S. As usual, Λ is a coefficient ring killed by some integer n
prime to p.

Definition IV.5.2. The functors

Rβ!+, Rβ!− : Dét(X × S,Λ)→ Dét(S,Λ)

are defined by
Rβ!+C := lim−→

a

Rβ∗(ja!C|Ua),

Rβ!−C := lim−→
b

Rβ∗(jb!C|Ub)

for C ∈ Dét(X × S,Λ).



IV.5. PARTIAL COMPACTLY SUPPORTED COHOMOLOGY 151

As the ind-systems of Ua and Ub are independent of all choices, these functors are canonical.

The main result is the following. Here α : X × S → X and β : X × S → S are the two
projections.

Theorem IV.5.3. Assume that C = α∗A⊗L
Λ β
∗B for A ∈ Dét(X,Λ) and B ∈ Dét(S,Λ). Then

Rβ!+C = 0 = Rβ!−C.

Remark IV.5.4. The essential case for applications is C = α∗A, i.e. B = Λ, and S = Spa k((t)).
In other words, we take any coefficient system A on X, pull it back to X×Spa k((t)), and then take
the partially compactly supported cohomology (relative to S). However, it is sometimes useful to
know the result in the relative case, i.e. for general S, and then it is also natural to allow twists by
B ∈ Dét(S,Λ).

Proof. We write the proof for Rβ!+; the other case is exactly the same. Let X• → X be a
simplicial hypercover by affinoid perfectoid spaces Xi = Spa(Ri, R

+
i ) which are partially proper

over Spa k (i.e., R+
i is minimal, i.e. the integral closure of k + R◦◦). As X is a spatial diamond,

we can arrange that the Xi are the compactifications of quasi-pro-étale maps to X (since X is
spatial it admits an hypercover X• → X with Xi affinoid perfectoid and Xi → X quasi-pro-étale,
since X → Spd k is partially proper this extends to a hypercover Xc

• → X where Xc
i is Huber’s

canonical compactification over Spa(k)); in particular, gi : Xi → X satisfies dim. trg gi = 0 < ∞.
Let β• : X• × S → S be the corresponding projection. We claim that

Rβ!+C

is the limit of Rβ•,!+(C|X•×S), for any C ∈ Dét(X × S,Λ). Writing C as a limit of its Postnikov

truncations ([Sch17a, Proposition 14.15]), we can assume C ∈ D+
ét(X × S,Λ). Now gi : Xi → X

is a qcqs map between spaces partially proper over ∗, so gi is proper, and hence so its base change
hi : Xi × S → X × S. This implies that

Rβi,!+(h∗iC) = Rβ!+(Rhi∗h
∗
iC),

as jU ! commutes with Rhi∗ by [Sch17a, Theorem 19.2]. Now by [Sch17a, Proposition 17.3], one
sees that C is the limit of Rhi∗h

∗
iC. But Rβ!+ commutes with this limit, using that the filtered

colimit does as everything lies in D+ (with a uniform bound).

By the preceding reduction, we may assume that X = Spa(R,R+) is an affinoid perfectoid
space. We can even assume that X has no nonsplit finite étale covers (by taking the Xi above to
be compactifications of strictly totally disconnected spaces). In that case, there is a map g : X →
Y = SpaK, where K is the completed algebraic closure of k((t)), which is necessarily proper (as X
and Y are partially proper over ∗), and as above one has

Rβ!+C = RβY,!+(Rh∗C)

where βY : Y × S → S is the projection and h : X × S → Y × S is the base change of g. Let
αY : Y × S → Y be the other projection. Then the projection formula (and properness of h)
[Sch17a, Proposition 22.11] show that

Rh∗C = Rh∗(α
∗A⊗L

Λ β
∗B) ∼= Rh∗α

∗A⊗L
Λ β
∗
YB

and Rh∗α
∗A ∼= α∗YRg∗A by proper base change.
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In other words, we can reduce to the case X = SpaK; in particular A ∈ Dét(SpaK,Λ) = D(Λ)

is just a complex of Λ-modules. In that case, define Ua,b and Ua as above but taking X = X̃ →
Spa k((t)) the natural map. We claim that in this case for all a > 0

Rβ∗(ja!C|Ua) = 0.

To prove this, it suffices to see that for all a′ > a > 0, the cone of

Rβ∗(ja′!C|Ua′ )→ Rβ∗(ja!C|Ua)

vanishes, as Rβ∗(ja!C|Ua) is the limit of these cones as a′ → ∞. Now these cones depend on only
a quasicompact part of X × S, and hence their formation commutes with any base change in S,
cf. [Sch17a, Proposition 17.6]. Therefore, we can reduce to the case S = Spa(L,L+) for some
complete algebraically closed nonarchimedean field L with open and bounded valuation subring
L+ ⊂ L, and check on global sections RΓ(S,−). Moreover, the cone commutes with all direct sums
in C, so one can assume that A ∈ Dét(SpaK,Λ) = Dét(Λ) is simply given by A = Λ.

It remains to prove the following statement: For all B ∈ Dét(Spa(L,L+),Λ) one has

RΓ(SpaK × Spa(L,L+), ja!B|Ua) = 0.

If the stalk of B at the closed point vanishes, this follows from proper base change (writing SpaK×
Spa(L,L+) as the union of its subspaces proper over Spa(L,L+)), [Sch17a, Theorem 19.2]. Thus
we may assume that B is concentrated at the closed point of S. Analyzing the structure of Ua,
one checks that in fact there is some map k((u)) → L such that the fibres over the closed point
of Spa(L,L+) of Ua and {|t| ≤ |u|a} agree. (A priori, it is a union of such subsets for a profinite
set of maps k((u)) → L, but for any two such choices one is contained in the other, by comparing
valuations of the pseudouniformizers.) Thus, we can now assume that Ua = {|t| ≤ |u|a}, and we
can also reduce to the case that B is constant. Now using as above that the cones for a′ > a > 0
commute with any base change in S and commute with direct sums in B, we can reduce to B = Λ
and the rank-1-geometric point S = SpaL where L is the completed algebraic closure of k((u)).

At this point, we can further replace SpaK by Spa k((t)): One can write SpaK as the inverse
limit over finite extensions of Spa k((t)), each of which is isomorphic to Spa k((t′)), and although a
priori RΓ(SpaK × SpaL, ja!Λ) does not take this inverse limit to a colimit, this does happen after
passing to cones for maps for a′ > a > 0, which suffices as above. Finally, we have reduced to
Lemma IV.5.1. �

IV.6. Hyperbolic localization

In this section we extend some results of Braden, [Bra03], to the world of diamonds. Our
presentation is also inspired by the work of Richarz, [Ric19]. We will use these results throughout
our discussion of geometric Satake, starting in Section VI.3.

Let S be a small v-stack, and let f : X → S be proper and representable in spatial diamonds
with dim. trg f < ∞, and assume that there is a Gm-action on X/S, where Gm is the v-sheaf
sending Spa(R,R+) to R×. The fixed point space X0 := XGm ⊂ X defines a closed subfunctor.

We make the following assumption about the Gm-action. Here, (A1)+ (resp. (A1)−) denotes
the affine line Spa(R,R+) 7→ R with the natural Gm-action (resp. its inverse).
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Hypothesis IV.6.1. There is a decomposition of X0 into open and closed subsets X0
1 , . . . , X

0
n

such that for each i = 1, . . . , n, there are locally closed Gm-stable subfunctors X+
i , X

−
i ⊂ X with

X0 ∩ X+
i = X0

i (resp. X0 ∩ X−i = X0
i ) such that the Gm-action on X+

i (resp. X−i ) extends to a

Gm-equivariant map (A1)+ ×X+
i → X+

i (resp. (A1)− ×X−i → X−i ), and such that

X =

n⋃
i=1

X+
i =

n⋃
i=1

X−i .

We let

X+ =
n⊔
i=1

X+
i

X− =

n⊔
i=1

X−i ,

so that there are natural maps

q+ : X+ → X

q− : X− → X,

as well as closed immersions

i+ : X0 → X+

i− : X0 → X−

and projections

p+ : X+ → X0

p− : X− → X0;

here p+ is given by the restriction of (A1)+×X+
i → X+

i to {0}×X+
i , and p− is defined analogously.

Although the decomposition of X0 into X0
i for i = 1, . . . , n is a choice, ultimately the functors

X+ and X− are independent of any choice. Indeed, we have the following functorial description.

Proposition IV.6.2. Consider the functor (X+)′ sending any perfectoid space T over S to the
set of Gm-equivariant maps from (A1)+ to X. There is a natural map X+ → (X+)′, as there is a
natural Gm-equivariant map (A1)+ ×X+ → X+ → X. The map X+ → (X+)′ is an isomorphism.

Analogously, X− classifies the set of Gm-equivariant maps from (A1)− to X.

Proof. It is enough to handle the case of X+. There is a natural map (X+)′ → X0 given by
evaluating the Gm-equivariant map on (A1)+×(X+)′ → X on {0}×X+. Let (X+

i )′ = (X+)′×X0X0
i ;

it is enough to prove that X+
i → (X+

i )′ is an isomorphism. For this, it is enough to prove that the

map (X+
i )′ → X given by evaluation at 1 is an injection whose image is contained in the locally

closed subspace X+
i ⊂ X. This can be checked after pullback to an affinoid perfectoid base space

S = Spa(R,R+). As X/S is proper (in particular, separated) and Gm × (X+
i )′ ⊂ (A1)+ × (X+

i )′

is dense, it follows that the map (X+
i )′ → X is an injection. To bound its image, we can argue on

geometric points. If x ∈ |X| is any point in the image of |(X+
i )′|, and $ ∈ R is a pseudouniformizer
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with induced action γ on X, then the sequence γn(x) converges to a point of |X0
i | for n→∞. On

the other hand, if x 6∈ |X+
i |, then x ∈ |X+

j | for some j 6= i, which implies that γn(x) converges to

a point of |X0
j | for n→∞; this is a contradiction.

Thus, (X+
i )′ embeds into X+

i ⊂ X, but it also contains X+
i , so indeed X+

i = (X+
i )′. �

Lemma IV.6.3. The map j : X0 → X+ ×X X− is an open and closed immersion. More
precisely, for any i = 1, . . . , n, the map ji : X0

i → X+
i ×X X−i is an isomorphism.

Proof. It is enough to prove that for any i = 1, . . . , n, the map ji : X0
i → X+

i ×X X−i is
an isomorphism. As it is a closed immersion (as X0

i → X is a closed immersion and the target
embeds into X), it is enough to prove that it is bijective on geometric rank 1 points. Thus, we can
assume S = SpaC, and let x : SpaC = S → X be a section that factors over X+

i ×X X−i . Then

the Gm-action on x extends to a Gm-equivariant map g : P1
C → X. Consider the preimage of X+

i

under g; this is a locally closed subfunctor, and it contains all geometric points. Indeed, on (A1)+
C ,

the map g factors over X+
i by hypothesis, and at ∞, it maps into X0

i ⊂ X
+
i . This implies that the

preimage of X+
i under g is all of P1

C . In particular, we get a map

(A1)+ × P1
C → (A1)+ ×X+

i → X+
i

which, when restricted to the copy of Gm embedded via t 7→ (t, t−1), is constant with value x.
By continuity (and separatedness of X+

i ), this implies that it is also constant with value x when
restricted to A1 embedded via t 7→ (t, t−1), i.e. the point (0,∞) ∈ (A1)+ × P1

C maps to x. On the
other hand, when restricted to Gm × {∞}, the map is constant with values in X0

i , and thus by
continuity also on (A1)+ × {∞}. This implies that x ∈ X0

i , as desired. �

In this setup, we can define two functors Dét(X,Λ)→ Dét(X
0,Λ). We use the diagrams

X± X

X0.

p±

q±

Definition IV.6.4. Define the functors

L+
X/S = R(p+)!(q

+)∗ : Dét(X,Λ)→ Dét(X
0,Λ),

L−X/S = R(p−)∗R(q−)! : Dét(X,Λ)→ Dét(X
0,Λ),

and a natural transformation L−X/S → L+
X/S as follows. First, there are natural transformations

R(i+)! = R(p+)!R(i+)!R(i+)! → R(p+)! , R(p−)∗ = (i−)∗(p−)∗R(p−)∗ → (i−)∗,

and the desired transformation L−X/S → L+
X/S arises as a composite

L−X/S = R(p−)∗R(q−)! → (i−)∗R(q−)! → (Ri+)!(q+)∗ → R(p+)!(q
+)∗ = L+

X/S ,
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where the middle map (i−)∗R(q−)! → (Ri+)!(q+)∗ of functors Dét(X,Λ) → Dét(X
0,Λ) is defined

as the following composite

(i−)∗R(q−)! → (i−)∗R(q−)!R(q+)∗(q
+)∗

= (i−)∗R(q̃−)∗R(q̃+)!(q+)∗

→ (i−)∗R(q̃−)∗j∗j
∗R(q̃+)!(q+)∗

= (i−)∗(i−)∗Rj
!R(q̃+)!(q+)∗

= R(i+)!(q+)∗,

using base change in the cartesian diagram

X0 � � j // X+ ×X X−

q̃+

��

q̃− // X+

q+

��
X−

q− // X.

Equivalently, it is enough to define for each i = 1, . . . , n a natural transformation (i−i )∗R(q−i )! →
(Ri+i )!(q+

i )∗ of functors Dét(X,Λ)→ Dét(X
0
i ,Λ). As

X0
i

i+i //

i−i
��

X+
i

q+
i

��
X−i

q−i // X

is cartesian, this arises as the composite

(i−i )∗R(q−i )! → (i−i )∗R(q−i )!R(q+
i )∗(q

+
i )∗ = (i−i )∗(i−i )∗R(i+)!(q+

i )∗ = R(i+)!(q+
i )∗.

The following is our version of Braden’s theorem, [Bra03], cf. [Ric19, Theorem B].

Theorem IV.6.5. For any A ∈ Dét(X/Gm,Λ) whose restriction to X we continue to denote
by A, the map

L−X/SA→ L+
X/SA

is an isomorphism. In fact, moreover for any A+ ∈ Dét(X
+/Gm,Λ), the map

R(i+)!A+ → R(p+)!A
+

is an isomorphism, and for any A− ∈ Dét(X
−/Gm,Λ), the map

R(p−)∗A
− → (i−)∗A−

is an isomorphism, so that

L−X/SA = R(p−)∗R(q−)!A ∼= (i−)∗R(q−)!A ∼= R(i+)!(q+)∗A ∼= R(p+)!(q
+)∗A = L+

X/SA

is a series of isomorphisms.

Before we start with the proof, we prove a certain general result about cohomology groups on
spaces with “two ends”, a flow connecting the two ends, and cohomology of sheaves, equivariant
for the flow, that are compactly supported at only one end.
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Proposition IV.6.6. Let S = Spa(R,R+) be an affinoid perfectoid space, $ ∈ R a pseudouni-
formizer, let f : Y → S be a partially proper map of locally spatial diamonds, and assume that Y is
equipped with a Gm-action over S. Assume that the quotient v-stack Y/Gm is qcqs. In that case, we
can find a quasicompact open subset V ⊂ Y such that Gm×V → Y is surjective and quasicompact.
Write

Gm,S = lim−→
n≥0

Un , Un = {x ∈ Gm,S | |x| ≤ |$|−n},

and let jn : Vn ⊂ Y be the open image of the cohomologically smooth map Un×SV ⊂ Gm,S×SY → Y .
In this situation, we define for any A ∈ Dét(Y,Λ) the relative cohomology with partial supports

lim−→
n

Rf∗(jn!A|Vn) ∈ Dét(S,Λ) ;

this functor is canonically independent of the choices made in its definition.

For any A ∈ D+
ét(Y/Gm,Λ) (resp. any A ∈ Dét(Y/Gm,Λ) if dim. trg f <∞),

lim−→
n

Rf∗(jn!A|Vn) = 0.

Remark IV.6.7. Assume that S = SpaC is a geometric rank 1 point. Then we set

RΓc+(Y,A) = lim−→
n

RΓ(Y, jn!AVn),

which is exactly the above functor lim−→n
Rf∗(jn!A|Vn) under the identification Dét(S,Λ) = D(Λ).

Roughly speaking, the space Y has two ends, one given by
⋃
n<0 γ

n(V ) for V large enough, where
γ is the automorphism of Y induced by $ ∈ Gm(S), and the other given by

⋃
n>0 γ

n(V ). We are
considering the cohomology groups of Y that have compact support in one of these directions, but
not in the other. If one replaces the Gm-action by its inverse, this implies a similar result for the
direction of compact support interchanged.

Proof. The proof is analogous to the proof of Theorem IV.5.3, reducing to the case Y =
Gm × S, where it is a simple computation. Indeed, one can assume that A ∈ D+

ét(Y/Gm,Λ) by a
Postnikov limit argument (in case dim. trg f < ∞). Finding a v-hypercover of Y by spaces with
Gm-action of the form Gm ×Xi, where each Xi is a proper spatial diamond over S, and using v-
hyperdescent, one reduces to the case Y = Gm ×Xi. Then there is a projection Gm ×Xi → Gm,S ,
and one reduces to Y = Gm,S . In that case, the same arguments as in the previous section apply. �

Proof of Theorem IV.6.5. We can assume that A ∈ D+
ét(X/Gm,Λ) by pulling through the

Postnikov limit lim←−n τ
≥−nA, noting that L+

X/S commutes with limits while (q+)∗ commutes with

Postnikov limits and R(p+)! as well by finite cohomological dimension.

By choosing a v-hypercover of S by disjoint unions of strictly totally disconnected spaces S•,
and using v-hyperdescent, we can assume that S is a strictly totally disconnected space; indeed,
L+
X/S commutes with all limits, while (q+)∗ and R(p+)! commute with any base change and so

preserve cartesian objects, and thus also commute with the hyperdescent.

We start by proving that for any A+ ∈ Dét(X
+/Gm,Λ), the map

R(i+)!A+ → R(p+)!A
+
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is an isomorphism, and similarly for any A− ∈ Dét(X
−/Gm,Λ), the map

R(p−)∗A
− → (i−)∗A−

is an isomorphism. Let j+ : X+ \X0 ↪→ X+, j− : X− \X0 ↪→ X− denote the open embeddings.
Then there are exact triangles

(i+)∗R(i+)!A+ → A+ → R(j+)∗(j
+)∗A+ , (j−)!(j

−)∗A− → A− → (i−)∗(i
−)∗A−.

Using these triangles, we see that it is enough to see that for any B+ ∈ Dét((X
+ \ X0)/Gm,Λ),

B− ∈ Dét((X
− \X0)/Gm,Λ), one has

R(p+)!R(j+)∗B
+ = 0 , R(p−)∗R(j−)!B

− = 0

as objects in Dét(X
0,Λ). This follows from Proposition IV.6.6 applied to S = X0 and Y = X+\X0

(resp. Y = X− \X0), and the following lemma.

Lemma IV.6.8. The Gm-action on X+ \X0 (resp. X− \X0) has the property that the quotient
v-stack (X+ \X0)/Gm (resp. (X− \X0)/Gm) is qcqs over S (thus, over X0).

Proof. It is enough to do the case of X+ \ X0, and we may restrict to X+
i \ X0

i . We can
assume that S = Spa(R,R+) is an affinoid perfectoid space, and fix a pseudouniformizer $ ∈ R. As
Gm,S/$

Z is qcqs (in fact proper — a Tate elliptic curve), it is equivalent to prove that (X+\X0)/γZ

is qcqs, where γ is the automorphism given by the action of $ ∈ Gm(S).

Now we use the criterion of Lemma II.2.17 for the action of γ on |X+
i |. As a locally closed

partially proper subspace of the proper spatial diamond X over S, the locally spectral space |X+
i | is

taut, and the condition on generizations is always fulfilled for locally spatial diamonds. The spectral
closed subspace |X0

i | ⊂ |X
+
i | is fixed by γ, and by assumption for all x ∈ |X+

i |, the sequence γn(x)
for n→∞ converges to a point of |X0

i | (as the Gm-action extends to (A1)+). It remains to see that
for all x ∈ |X+

i \X0
i |, the sequence γn(x) for n → −∞ diverges in |X+

i |. But x ∈ |X−j | for some

j, and j 6= i by Lemma IV.6.3. Thus, γn(x), for n → −∞, converges to a point of |X0
j |, which is

outside of |X+
i |, so the sequence diverges in |X+

i |. �

Now it remains to see that for any A ∈ D+
ét(X/Gm,Λ), the map

(i−)∗R(q−)!A→ R(i+)!(q+)∗A

in D+
ét(X

0,Λ) = D+((X0)ét,Λ) is an isomorphism. This can be done locally on X0, so fix some
i ∈ {1, . . . , n}, and choose a quasicompact open neighborhood U0 ⊂ X of X0

i that does not meet
any X0

j for j 6= i and such that X+
i ∩U0, X

−
i ∩U0 ⊂ U0 are closed. The Gm-orbit Y = Gm ·U0 ⊂ X

is still open, and contains X+
i and X−i , necessarily as closed subsets.

We are now in the situation of the next proposition. To check conditions (ii) and (iii) of that
proposition, note that we may find a quasicompact open subspace V ⊂ Y such that Y = γZ · V by
averaging U0 over {|$| ≤ |t| ≤ 1} ⊂ Gm. Let W be the closure of

⋃
n≥0 γ

n(V ) ⊂ X. To check (iii),

it suffices (by symmetry) to see that ⋂
m≥0

γm(W ) = X−i
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in X. Note that X−i ⊂
⋃
n≥0 γ

n(V ) (as for all x ∈ X−i , the sequence γ−n(x) converges into

X0
i ⊂ V ), so X−i is contained in W , and thus in

⋂
m≥0 γ

m(W ). To prove the converse inclusion, let

W ′ =
⋂
m≥0 γ

m(W ). If X−i (W ′, then there is some j 6= i such that X−j contains a quasicompact

open subset A ⊂ W ′. Then Ã =
⋃
n≥0 γ

−n(A) is a γ−1-invariant open subset of W ′ whose closure

is γ−(N∪{∞}) ·A; in particular, replacing A by γ−n(A) if necessary, we can arrange that this closure
is contained in any given small neighborhood of X0

j , and in particular intersects V trivially. Then

γn(V ) ∩ A = γn(V ∩ γ−n(A)) = ∅ for all n ≥ 0, and hence A intersects
⋃
n≥0 γ

n(V ) trivially, and

then also its closure W . But we assumed that A ⊂W ′ ⊂W , giving a contradiction. �

Proposition IV.6.9. Let S = Spa(R,R+) be a strictly totally disconnected perfectoid space, let
f : Y → S be a compactifiable map of locally spatial diamonds, and assume that Y/S is equipped
with a Gm-action, with fixed points Y 0 ⊂ Y , and the following properties.

(i) There are Gm-invariant closed subspaces q+ : Y + ⊂ Y , q− : Y − ⊂ Y , containing Y 0 (via
i+ : Y 0 → Y +, i− : Y 0 → Y −) such that the action maps extend to maps (A1)+ × Y + → Y +

resp. (A1)− × Y − → Y −.

(ii) The quotient v-stack Y/Gm is quasicompact. In particular, picking a pseudouniformizer $ ∈ R
with induced action γ on Y , we can find some quasicompact open V ⊂ Y such that Y = γZ · V .

(iii) With V as in (ii), let W− be the closure of γN · V and W+ the closure of γ−N · V . Then⋂
n≥0 γ

n(W−) = Y − and
⋂
n≥0 γ

−n(W+) = Y +.

Then Y 0 is a spatial diamond, the diagram

Y 0 i+ //

i−
��

Y +

q+

��
Y −

q− // Y

is cartesian, the quotient v-stacks (Y \ Y +)/Gm and (Y \ Y −)/Gm are qcqs, and for all A ∈
D+

ét(Y/Gm,Λ) (resp. all A ∈ Dét(Y/Gm,Λ) if dim. trg f <∞) whose pullback to Y we continue to
denote by A, the map

(i−)∗R(q−)!A→ (i−)∗R(q−)!(q+)∗(q
+)∗A = (i−)∗(i−)∗R(i+)!(q+)∗A = R(i+)!(q+)∗A

in Dét(Y
0,Λ) is an isomorphism.

Proof. Note that Y 0/Gm ⊂ Y/Gm is closed and thus Y 0/Gm is quasicompact. As the Gm-
action is trivial on Y 0, this implies that Y 0 is quasicompact. As Y 0 ⊂ Y is closed and Y → S is
compacifiable and in particular quasiseparated, we see that Y 0 → S is qcqs. That the diagram is
cartesian follows from the proof of Lemma IV.6.3.

Next, we check that (Y \ Y +)/Gm and (Y \ Y −)/Gm are qcqs. By symmetry and as Gm,S/γ
Z

is qcqs, it suffices to see that (Y \ Y −)/γZ is qcqs. First, we check that it is quasiseparated. Take
any quasicompact open subspace V − ⊂ Y \ Y −i ; we need to see there are only finitely many n
with V − ∩ γn(V −) 6= ∅. We can assume that V − ⊂

⋃
n≥0(V ) (translating by a power of γ if

necessary), and then V − is covered by the open subsets V − \ γm(W−) ⊂ V − by the claim above.
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By quasicompacity, the intersection of V − with γm(W−) is empty for some large enough m, but

then also the intersection of V − with γm
′
(V −) ⊂ γm(W−) for m′ ≥ m is empty.

To see that (Y \ Y −)/γZ is quasicompact, note that V \
⋃
n>0 γ

n(V ) is a spectral space (as it

is closed in V ) that maps bijectively to (Y \ Y −)/γZ.

Now, for the cohomological statement, we can as usual assume that A ∈ D+
ét(Y/Gm,Λ) by

a Postnikov limit argument. Then we are interested in checking that a map in D+
ét(Y0,Λ) =

D+(Y0,ét,Λ) (cf. [Sch17a, Remark 14.14]) is an isomorphism, so we need to check that the sections
over all quasicompact separated étale Y ′0 → Y0 agree. Now we claim that any such quasicompact
separated étale Y ′0 → Y0 lifts to a Gm-equivariant quasicompact separated étale map Y ′ → Y ; this
will then allow us to assume Y ′0 = Y0 via passing to the pullback of everything to Y ′.

To see that one may lift Y ′0 → Y0 to Y ′ → Y , consider the open subspace V (n) ⊂ Y given
as the intersection of

⋃
m≥n γ

m(V ) with
⋃
m≤−n γ

m(V ). It follows from the topological situation

that this is still quasicompact, and that the intersection of all V (n) is equal to Y0 (using condition

(iii)). Let Y (n) = γZ · V (n) ⊂ Y . Then γ-equivariant quasicompact separated étale maps to Y (n)

are equivalent to quasicompact separated étale maps to V (n) together with isomorphisms between
the two pullbacks to V (n) ∩ γ(V (n)). The latter data extends uniquely from Y0 to V (n) for small
enough n by [Sch17a, Proposition 11.23]. Repeating a similar argument after taking a product

with Gm,S/γ
Z (which is qcqs), and observing that the Y (n) are cofinal with their Gm-orbits, one

can then attain Gm-equivariance.

We have now reduced to checking the statement on global sections. Now consider the compact-

ification j : Y ↪→ Y = Y
/S → S. Note that Y satisfies all the same conditions of the proposition.

Restricted to Y0, this gives a quasicompact open immersion j0 : Y0 ↪→ Y0. By the above argument,
this quasicompact open immersion spreads to a quasicompact open immersion into Y , and by tak-
ing it small enough in the argument above, we can assume that it is contained in Y . This allows
us to assume that j is quasicompact. In that case the functor Rj∗ commutes with all operations in
question by [Sch17a, Proposition 17.6, Proposition 23.16 (i)]. Thus, we can now moreover assume
that Y is partially proper.

Our goal now is to prove that when Y is partially proper and A ∈ D+
ét(Y/Gm,Λ), the map

(i−)∗R(q−)!A→ R(i+)!(q+)∗A

becomes an isomorphism after applying Rf0∗ where f0 : Y0 → S is the proper map. For this, we
define another functor Dét(Y,Λ) → Dét(S,Λ), as follows. Let jn : Vn =

⋃
m≥−n γ

n(V ) ↪→ Y for
n ≥ 0. Then we consider

A 7→ F (A) = lim−→
n

Rf∗(jn!A|Vn) : Dét(Y,Λ)→ Dét(S,Λ).

Lemma IV.6.10. Let j− : Y \ Y − → Y , j+ : Y \ Y + → Y denote the open immersions.

(i) If A = Rj−∗ A
− for A− ∈ D+

ét((Y \ Y
−)/Gm,Λ), then F (A) = 0.

(ii) If A = j+
! A

+ for A+ ∈ D+
ét((Y \ Y

+)/Gm,Λ), then F (A) = 0.

Proof. This follows Proposition IV.6.6 and condition (iii). �
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There are natural transformations Rf0∗R(p−)∗R(q−)! → F → Rf0∗R(p+)!(q
+)∗, and the lemma

implies that these are equivalences when evaluated on A ∈ D+
ét(Y/Gm,Λ). Using that also (Y + \

Y 0)/Gm and (Y − \ Y 0)/Gm are qcqs (as closed subspaces of (Y \ Y −)/Gm resp. (Y \ Y +)/Gm) so
that we can apply Proposition IV.6.6 again as in the beginning of the proof of Theorem IV.6.5, we
get an isomorphism

Rf0∗(i
−)∗R(q−)!A ∼= Rf0∗R(p−)∗R(q−)!A ∼= F (A) ∼= Rf0∗R(p+)!(q

+)∗A ∼= Rf0∗R(i+)!(q+)∗A.

We need to see that this implies that also the map

Rf0∗(i
−)∗R(q−)!A→ Rf0∗R(i+)!(q+)∗A

defined in the statement of the proposition is an isomorphism. For this, observe that this map is
an isomorphism if and only if for A = j+

! A
+ with A+ ∈ Dét((Y \ Y +)/Gm,Λ), one has

Rf0∗(i
−)∗R(q−)!A = 0.

But this follows from the existence of some isomorphism

Rf0∗(i
−)∗R(q−)!A ∼= Rf0∗R(i+)!(q+)∗A = 0,

using (q+)∗A = (q+)∗j+
! A

+ = 0. �

Using Theorem IV.6.5, we give the following definition.

Definition IV.6.11. Let f : X → S with Gm-action be as above, satisfying Hypothesis IV.6.1.
Let Dét(X,Λ)Gm-mon ⊂ Dét(X,Λ) be the full subcategory generated under finite colimits and retracts
by the image of Dét(X/Gm,Λ)→ Dét(X,Λ). The hyperbolic localization functor is the functor

LX/S : Dét(X,Λ)Gm-mon → Dét(X
0,Λ)

given by L−X/S
∼= L+

X/S.

We observe that Theorem IV.6.5 implies the following further results.

Proposition IV.6.12. In the situation of Definition IV.6.11, let g : S′ → S be a map of small
v-stacks, with pullback f ′ : X ′ = X ×S S′ → S′, gX : X ′ → X, g0 : X0′ → X0. Then there are
natural equivalences

g0∗LX/S ∼= LX′/S′g
∗
X , LX/SRgX∗ ∼= Rg0

∗LX′/S′ , LX/SRgX!
∼= Rg0!LX′/S′ , Rg

0!LX/S ∼= LX′/S′Rg
!
X ,

the latter two in case g is compactifiable and representable in locally spatial diamonds with dim. trg g <
∞ (so that the relevant functors are defined).

Proof. The first and third assertions are clear for L+
X/S , while the second and fourth assertions

are clear for L−X/S . �

Proposition IV.6.13. In the situation of Definition IV.6.11, let A ∈ Dét(X,Λ)Gm-mon and
B ∈ Dét(S,Λ). Let L′X/S denote the hyperbolic localization functor for the inverse Gm-action.

Then there is natural isomorphism

RHom(LX/S(A), Rf0!B) ∼= L′X/SRHom(A,Rf !B).

In particular, taking B = Λ, hyperbolic localization commutes with Verdier duality, up to changing
the Gm-action.
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Proof. More generally, for all A ∈ Dét(X,Λ) and B ∈ Dét(S,Λ), we have a natural isomor-
phism RHom(L+

X/S(A), Rf0!B) ∼= L′−X/SRHom(A,Rf !B). Indeed,

RHom(L+
X/S(A), Rf0!B) = RHom(R(p+)!(q

+)∗A,Rf0!B) ∼= R(p+)∗RHom((q+)∗A,R(p+)!Rf0!B)

∼= R(p+)∗RHom((q+)∗A,R(q+)!Rf !B) ∼= R(p+)∗R(q+)!RHom(A,Rf !B).

�

Proposition IV.6.14. In the situation of Definition IV.6.11, assume that A ∈ Dét(X,Λ)Gm-mon

is f -universally locally acyclic. Then LX/S(A) ∈ Dét(X
0,Λ) is universally locally acyclic with

respect to f0 : X0 ⊂ X → S.

Proof. As the assumption is stable under base change, we may assume that S is strictly totally
disconnected, and it suffices to see that LX/S(A) is f0-locally acyclic. For condition (a), we can in

fact assume that S = Spa(C,C+) is strictly local; let j : S0 = Spa(C,OC) ⊂ S be the generic open
point. Then we have to see that LX/S(A) = Rj0

∗(LX/S(A)|X0×SS0
), where j0 : X0 ×S S0 → X0 is

the pullback of j. But this follows from Proposition IV.6.12 and the corresponding property of A.

For condition (b), it suffices to see that the functor RHomΛ(LX/S(A), Rf0!−) commutes with

all direct sums, as then its left adjoint Rf0!(A⊗L
Λ−) preserves perfect-constructible complexes. For

this, we compute this functor:

RHomΛ(LX/S(A), Rf0!−) ∼= L′X/SRHomΛ(A,Rf !−)

∼= L′X/S(DX/S(A)⊗L
Λ f
∗−).

Here, we used Proposition IV.6.13 and Proposition IV.2.19. The final functor clearly commutes
with all direct sums, giving the desired result. �

IV.7. Drinfeld’s lemma

As a final topic of this chapter, we prove the version of Drinfeld’s lemma that we will need in
this paper. Contrary to the classical formulation [Dri80, Theorem 2.1], cf. also [Lau04, Theorem
8.1.4], this version actually makes the Weil group of E, not the absolute Galois group of E, appear.
(Also, it is worth remarking that usually, a global Galois group appears, not a local Galois group.)

In this section, we work on Perfk where k = Fq. In that case, we can write the moduli space

of degree 1 Cartier divisors on the Fargues–Fontaine curve as Div1 = Spd Ĕ/ϕZ. This admits a
natural map

ψ : Div1 → [∗/WE ]

to the classifying space of the Weil group of E. Indeed, if C = Ê is a completed algebraic closure
of E, then there is an action of WE on SpdC, with the inertia subgroup IE ⊂ WE acting via its
usual action, while Frobenius elements act via the composite of the usual action and the Frobenius
of SpdC. More precisely, τ ∈ WE acts as τ ◦ Frob− deg τ where deg : WE → Z is the projection;
note that this as a map over Spd k as on Spd k the two Frobenii cancel. The natural map

[SpdC/WE ]→ [Spd Ĕ/ϕZ]
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is an isomorphism, thus yielding the natural map

ψ : [Spd Ĕ/ϕZ] ∼= [SpdC/WE ]→ [∗/WE ].

One could equivalently compute

WE × SpdC ∼= SpdC ×Div1 SpdC

for the natural map SpdC → Div1 to arrive at the result.

In particular, for any small v-stack X, we get a natural map

ψX : X ×Div1 → X × [∗/WE ].

Proposition IV.7.1. The functor

ψ∗X : Dét(X × [∗/WE ],Λ)→ Dét(X ×Div1,Λ)

is fully faithful. If the natural pullback functor

Dét(X,Λ)→ Dét(X × SpdC,Λ)

is an equivalence, then ψ∗X is also an equivalence.

Proof. We apply descent along ∗ → [∗/WE ]. This describes Dét(X × [∗/WE ],Λ) in terms of

cartesian objects in Dét(X×WE
•,Λ), and Dét(X×Div1,Λ) in terms of cartesian objects in Dét(X×

SpdC ×WE
•,Λ). By [Sch17a, Theorem 1.13], all functors Dét(X ×WE

•,Λ)→ Dét(X × SpdC ×
WE

•,Λ) are fully faithful; this implies the fully faithfulness. Moreover, for essential surjectivity on
cartesian objects it is enough to know essential surjectivity on the degree 0 part of the simplicial
resolution, i.e. for Dét(X,Λ)→ Dét(X × SpdC,Λ), giving the desired result. �

We note the following immediate corollary.

Corollary IV.7.2. For any finite set I, pullback along X × (Div1)I → X × [∗/W I
E ] induces a

fully faithful functor

Dét(X × [∗/W I
E ],Λ)→ Dét(X × (Div1)I ,Λ).

Proof. This follows inductively from Proposition IV.7.1. �

We need the following refinement, see Proposition VI.9.2. For any small v-stack Y , let

Dlc(Y,Λ) ⊂ Dét(Y,Λ)

be the full subcategory of all objects that are locally constant with perfect fibres.

Proposition IV.7.3. For any finite set I and any small v-stack X, the functor

Dlc(X × [∗/W I
E ],Λ)→ Dlc(X × (Div1)I ,Λ)

is an equivalence of categories.

We will mostly be using this in case X is a point.
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Proof. By Corollary IV.7.2, the functor is fully faithful. By induction, we can reduce to the
case that I has one element. By descent, we can assume that X is strictly totally disconnected.
Note that X ×Div1 is a spatial diamond, and using [Sch17a, Proposition 20.15] we can reduce to
the case that X = Spa(C,C+) is strictly local (by writing any connected component as a cofiltered
inverse limit of its open and closed neighborhoods to see that then any object is locally in the image
of the functor). Moreover, the category Dlc is unchanged if we replace Spa(C,C+) by Spa(C,OC),
so we can assume that X is even a geometric rank 1 point.

At this point, we need to simplify the coefficient ring Λ. The algebra Λ is a Z/nZ-algebra
for some n prime to p; we can then assume n is a power of some prime ` 6= p, and in fact even
n = ` by an induction argument. By [Sch17a, Proposition 20.15], we can also assume that Λ is a
finitely generated F`-algebra. Taking a surjection from a polynomial algebra, one can then assume
that Λ = F`[T1, . . . , Td]. Applying [Sch17a, Proposition 20.15] again, we can assume that Λ is the
localization of F`[T1, . . . , Td] at a closed point, or applying faithfully flat descent in the coefficients,
that Λ is the completion of F`[T1, . . . , Td] at a closed point, but equipped with the discrete topology.
Also note that this ring is regular, so all truncations of perfect complexes are perfect, and we can
assume that the complex is concentrated in degree 0.

We are now in the following situation. We have an étale sheaf A of Λ ∼= F`r [[T1, . . . , Td]]-
modules on S = SpaC × Div1, such that for some finitely generated Λ-module M , there are étale
local isomorphisms between A and the constant Λ-module associated to M . Our goal is to see that
after pullback along the WE-torsor

S̃ = SpaC × Spd Ê → S = SpaC ×Div1,

there is an isomorphism between A and M . To see this, we will also need to analyze the behaviour
at a carefully chosen geometric point. In fact, by Lemma II.1.14 we can find a point SpaK → YC
of the curve YC associated with C such that the induced map Gal(K|K) → IE is surjective. This

induces a point y : SpdK → S, and we can lift it to a geometric point ỹ : Spd K̂ → S̃. Define M
as the stalk of A at ỹ; our goal is then to prove the existence of a unique isomorphism between A|

Ỹ
and M that is the identity at ỹ.

To prove this, we first reduce modulo (T1, . . . , Td)
n. Then Λn := Λ/(T1, . . . , Td)

n is a finite ring,
and the space of isomorphisms between A and M is parametrized by a scheme finite étale over Y .
By [SW20, Lemma 16.3.2], all such finite étale covers come via pullback from finite étale covers of

Div1, and are thus trivialized after pullback to Ỹ ; this implies that there is a unique isomorphism
A/(T1, . . . , Td)

n ∼= M/(T1, . . . , Td)
n reducing to the identity at ỹ.

Taking the limit over n, we get an isomorphism Â|
Ỹ
∼= M̂ |

Ỹ
between the pro-étale sheaves Â =

lim←−nA/(T1, . . . , Td)
n and M̂ = lim←−nM/(T1, . . . , Td)

n after pullback to Ỹ . This gives in particular

an automorphism of M̂ over

Ỹ ×Y Ỹ ∼= WE × Ỹ ,

and thus by connectedness of Ỹ a continuous map WE → AutΛ(M̂) (in fact, it extends continuously
to the absolute Galois group of E). We claim that this map is trivial on an open subgroup of IE
(but not necessarily on an open subgroup of the absolute Galois group of E — here it is necessary

to pass to the Weil group). Indeed, restricting the map WE → AutΛ(M̂) to Gal(K|K) gives a
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map Gal(K|K) → AutΛ(M̂) that is in fact continuous for the discrete topology on the target,
as a local system of A-modules on SpdK is given a continuous representation of Gal(K|K). As
Gal(K|K)→ IE is surjective, we get the claim.

By equivariance under an open subgroup of IE , we find that the isomorphism Â|
Ỹ
∼= M̂ |

Ỹ
descends, necessarily uniquely, to an isomorphism over

SpaC × SpdE′

for some finite extension E′|Ĕ. Now we take the pushforward of the isomorphism Â|SpaC×SpdE′
∼=

M̂ |SpaC×SpdE′ to the étale site of SpaC × SpdE′. As any étale U → SpaC × SpdE′ is locally

connected, we have H0(U,M) = H0(U, M̂) and then also H0(U,A) = H0(U, Â) (as A is étale locally
isomorphic to M) for all such U , so we get the desired isomorphism A|SpaC×SpdE′

∼= M |SpaC×SpdE′ .
�



CHAPTER V

Dét(BunG)

In this chapter, we want to understand the basic structure of Dét(BunG,Λ), building it up from
all Dét(BunbG,Λ), where we continue to work in the setting where Λ is killed by some integer n
prime to p.

Throughout this chapter, we fix an algebraically closed field k|Fq and work on Perfk. Our goal
is to prove the following theorem.

Theorem V.0.1 (Theorem V.3.7, Proposition V.3.6; Proposition V.2.2, Theorem V.1.1; Theo-
rem V.4.1; Theorem V.5.1; Theorem V.7.1). Let Λ be any ring killed by some integer n prime to
p.

(o) For any b ∈ B(G), there is a map

πb :Mb → BunG

that is representable in locally spatial diamonds, partially proper and cohomologically smooth, where
Mb parametrizes G-bundles E together with an increasing Q-filtration whose associated graded is,
at all geometric points, isomorphic to Eb with its slope grading. The v-stack Mb is representable in
locally spatial diamonds, partially proper and cohomologically smooth over [∗/Gb(E)].

(i) Via excision triangles, there is an infinite semiorthogonal decomposition of D(BunG,Λ) into the
various D(BunbG,Λ) for b ∈ B(G).

(ii) For each b ∈ B(G), pullback along

BunbG
∼= [∗/G̃b]→ [∗/Gb(E)]

gives an equivalence

D([∗/Gb(E)],Λ) ∼= D(BunbG,Λ),

and D([∗/Gb(E)],Λ) ∼= D(Gb(E),Λ) is equivalent to the derived category of the category of smooth

representations of Gb(E) on Λ-modules.

(iii) The category D(BunG,Λ) is compactly generated, and a complex A ∈ D(BunG,Λ) is compact
if and only if for all b ∈ B(G), the restriction

ib∗A ∈ D(BunbG,Λ) ∼= D(Gb(E),Λ)

is compact, and zero for almost all b. Here, compactness in D(Gb(E),Λ) is equivalent to lying in

the thick triangulated subcategory generated by c-Ind
Gb(E)
K Λ as K runs over open pro-p-subgroups

of Gb(E).

165



166 V. Dét(BunG)

(iv) On the subcategory D(BunG,Λ)ω ⊂ D(BunG,Λ) of compact objects, there is a Bernstein–
Zelevinsky duality functor

DBZ : (D(BunG,Λ)ω)op → D(BunG,Λ)ω

with a functorial identification

RHom(A,B) ∼= π\(DBZ(A)⊗L
Λ B)

for B ∈ D(BunG,Λ), where π : BunG → ∗ is the projection. The functor DBZ is an equivalence,
and D2

BZ is naturally equivalent to the identity. It is compatible with usual Bernstein–Zelevinsky
duality on D(Gb(E),Λ) for basic b ∈ B(G).

(v) An object A ∈ D(BunG,Λ) is universally locally acyclic (with respect to BunG → ∗) if and only
if for all b ∈ B(G), the restriction

ib∗A ∈ D(BunbG,Λ) ∼= D(Gb(E),Λ)

is admissible, i.e. for all pro-p open subgroups K ⊂ Gb(E), the complex (ib∗A)K is perfect. Univer-
sally locally acyclic complexes are preserved by Verdier duality, and satisfy Verdier biduality.

V.1. Classifying stacks

First, we want to understand Dét([∗/G],Λ) for a locally pro-p-group G. Fix a coefficient ring
Λ such that nΛ = 0 for some n prime to p, and assume that G is locally pro-p. Our aim is to prove
the following theorem.

Theorem V.1.1. Let D(G,Λ) be the derived category of the category of smooth representations
of G on Λ-modules. There is a natural symmetric monoidal equivalence

D(G,Λ) ' Dét([∗/G],Λ)

under which the functor D(G,Λ) → D(Λ) forgetting the G-action gets identified with the pullback
functor Dét([∗/G],Λ)→ Dét(∗,Λ) = D(Λ) under the projection ∗ → [∗/G].

The same result holds true for the base change [SpaC/G] = [∗/G] × SpaC for any complete
algebraically closed nonarchimedean field C/k; more precisely, the base change functor

Dét([∗/G],Λ)→ Dét([SpaC/G],Λ)

is an equivalence.

Note that indeed

Dét(∗,Λ) = D(Λ).

This follows from applying [Sch17a, Theorem 1.13 (ii)] to the small v-stack X = ∗. In fact, for
any complete algebraically closed field C, one has Dét(SpaC,Λ) = D(Λ) and there is a sequence

D(Λ) −→ Dét(∗,Λ)
fully faithful−−−−−−−−−→ Dét(SpaC,Λ) = D(Λ)

and D(Λ)→ Dét(∗,Λ) is thus an equivalence.
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Proof. We start by constructing a functor

D(G,Λ)→ Dét([∗/G],Λ)

compatible with the derived tensor product and the forgetful functors. For this, one first con-
structs a functor from the category of smooth representations of G on Λ-modules to the heart of
Dét([∗/G],Λ); note that this heart is a full subcategory of the heart of D([∗/G]v,Λ), which is the
category of v-sheaves on [∗/G]. Now one can send a smooth G-representation V to the v-sheaf

FV on [∗/G] that takes a perfectoid space X with a G-torsor X̃ → X to the set of all continuous

G-equivariant maps from |X̃| to V . In fact one checks that for any perfectoid space S and any
locally profinite set A,

|S ×A| = |S| ×A,
and thus |X̃| has a continuous G-action. As v-covers induce quotient maps by [Sch17a, Proposition
12.9], this is indeed a v-sheaf. Moreover, after pullback along ∗ → [∗/G], it is given by the functor
which sends X to the set of continuous G-equivariant maps from |X|×G = |X×G| to V . These are
canonically the same (via restriction to X×{1}) as continuous maps |X| → V , so that FV |∗ = V is
the v-sheaf corresponding to V . As V is discrete, this is a disjoint union of points, and in particular
(after pullback to any SpaC) an étale sheaf. According to [Sch17a, Definition 14.13], this implies
that FV ∈ Dét([∗/G],Λ), as desired.

From now on, we will simply write V for FV . Given any complex of smooth G-representations
V •, one can form the corresponding complex V • of v-sheaves on [∗/G], which defines an object
of Dét([∗/G],Λ) ⊂ D([∗/G]v,Λ) (using [Sch17a, Proposition 14.16]), giving the desired functor
D(G,Λ) → Dét([∗/G],Λ) compatible with the forgetful functors. One checks that this functor is
compatible with derived tensor products by unraveling the definitions.

To check whether the functor is an equivalence, we may by [Sch17a, Theorem 1.13 (ii)] replace
[∗/G] by its base change [SpaC/G] = [∗/G]×SpaC, where C is some complete algebraically closed
nonarchimedean field.

For the v-stack X = [SpaC/G], we can also consider its étale site Xét ⊂ Xv consisting of all
Y ∈ Xv which are étale (and locally separated) over X. This recovers a classical site.

Lemma V.1.2. The étale site Xét is equivalent to the category G- Set of discrete G-sets, via
sending a discrete set S with continuous G-action to [S × SpaC/G].

Proof. It is clear that the functor S 7→ [S × SpaC/G] maps to Xét ⊂ Xv (as the pullback to
SpaC is given by S × SpaC), and is fully faithful. Conversely, if Y → X = [SpaC/G] is étale,
then the pullback of Y to SpaC is a discrete set, on which G acts continuously, giving the descent
datum defining Y . �

Lemma V.1.3. There is a natural equivalence D(G,Λ) ' D(G- Set,Λ), such that the following
diagram commutes

D(G,Λ)
∼= //

��

D(G- Set,Λ)
∼= // D([SpaC/G]ét,Λ)

��
Dét([∗/G],Λ) �

� // Dét([SpaC/G],Λ).
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Proof. It is enough to give an equivalence of abelian categories between smoothG-representations
on Λ-modules, and sheaves of Λ-modules on discrete G-sets. The construction of the functor is as
before, and it is clearly fully faithful. But any sheaf of Λ-modules F on G- Set comes from the
smooth G-representation V = lim−→H⊂GF(G/H), where H runs over all open subgroups of G. One

directly verifies that the diagram commutes. �

It remains to see that the natural functor

D([SpaC/G]ét,Λ)→ Dét([SpaC/G],Λ)

is an equivalence. We claim that this reduces to the case that G is pro-p: We first reduce fully
faithfulness to this case. For this, we have to see that, if λ : Xv → Xét denotes the map of sites,
then for any A ∈ D([SpaC/G]ét,Λ), the natural map

A→ Rλ∗λ
∗A

is an equivalence. This can be checked locally on [SpaC/G]ét, meaning that we can replace G
by an open pro-p-subgroup. Similarly, for essential surjectivity, one needs to see that for all B ∈
Dét([SpaC/G],Λ), the map λ∗Rλ∗B → B is an equivalence, which can again be checked locally.

Thus, we can assume that G is pro-p. Note that ([SpaC/G]ét,Λ) is locally of cohomological
dimension 0, as there is no continuous group cohomology of pro-p-groups on Λ-modules if nΛ = 0
for n prime to p. This implies (cf. [Sta, Tag 0719]) that D([SpaC/G]ét,Λ) is left-complete. As
Dét([SpaC/G],Λ) is also left-complete by [Sch17a, Proposition 14.11], it is enough to see that the
functor

D+([SpaC/G]ét,Λ)→ D+
ét([SpaC/G],Λ)

is an equivalence. First, we check fully faithfulness, i.e. that the unit id→ Rλ∗λ
∗ of the adjunction

is an equivalence. For this, it is enough to see that for any étale sheaf of Λ-modules, i.e. any smooth
G-representation V , one has

RΓ([SpaC/G]v, V ) = V G,

i.e. its H0 is V G and there are no higher H i. However, one can compute v-cohomology using the
Cech nerve for the cover SpaC → [SpaC/G], which produces the complex of continuous cochains,
giving the desired result.

Finally, for essential surjectivity, it is now enough to check on the heart. But if F is a v-sheaf
on [SpaC/G] whose pullback to SpaC is an étale sheaf, then this pullback is a disjoint union of
points, thus separated and étale, and therefore F is itself a v-stack which is étale over [SpaC/G],
and so defines an object in the topos [SpaC/G]ét. �

Corollary V.1.4. The operation

RHomΛ(−,Λ) : Dét([∗/G],Λ)op → Dét([∗/G],Λ)

corresponds to the derived smooth duality functor

A 7→ (A∗)sm : D(G,Λ)op → D(G,Λ)

induced on derived categories by the left-exact smooth duality functor

V 7→ (V ∗)sm = {f : V → Λ | ∃H ⊂ G open ∀h ∈ H, v ∈ V : f(hv) = f(v)}.
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Proof. The operation A 7→ (A∗)sm on D(G,Λ) satisfies the adjunction

HomD(G,Λ)(B, (A
∗)sm) = HomD(G,Λ)(B ⊗L

Λ A,Λ)

for all B ∈ D(G,Λ). As RHomΛ(−,Λ) is characterized by the similar adjunction in Dét([∗/G],Λ),
we get the result. �

V.2. Étale sheaves on strata

We want to describe Dét(BunG,Λ) via its strata BunbG. For this, we need the following result
saying roughly that connected Banach–Colmez spaces are “contractible”.

Proposition V.2.1. Let f : S′ → S be a map of small v-stacks that is a torsor under BC(E)
resp. BC(E [1]), where E is a vector bundle on XS that is everywhere of positive (resp. negative)
slopes. Then the pullback functor

f∗ : Dét(S,Λ)→ Dét(S
′,Λ)

is fully faithful.

Proof. By descent [Sch17a, Proposition 17.3, Remark 17.4], the problem is v-local on S,
and in particular one can assume that the torsor is split. In the positive case, we can use Corol-
lary II.3.3 (iv) to find pro-étale locally on S a short exact sequence

0→ OXS ( 1
2r )m

′ → OXS (1
r )m → E → 0,

inducing a similar sequence on Banach–Colmez spaces. This reduces us to the case E = OXS ( 1
n)

for some n (as then pullback under BC(OXS (1
r )m) → S is fully faithful, as is pullback under

BC(OXS (1
r )m) → S′ = BC(E)). In that case, BC(E) is a 1-dimensional perfectoid open unit ball

over S by Proposition II.2.5 (iv), in particular cohomologically smooth. It suffices to see that Rf !

is fully faithful, for which it suffices that for all A ∈ Dét(S,Λ), the adjunction map

Rf!Rf
!A→ A

is an equivalence. But note that both Rf! and Rf ! commute with any base change by [Sch17a,
Proposition 22.19, Proposition 23.12]. Thus, we may by passage to stalks reduce to the case
S = Spa(C,C+) where C is a complete algebraically closed nonarchimedean field and C+ ⊂ C an
open and bounded valuation subring, and in fact we only need to check the statement on global
sections. If the stalk of A at the closed point s ∈ S is zero, then the same holds true for Rf!Rf

!A
as Rf !A agrees with f∗A up to twist, so this follows from proper base change, [Sch17a, Theorem
19.2]. This allows us to reduce to the case that A is constant, and then as both Rf ! and Rf!

commute with all direct sums, even to the case A = Λ. Thus, we are reduced to the computation
of the cohomology of the perfectoid open unit disc.

The case of negative Banach–Colmez spaces follows by taking an exact sequence

0→ E → OXS (d)m → G → 0

and using the exact sequence

0→ BC(OXS (d)m)→ BC(G)→ BC(E [1])→ 0. �

Now we can formulate the desired result.
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Proposition V.2.2. For any b ∈ B(G), the map

BunbG = [∗/G̃b]→ [∗/Gb(E)]

induces via pullback an equivalence

Dét(Gb(E),Λ) ∼= Dét([∗/Gb(E),Λ]) ∼= Dét([∗/G̃b],Λ).

Moreover, for any complete algebraically closed nonarchimedean field C/k, the map

Dét([∗/G̃b],Λ)→ Dét([SpaC/G̃b],Λ)

is an equivalence.

Proof. Using [Sch17a, Theorem 1.13] and Theorem V.1.1, it is enough to prove that the
functor

Dét([SpaC/Gb(E)],Λ)→ Dét([SpaC/G̃b],Λ)

is an equivalence. For this, it is enough to prove that pullback under the section [SpaC/Gb(E)]→
[SpaC/G̃b] induces a fully faithful functor

Dét([SpaC/G̃b],Λ)→ Dét([SpaC/Gb(E)],Λ),

which follows from Proposition V.2.1. �

We see that Dét(BunG,Λ) is glued from the categories Dét(BunbG,Λ) ∼= D(Gb(E),Λ), which are
entirely representation-theoretic.1 In particular, this implies that the base field plays no role:

Corollary V.2.3. For any complete algebraically closed nonarchimedean field C and any lo-
cally closed substack U ⊂ BunG, the functor

Dét(U,Λ)→ Dét(U × SpaC,Λ)

is an equivalence of categories.

Although this seems like a purely technical result, it will actually play a key role when we study
Hecke operators.

Proof. Fully faithfulness holds true by [Sch17a, Theorem 1.13 (ii)]. To see that it is an
equivalence of categories, it is enough to check on all quasicompact locally closed substacks U ⊂
BunG. These are stratified into finitely many locally closed substacks BunbG ⊂ BunG, and we have
the corresponding excision exact sequences, so to get essential surjectivity, it is enough to check on
each stratum BunbG. Now it follows from Proposition V.2.2. �

1It would be very interesting to understand the gluing of these categories in terms of pure representation theory.
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V.3. Local charts

For any b ∈ B(G) we wish to construct a chart

πb :Mb → BunG

whose image contains BunbG, such that πb is separated, representable in locally spatial diamonds
and cohomologically smooth, and whose geometry can be understood explicitly.

Example V.3.1. Before we discuss the general case, let us briefly discuss the first interesting
case, namely G = GL2 and the non-basic element b corresponding to O(1) ⊕ O. In that case, we
let Mb be the moduli space of extensions

0→ L → E → L′ → 0

where L is of degree 0 and L′ is of degree 1. Mapping such an extension to E defines the map
Mb → BunG.

Note that there is a natural E× × E×-torsor M̃b → Mb, parametrizing isomorphisms L ∼= O
and L′ ∼= O(1). On the other hand, it is clear that M̃b = BC(O(−1)[1]) is a negative absolute
Banach–Colmez space; thus, Mb is very explicit.

Any extension E parametrized byMb is either isomorphic to O⊕O(1), or to O(1
2). The fibres of

πb :Mb → BunGL2 over a rank 2 bundle E are given by an open subset of the projectivized Banach–
Colmez space (BC(E)\{0})/E×. Thus, these fibres interpolate between (BC(O(1

2))\{0})/E×, which
is cohomologically smooth by Proposition II.3.7, and

(BC(O ⊕O(1)) \ {0})/E× = (E × D \ {0})/E×.

The latter is still cohomologically smooth, although E × D is not — the quotient by E× gets rid
of the disconnected nature of the space. In this case, and in fact in complete generality for all
b ∈ B(GLn), one can actually check cohomological smoothness of πb by hand. To handle the
general case, we had to prove the Jacobian criterion, Theorem IV.4.2.

Coming back to the general case, we can in fact construct all Mb together, as follows.

Definition V.3.2. The v-stack M is the moduli stack taking S ∈ Perfk to the groupoid of G-
bundles E on XS together with an increasing separated and exhaustive Q-filtration (ρ∗E)≤λ ⊂ ρ∗E
(ranging over algebraic representations ρ : G → GLn, and compatible with exact sequences and

tensor products) on the corresponding fibre functor such that (letting (ρ∗E)<λ =
⋃
λ′<λ(ρ∗E)≤λ

′
)

the quotient

(ρ∗E)λ = (ρ∗E)≤λ/(ρ∗E)<λ

is a semistable vector bundle of slope λ, for all λ ∈ Q and representations ρ : G→ GLn.

Note that by passing to the associated graded,M maps to the moduli stack of G-bundles in the
category of Q-graded vector bundles on XS where the weight λ piece is semistable of slope λ. By
Proposition III.4.7, this is isomorphic to

⊔
b∈B(G)[∗/Gb(E)]. In particularM decomposes naturally

into a disjoint union

M =
⊔

b∈B(G)

Mb,
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and for each b ∈ B(G), we have natural maps

qb :Mb → [∗/Gb(E)].

Example V.3.3. When G = GLn, M sends S to the groupoid of filtered vector bundles
0 = Fil0 E ( Fil1 E ( · · · ( Filr E = E for some r, such that Fili+1 E/Fili E is semistable and
the slopes (µ(Fili+1 E/Fili E))0≤i<r form an increasing sequence (the opposite condition to the one
defining the Harder–Narasimhan filtration of a vector bundle). The maps qb send such a vector

bundle to the graded vector bundle
⊕r−1

i=0 Fili+1 E/Fili E .

Example V.3.4. Suppose G is quasisplit. Let Mb be the centralizer of the slope morphism, as
a Levi subgroup. Let Pb be the parabolic subgroup with Levi Mb such that the weight of νb on
Lie Pb are positive. There is a diagram

BunPb BunG

BunMb

induced by the inclusion Pb ⊂ G and the quotient map Pb →Mb. There is a cartesian diagram

Mb BunPb

BunbMb
BunMb

.

Proposition V.3.5. For any b ∈ B(G), the map

qb :Mb → [∗/Gb(E)].

is partially proper, representable in locally spatial diamonds, and cohomologically smooth, of dimen-
sion 〈2ρ, νb〉. In fact, after pullback along ∗ → [∗/Gb(E)], it is a successive torsor under negative
Banach–Colmez spaces.

In particular, Mb is a cohomologically smooth Artin v-stack, of dimension 〈2ρ, νb〉.

Proof. It suffices to check everything after pullback after pullback by the v-cover ∗ → [∗/Gb(E)],

M̃b →Mb. Let G̃→ XS be the automorphism group of Eb → XS , see Proposition III.5.2, the pure

inner twisting of G × XS by Eb. This is equipped with a parabolic subgroup G̃≤0, and moreover

a filtration (G̃≤λ)λ≤0 with unipotent radical G̃<0. This is the opposite parabolic subgroup to the

one used in the proof of Proposition III.5.1. Then M̃b(S) is identified with the set of G̃<0-torsors.

The result is deduced using the description of the graded pieces of (G̃≤λ)λ<0 as vector bundles of
negative slopes. �

We first prove some structural results about Mb and its universal Gb(E)-torsor M̃b →Mb. A

general theme here is the subtle distinction between the absolute property of being a (locally spatial)

diamond (which M̃b is not, but it has a large open part M̃◦b ⊂ M̃b that is) and the relative notion

of M̃b → ∗ being representable in (locally spatial) diamonds (which M̃b is), and some related subtle
distinctions on absolute and relative quasicompactness.
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Proposition V.3.6. The map Mb → [∗/Gb(E)] has a section [∗/Gb(E)] → Mb given by the

closed substack where E is (at every geometric point) isomorphic to Eb, in which case (ρ∗E)≤λ ⊂ ρ∗E
is a splitting of the Harder–Narasimhan filtration of ρ∗E for all representations ρ : G→ GLn.

Consider the open complement M◦b = Mb \ [∗/Gb(E)], with preimage M̃◦b = M̃b \ {∗}. Then

M̃◦b is a spatial diamond.

Moreover, if Uπ = νNb (π) ∈ Gb(E) for any large enough N (so that νNb : Gm → Gb is a

well-defined cocharacter), then M̃◦b/UZ
π → ∗ is proper.

Proof. To check that the substack where E is at every geometric point isomorphic to Eb is
closed, note that by semicontinuity it suffices to see that everywhere on Mb, the Newton point of
E is bounded by b. By [RR96, Lemma 2.2 (iv)], this reduces to the case of G = GLn, where it is
a simple consequence of the Harder–Narasimhan formalism (the Newton polygon of an extension
is always bounded by the Newton polygon of the split extension). On this closed substack, E has
two transverse filtrations, given by (ρ∗E)≤λ and the Harder–Narasimhan filtration; it follows that E
upgrades to a G-bundle in Q-graded vector bundles on the Fargues–Fontaine curve, with the weight
λ-piece semistable of slope λ. We see that this gives the desired section of Mb → [∗/Gb(E)], using
again Proposition III.4.7.

We claim that the action of Uπ on |M̃b×k Spa k((t))| satisfies the hypotheses of Lemma II.2.17,
with fixed point locus given by the closed subspace ∗ considered in the previous paragraph. Writing

M̃b as a successive extension of Banach–Colmez spaces, it is clear that for all x ∈ |M̃b×k Spa k((t))|
which are not in the closed substack, the sequence U−nπ (x) leaves any quasicompact open subspace
for large n: Look at the first step in the successive extensions where x does not project to the origin.
Then x gives an element in the fiber over the origin, which is a negative Banach–Colmez space,
on which Uπ = νNb (π) acts via a positive power of π; thus U−nπ (x) leaves any quasicompact open
subspace of this Banach–Colmez space. In particular, it follows that the fixed points locus of Uπ is

precisely the origin. To apply Lemma II.2.17, it remains to see that for all x ∈ |M̃b ×k Spa k((t))|
and quasicompact open neighborhoods U of the origin, one has γm(x) ∈ U for all sufficiently large
m. This can be reduced to the case of GLn by the Tannakian formalism, so assume G = GLn for

this argument. Now fix a map f : Spa(C,C+)→ M̃b ×k Spa k((t)) having x in its image; it suffices
to construct a map

Spa(C,C+)× N ∪ {∞} → M̃b ×k Spa k((t))

whose restriction to Spa(C,C+)×{0} is f and which is equivariant for the γ-action, with γ acting
on the left via shift on the profinite set N∪{∞}. The map f classifies some Q-filtered vector bundle
E≤λ ⊂ E of rank n on XC with

⊕
λ Eλ ∼= Eb as Q-graded vector bundles. After pullback to YC,[1,q],

the filtration is split, so we can find an isomorphism

α : E|YC,[1,q] ∼= Eb|YC,[1,q]

of Q-filtered vector bundles on YC,[1,q], such that α reduces on graded pieces to the given identifi-
cation. The descent datum is now given by some isomorphism of Q-filtered vector bundles

β : ϕ∗(Eb|YC,[q,q]) ∼= Eb|YC,[1,1]
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that reduces to the standard Frobenius on graded pieces. In other words, β is the standard Frobenius
on Eb multiplied by some

β′ : Eb|YC,[1,1]
∼= Eb|YC,[1,1]

and with respect to the Q-grading on Eb, the map β′ is the identity plus a lower triangular matrix.

The action of γ replaces β′ by its Uπ-conjugate. This multiplies all lower triangular entries by
powers of π, so

(β′, γ(β′), γ2(β′), . . . , 1)

composed with the standard Frobenius defines an isomorphism

ϕ∗(Eb|YS,[q,q]) ∼= Eb|YS,[1,1]

where S = Spa(C,C+)×N ∪ {∞}. Using this as a descent datum defines a Q-filtered vector bundle
on XS defining the required map

S = Spa(C,C+)× N ∪ {∞} → M̃b ×k Spa k((t)).

This finishes the verification of the hypotheses of Lemma II.2.17.

It is clear from the definition that M̃◦b → ∗ is partially proper (as the theory of vector bundles

on the Fargues–Fontaine curve does not depend on R+). Thus, to show that M̃◦b/UZ
π → ∗ is proper,

it suffices to see that the map is quasicompact, which can be checked after base change to Spa k((t));
then it follows from the previous discussion and Lemma II.2.17.

It remains to see that M̃◦b is a spatial diamond. For this, we pick a representative b ∈ G(Ĕ) of
the σ-conjugacy class that is decent in the sense of [RZ96, Definition 1.8]. In particular, b ∈ G(Es)

for some unramified extension Es|E of degree s, and M̃◦b is already defined over PerfFqs . Let Frobs

be the Frobenius x 7→ xq
s
. As b is decent, the action of Uπ = νNb (π) on M̃◦b agrees with the action

of a power of Frobs for N large enough. We know that

M̃◦b/UZ
π ×k Spa k((t))

is a spatial diamond (as it is proper over Spa k((t))). Replacing Uπ by Frobs, and moving the
quotient by Frobenius to the other factor (which is allowed as the absolute Frobenius acts trivially
on topological spaces) one sees that also

M̃◦b ×k Spa k((t))/FrobZ
s

is a spatial diamond. But Spa k((t))/FrobZ
s → ∗ is proper and cohomologically smooth. Thus,

Lemma II.3.8 shows that it is a spatial v-sheaf. By [Sch17a, Theorem 12.18], to see that M̃◦b is a

spatial diamond, it suffices to check on points. Writing M̃b as a successive extension of Banach–

Colmez spaces, any point in M̃◦b has a minimal step where it does not map to the origin. Then
its image is a nontrivial point of an absolute Banach–Colmez space, and a punctured absolute
Banach–Colmez space is a diamond by Proposition II.3.7; the result follows. �

The following theorem gives the desired local charts for BunG; its proof is based on the Jacobian
criterion for (cohomological) smoothness, Theorem IV.4.2.

Theorem V.3.7. The map πb :Mb → BunG forgetting the filtration is partially proper, repre-
sentable in locally spatial diamonds, and cohomologically smooth of `-dimension 〈2ρ, νb〉.
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Proof. Let S → BunG be some map for a perfectoid space S, given by some G-bundle E
on XS . Then Mb ×BunG S parametrizes Q-filtrations on E whose associated graded Q-bundle
corresponds to b. Such Q-filtrations are parametrized by sections of a smooth projective flag variety
Z = E/P → XS for some parabolic P ⊂ G×EX. Moreover, the condition on the associated graded
bundle and Proposition III.5.2 imply that Mb is an open subspace of Msm

Z , so the result follows
from Theorem IV.4.2. �

V.4. Compact generation

We are now revisiting the notion of finite type smooth representation in terms of Dét(BunG,Λ).

The goal of this section is to prove the following theorem. As above, we fix some coefficient
ring Λ such that nΛ = 0 for some n prime to p.

Theorem V.4.1. For any locally closed substack U ⊂ BunG, the triangulated category Dét(U,Λ)
is compactly generated. An object A ∈ Dét(U,Λ) is compact if and only if for all b ∈ B(G) contained
in U , the restriction

ib∗A ∈ Dét(BunbG,Λ) ∼= D(Gb(E),Λ)

along ib : BunbG ⊂ BunG is compact, and zero for almost all b. Here, compactness in D(Gb(E),Λ)

is equivalent to lying in the thick triangulated subcategory generated by c-Ind
Gb(E)
K Λ as K runs over

open pro-p-subgroups of Gb(E).

To prove the theorem, we exhibit a class of compact projective generators. The key result is

that M̃b behaves like a strictly local scheme; in some vague sense, M̃b is the strict henselization of
BunG at b.

Proposition V.4.2. Let b ∈ B(G). For any A ∈ Dét(M̃b,Λ) with stalk A0 = i∗A ∈ Dét(∗,Λ) ∼=
D(Λ) at the closed point i : ∗ ⊂ M̃b, the map

RΓ(M̃b, A)→ A0

is an isomorphism. In particular, RΓ(M̃b,−) commutes with all direct sums.

Proof. Replacing A by the cone of A → i∗A0, we can assume that A = j!A
′ for some A′ ∈

Dét(M̃◦b ,Λ). We have to see that

RΓ(M̃b, j!A
′) = 0.

But this follows from Theorem IV.5.3 (applied with X = M̃◦b and S = Spa k((t)), noting that base
change along S → ∗ follows from smooth base change), using that the partial compactification

M̃◦b ⊂ M̃b is precisely a compactification towards one of the two ends of M̃◦b , as follows from the
behaviour of the Frobenius action exhibited in the proof of Proposition V.3.6. �

Remark V.4.3.

(i) Consider the v-sheafX = Spd(k[[x1, . . . , xd]]) and the quasicompact open subset U = Spd(k[[x1, . . . , xd]])\
V (x1, . . . , xd) that is representable by a perfectoid space. When base changed to S = Spa(k((t))),
X becomes isomorphic to an open unit disk, U becomes the punctured unit disk that has two ends:
the origin and the exterior of the disk. The picture is thus analogous to the preceding one with

M̃b, and for any A ∈ Dét(X,Λ) one has RΓ(X,A) ∼= i∗A where i : Spd(k) ↪→ X is V (x1, . . . , xd).
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(ii) This applies more generally to the v-sheaf associated to any W (k)-affine formal scheme Spf(R)
withR an I-adic ring. Then, for anyA ∈ Dét(Spd(R),Λ) one hasRΓ(Spd(R), A) = RΓ(Spd(R/I), i∗A)
with i : Spd(R/I) ↪→ Spd(R). In particular, for A ∈ Dét(Spd(R) \ V (I),Λ), where here Spd(R) \
V (I) is representable by a spatial diamond and even a perfectoid space if R is a k-algebra, one has

RΓ(Spd(R) \ V (I), A) ∼= RΓ(Spd(R/I), i∗Rj∗A).

Thus, Proposition V.4.2 can be seen as a result about “nearby cycles on the strict henselianization
of BunG at b”.

Corollary V.4.4. Let b ∈ B(G) and let K ⊂ Gb(E) be an open pro-p-subgroup. Then for any

A ∈ Dét(M̃b/K,Λ) with pullback A0 = i∗A ∈ Dét([∗/K],Λ) ∼= D(K,Λ) corresponding to a complex
V of smooth K-representations, the map

RΓ(M̃b/K,A)→ RΓ([∗/K], A0) ∼= V K

is an isomorphism. In particular, RΓ(M̃b/K,−) commutes with all direct sums.

Proof. This follows formally from Proposition V.4.2 by descent along ψ : M̃b → M̃b/K; more
precisely, by writing any A as a direct summand of ψ∗ψ

∗A. �

Remark V.4.5. Let

i : [∗/Gb(E)] ↪→Mb ←↩M◦b : j

be the usual diagram. From the corollary, one deduces that if one regards

i∗Rj∗A ∈ Dét([∗/Gb(E)],Λ) ∼= D(Gb(E),Λ)

as a complex of Gb(E)-representations, then this is given by

RΓ(M̃◦b , A).

As M̃◦b is qcqs (and of finite cohomological dimension) by Proposition V.3.6, this commutes with
all direct sums in A.

For example, in the case of GL2 and Eb = O(1)⊕O, one has

M̃◦b = BC(O(−1)[1]) \ {0} = Spa k((t1/p
∞

))/SL1(D)

by Example II.3.12 and Example V.3.1. Thus, in this case one compute

i∗Rj∗A = RΓ(Spa k((t1/p
∞

))/SL1(D), A)

which is a very explicit formula. If one would use the presentation

BC(O(−1)[1])× SpaC = (A1
C])
♦/E

instead, it would be considerably more difficult to compute the answer. In particular, we critically

used quasicompacity of the absolute M̃◦b , its base change M̃◦b ×k SpaC is no longer quasicompact.
This highlights the importance of working with absolute objects, and of using the right local charts.

In fact, Theorem V.3.7, smooth base change, and this formula for i∗Rj∗ show that the gluing
of the representation-theoretic strata Dét(BunbG,Λ) ∼= D(Gb(E),Λ) into Dét(BunG,Λ) is encoded

in the spaces M̃◦b , showing that the local charts Mb are of fundamental and not just technical
importance.
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Now we can prove Theorem V.4.1.

Proof of Theorem V.4.1. As for closed immersions i, the functor i∗ preserves compact ob-
jects, it is enough to handle the case that U is an open substack. Let b ∈ |U | ⊂ BunG ∼= B(G) be
any point of U , and let K ⊂ Gb(E) be an open pro-p-subgroup, giving rise to the map

fK : M̃b/K → BunG .

By Corollary V.4.4 and Theorem V.3.7, we see that AbK := RfK!Rf
!
KΛ ∈ Dét(BunG,Λ) is compact;

in fact,

RHom(AbK , B) ∼= RHom(Rf !
KΛ, Rf !

KB) ∼= RHom(Rf !
KΛ, f∗KB ⊗L

Λ Rf
!
KΛ)

∼= RΓ(M̃b/K, f
∗
KB) ∼= (ib∗B)K .

From this computation, we see that the collection of objects AbK for varying b ∈ |U | and K ⊂ Gb(E)

open pro-p form a class of compact generators: Indeed, if B is nonzero, then (ib∗B)K must be
nonzero for some b and K.

To prove the characterization of compact objects, we argue by induction on the number of
points of |U |, noting that any compact object must be concentrated on a quasicompact substack,
and thus on finitely many points. So assume that |U | is finite, b ∈ |U | is a closed point and
j : V = U \ {b} ⊂ U is the open complement, so we know the result for V . It suffices to prove that
j∗ preserves compact objects. Indeed, then A ∈ Dét(U,Λ) is compact if and only if j∗A and ib∗A
are compact, and this gives by induction the desired characterization.

To see that j∗ preserves compact objects, we can check on the given generators. For generators
Ab
′
K corresponding to b′ 6= b we get j∗Ab

′
K = Ab

′
K , so there is nothing to prove. On the other hand,

j∗AbK = Rf◦K!f
◦!
KΛ for

f◦K : M̃◦b/K → V ⊂ BunG .

The compactness of j∗AbK then follows from RΓ(M̃◦b/K,−) commuting with all direct sums. But

this is true as M̃◦b is a spatial diamond of finite dim. trg, by Proposition V.3.6 and Proposition V.3.5,
and taking cohomology under K is exact. �

V.5. Bernstein–Zelevinsky duality

We note that one can define a Bernstein–Zelevinsky involution on (the compact objects of)
Dét(BunG,Λ). More precisely, we have the following result. Here, in anticipation of some functor
introduced later, we write

π\ : Dét(BunG,Λ)→ D(∗,Λ) = D(Λ) : A 7→ Rπ!(A⊗L
Λ Rπ

!Λ)

for the left adjoint of π∗, π : BunG → ∗.

Theorem V.5.1. For any compact object A ∈ Dét(BunG,Λ), there is a unique compact object
DBZ(A) ∈ Dét(BunG,Λ) with a functorial identification

RHom(DBZ(A), B) ∼= π\(A⊗L
Λ B)

for B ∈ Dét(BunG,Λ). Moreover, the functor DBZ is a contravariant autoequivalence of Dét(BunG,Λ)ω,
and D2

BZ is naturally isomorphic to the identity.
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If U ⊂ BunG is an open substack and A is concentrated on U , then so is DBZ(A). In particular,
DBZ restricts to an autoequivalence of the compact objects in Dét(BunbG,Λ) ∼= D(Gb(E),Λ) for
b ∈ B(G) basic, and in that setting it is the usual Bernstein–Zelevinsky involution.

Proof. By the Yoneda lemma, the uniqueness of DBZ(A) is clear. For the existence, it suffices

to check on a system of generators, like A = ib! c-Ind
Gb(E)
K Λ for varying b ∈ B(G) and K ⊂ Gb(E)

open pro-p. In that case, DBZ(A) = AbK by Corollary V.4.4. This also shows that ifA is concentrated
on U , then so is DBZ(A).

Now note that

RHom(DBZ(A), B) ∼= π\(A⊗L
Λ B) ∼= π\(B ⊗L

Λ A) ∼= RHom(DBZ(B), A).

In particular, taking B = DBZ(A), we see that there is a natural functorial map D2
BZ(A) → A.

We claim that this is an equivalence. It suffices to check on generators. We have seen that the

Bernstein–Zelevinsky dual of ib! c-Ind
Gb(E)
K Λ is AbK . Its restriction to BunbG is again ib! c-Ind

Gb(E)
K Λ,

so one easily checks that the map D2
BZ(A) → A is an isomorphism over BunbG. To see that it is

an isomorphism everywhere, one needs to see that if B = Rj∗B
′, B′ ∈ Dét(U,Λ) for some open

substack j : U ⊂ BunG not containing BunbG, then

π\(A
b
K ⊗L

Λ B) = 0.

Twisting a few things away and using the definition of AbK = RfK!Rf
!
KΛ, this follows from the

assertion that for all A′ ∈ Dét(M̃◦b/K,Λ), with jK : M̃◦b/K ↪→ M̃b/K the open immersion, one
has

RΓc(M̃b/K,RjK∗A
′) = 0.

Using the trace map for M̃b → M̃b/K, this follows from Theorem IV.5.3, applied as before with

X = M̃◦b and S = Spa k((t)), noting that base change along S → ∗ holds by smooth base change
and is conservative.

The comparison to Bernstein–Zelevinsky duality follows formally by taking B corresponding
to the regular representation of Gb(E), in which case π\(A ⊗L

Λ B) is isomorphic to the underlying
chain complex of A. Moreover, as the regular representation has two commuting Gb(E)-actions,
there is a residual Gb(E)-action, which is the usual action on A. This gives the usual definition of
the Bernstein–Zelevinsky involution as RHom into the regular representation. �

V.6. Verdier duality

It turns out that one can also understand how Verdier duality acts on Dét(BunG,Λ). The key
result is the following.

Theorem V.6.1. Let j : V ↪→ U be an open immersion of open substacks of BunG. For any
A ∈ Dét(V,Λ), the natural map

j!RHomΛ(A,Λ)→ RHomΛ(Rj∗A,Λ)

is an isomorphism in Dét(U,Λ).
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Note that one always has

Rj∗RHomΛ(A,Λ) = RHomΛ(j!A,Λ) ;

the theorem asserts that this is also true with j! and Rj∗ exchanged, which is related to a local
biduality statement: If A ∈ Dét(U,Λ) is reflexive, the theorem implies formally that j!A ∈ Dét(U,Λ)
is reflexive.

Proof. We can assume that U and V are quasicompact, and then by induction, we can assume
that V = U \ {b} for some closed b ∈ |U |. The map is clearly an isomorphism over V , so it suffices
to see that for the compact objects

AbK = RfK!f
!
KΛ, fK : M̃b/K → U ⊂ BunG,

one gets an isomorphism after applying RHom(AbK ,−). As RHom(AbK , B) = (ib∗B)K , we see that
the left-hand side

RHom(AbK , j!RHomΛ(A,Λ)) = 0

vanishes. On the other hand, using the left adjoint π\ : Dét(BunG,Λ) → D(∗,Λ) ∼= D(Λ) of
pullback, we have

RHom(AbK , RHomΛ(Rj∗A,Λ)) ∼= RHom(AbK ⊗L
Λ Rj∗A,Λ) ∼= RHom(π\(A

b
K ⊗L

Λ Rj∗A),Λ).

But by Theorem V.5.1, and the identification of the Bernstein–Zelevinsky dual ofAbK as ib! c-Ind
Gb(E)
K Λ,

one has

π\(A
b
K ⊗L

Λ Rj∗A) ∼= RHom(ib! c-Ind
Gb(E)
K Λ, Rj∗A) ∼= RHom(c-Ind

Gb(E)
K Λ, Rib!Rj∗A) = 0. �

Recall that as a cohomologically smooth Artin stack of dimension 0, BunG admits a dualizing
complex DBunG ∈ Dét(BunG,Λ) that is locally isomorphic to Λ[0].

Theorem V.6.2. For any open substack U ⊂ BunG, an object A ∈ Dét(U,Λ) is reflexive,
i.e. the natural map

A→ RHomΛ(RHomΛ(A,DU ), DU )

is an equivalence, if and only if for all b ∈ B(G) lying in U with corresponding locally closed stratum
ib : BunbG → U , the restriction

ib∗A ∈ Dét(BunbG,Λ) = Dét([∗/G̃b],Λ) ∼= Dét([∗/Gb(E)],Λ) = D(Gb(E),Λ)

is reflexive as a complex of admissible Gb(E)-representations; this means that the complex of K-
invariants is reflexive in D(Λ) for all open pro-p-subgroups K ⊂ Gb(E).

In the definition of reflexivity, we can replace DU by Λ (as this changes the dual by a twist,
and then the bidual stays the same). The theorem follows immediately from the following result.

Lemma V.6.3. Let U ⊂ BunG be an open substack and A ∈ Dét(U,Λ). For any b ∈ B(G) lying
in U , there is a natural isomorphism

ib∗RHomΛ(RHomΛ(A,Λ),Λ) ∼= RHomΛ(RHomΛ(ib∗A,Λ),Λ).
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Proof. We may assume that U ⊂ BunG is the set of generalizations of b, and let j : V =
U \ {b} ↪→ U . Let B = j∗A. Using the exact triangle

j!B → A→ ib∗i
b∗A→,

and the invertibility of ib!Λ (as BunbG is also cohomologically smooth), it is enough to prove that

ib∗RHomΛ(RHomΛ(j!B,Λ),Λ) = 0.

But RHomΛ(j!B,Λ) = Rj∗RHomΛ(B,Λ), and by Theorem V.6.1,

RHomΛ(Rj∗RHomΛ(B,Λ),Λ) = j!RHomΛ(RHomΛ(B,Λ),Λ). �

V.7. ULA sheaves

Finally, we want to classify the objects A ∈ Dét(BunG,Λ) that are universally locally acyclic
with respect to BunG → ∗. Our goal is to prove the following theorem. This gives a geometric
interpretation of the classical notion of admissible representation in terms of Dét(BunG,Λ).

Theorem V.7.1. Let A ∈ Dét(BunG,Λ). Then A is universally locally acyclic with respect to
BunG → ∗ if and only if for all b ∈ B(G), the pullback ib∗A to ib : BunbG ↪→ BunG corresponds

under Dét(BunbG,Λ) ∼= D(Gb(E),Λ) to a complex Mb of smooth Gb(E)-representations for which
MK
b is a perfect complex of Λ-modules for all open pro-p subgroups K ⊂ Gb(E).

We want to use Proposition IV.2.32. As preparation, we need to understandDét(BunG×BunG,Λ).
More generally, we have the following result.

Proposition V.7.2. Let G1 and G2 be two reductive groups over E, and let G = G1 × G2.
Then BunG ∼= BunG1 ×BunG2, giving rise to an exterior tensor product

−�− : Dét(BunG1 ,Λ)×Dét(BunG2 ,Λ)→ Dét(BunG,Λ).

For all compact objects Ai ∈ Dét(BunGi ,Λ), i = 1, 2, the exterior tensor product A1 � A2 ∈
Dét(BunG,Λ) is compact, these objects form a class of compact generators, and for all further
objects Bi ∈ Dét(BunGi ,Λ), i = 1, 2, the natural map

RHom(A1, B1)⊗L
Λ RHom(A2, B2)→ RHom(A1 �A2, B1 �B2)

is an isomorphism.

Remark V.7.3. The proposition says that as Λ-linear presentable stable ∞-categories, the
exterior tensor product functor

Dét(BunG1 ,Λ)⊗D(Λ) Dét(BunG2 ,Λ)→ Dét(BunG,Λ)

is an equivalence.

Proof. We use the compact generators Ai = AbiKi for certain bi ∈ B(Gi), Ki ⊂ Gi,bi(E) open

pro-p. These give rise to b = (b1, b2) ∈ B(G) and K = K1 ×K2 ⊂ Gb(E) = G1,b1(E) × G2,b2(E),
and using

Mb
∼=Mb1 ×Mb2
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and the Künneth formula, one concludes that A1 �A2
∼= AbK , which is again compact. As B(G) =

B(G1) × B(G2) and open pro-p subgroups of the form K1 ×K2 ⊂ Gb(E) are cofinal, we see that
these objects form a set of compact generators.

Moreover, as RHom(AbK , B) = (ib∗B)K for all B ∈ Dét(BunG,Λ) and similarly for AbiKi , we also
see that the map

RHom(Ab1K1
, B1)⊗L

Λ RHom(Ab2K2
, B2)→ RHom(AbK , B1 �B2)

is an isomorphism. As these objects generate, the same follows for all compact A1, A2. �

Now we can prove Theorem V.7.1.

Proof of Theorem V.7.1. By Proposition IV.2.32, we see that A being universally locally
acyclic is equivalent to the map

p∗1RHom(A,Λ)⊗L
Λ p
∗
2A→ RHom(p∗1A, p

∗
2A)

in Dét(BunG×BunG,Λ) ∼= Dét(BunG×G,Λ) being an isomorphism.

By Proposition V.7.2, this is equivalent to being an isomorphism after applying RHom(A1 �
A2,−) for varying compact Ai ∈ Dét(BunGi ,Λ). Using Proposition V.7.2, the left-hand side is
given by

RHom(A1, RHom(A,Λ))⊗L
Λ RHom(A2, A) ∼= RHom(π\(A1 ⊗L

Λ A),Λ)⊗L
Λ RHom(A2, A).

The right-hand side is, using π : BunG → ∗ for the projection,

RHom(A1 �A2, RHom(p∗1A, p
∗
2A)) ∼= RHom((A1 ⊗L

Λ A)�A2, p
∗
2A)

∼= RHom(p∗1(A1 ⊗L
Λ A), p∗2RHomΛ(A2, A))

∼= RHom(A1 ⊗L
Λ A,Rp1∗p

∗
2RHomΛ(A2, A))

∼= RHom(A1 ⊗L
Λ A, π

∗RHom(A2, A))

∼= RHom(π\(A1 ⊗L
Λ A), RHom(A2, A)),

using usual adjunctions and smooth base change for p2 and π several times. Under these isomor-
phisms, the map

RHom(π\(A1 ⊗L
Λ A),Λ)⊗L

Λ RHom(A2, A)→ RHom(π\(A1 ⊗L
Λ A), RHom(A2, A))

is the natural map. This is an isomorphism as soon as π\(A1⊗L
ΛA) ∈ D(Λ) is perfect for all compact

A1. In fact, the converse is also true: If one takes A2 = DBZ(A1), then RHom(A2, A) = π\(A1⊗L
ΛA),

and hence it follows that for M = π\(A1 ⊗L
Λ A) ∈ D(Λ), the map

RHom(M,Λ)⊗L
Λ M → RHom(M,M)

is an isomorphism, which means that M is dualizable in D(Λ), i.e. perfect.

Now we use the system of compact generators given by ib! c-Ind
Gb(E)
K Λ for varying b ∈ B(G),

with locally closed immersion ib : BunbG → BunG, and K ⊂ Gb(E) open pro-p. This translates the
condition on perfectness of Rπ!(A1 ⊗L

Λ Rπ
!Λ⊗L

Λ A) into the desired condition on stalks. �





CHAPTER VI

Geometric Satake

As before, we fix a nonarchimedean local field E with residue field Fq of characteristic p and a
uniformizer π ∈ E. Recall that for any perfectoid space S over Fq, we defined the “curve” YS over
OE , as well as YS = YS \ V (π) and the quotient XS = YS/ϕ

Z.

In this chapter, we are interested in studying modifications of G-torsors on these spaces, and
perverse sheaves on such. Our discussion will mirror this three-step procedure of the construction
of XS : If one has understood the basic theory over YS , the basic results carry over easily to YS
and then to XS . While as in previous chapters our main focus is on XS , in this chapter we will
actually make critical use of YS in order to degenerate to the Witt vector affine Grassmannian, and
hence to apply some results from the setting of schemes (notably the decomposition theorem). As
the discussion here is very much of a local sort, one can usually reduce easily to the case that G is
split, and hence admits a (split) reductive model over OE , and we will often fix such a split model
of G.

For any d ≥ 0, we consider the moduli space DivdY parametrizing degree d Cartier divisors
D ⊂ YS . For affinoid S, one can form the completion B+ of OXS along D. Inverting D defines a
localization B of B+. One can then define a positive loop group L+

DivdY
G and loop group LDivdY

G,

with values given by G(B+) resp. G(B); for brevity, we will simply write L+G and LG here. One
can then define the local Hecke stack

HckG,DivdY
= [L+G\LG/L+G]→ DivdY

We will often break symmetry, and first take the quotient on the right to define the Beilinson–
Drinfeld Grassmannian

GrG,DivdY
= LG/L+G→ DivdY

so that

HckIG = L+G\GrIG .

The Beilinson–Drinfeld Grassmannian GrG,DivdY
→ DivdY is a small v-sheaf that can be written

as an increasing union of closed subsheaves that are proper and representable in spatial diamonds,
by bounding the relative position; this is one main result of [SW20]. On the other hand, L+G can
be written as an inverse limit of truncated positive loop groups, which are representable in locally
spatial diamonds and cohomologically smooth; moreover, on each bounded subset, it acts through
such a finite-dimensional quotient. This essentially reduces the study of all bounded subsets of
HckG,DivdY

to Artin stacks.

183
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For any small v-stack S → DivdY , we let

HckG,S/DivdY
= HckG,S/DivdY

be the pullback. Let

Dét(HckG,S/DivdY
,Λ)bd ⊂ Dét(HckG,S/DivdY

,Λ)

be the full subcategory of all objects with quasicompact support over DivdY . This is a monoidal
category under convolution ?. Here, we use the convolution diagram

HckG,S/DivdY
×SHckG,S/DivdY

(p1,p2)←−−−− L+G\LG×L+G LG/L+G
m−→ HckG,S/DivdY

and define

A ? B = Rm∗(p
∗
1A⊗L

Λ p
∗
2B).

On Dét(HckG,S/DivdY
,Λ)bd, one can define a relative perverse t-structure (where an object is

perverse if and only if it is perverse over any geometric fibre of S), see Section VI.7. In particular,
this t-structure is compatible with any base change in S. For this t-structure, the convolution ? is
left t-exact (and t-exactness only fails for issues related to non-flatness over Λ). To prove this, we
reinterpret convolution as fusion, and use some results on hyperbolic localization.

Moreover, one can restrict to the complexes A ∈ Dét(HckG,S/DivdY
,Λ)bd that are universally

locally acyclic over S. This condition is also preserved under convolution. For d = 1, or in general
when S maps to the locus of distinct untilts (DivdY)6= ⊂ DivdY , one can describe the category
of universally locally acyclic by the condition that the restriction to any Schubert cell is locally
constant with perfect fibres. To prove that all such sheaves are universally locally acyclic, we also
introduce (for d = 1) the affine flag variety, in Section VI.5, and use their Demazure resolutions.

Definition VI.0.1. The Satake category

Sat(HckG,S/DivdY
,Λ) ⊂ Dét(HckG,S/DivdY

,Λ)bd

is the category of all A ∈ Dét(HckG,S/DivdY
,Λ)bd that are perverse, flat over Λ (i.e., for all Λ-modules

M , also A⊗L
Λ M is perverse), and universally locally acyclic over (Div1)I .

Intuitively, Sat(HckG,S/DivdY
,Λ) are the “flat families of perverse sheaves on HckG,S/DivdY

→
S”, where flatness refers both to the geometric aspect of flatness over S (encoded in universal
local acyclicity) and the algebraic aspect of flatness in the coefficients Λ. The Satake category
Sat(HckG,S/DivdY

,Λ) is a monoidal category under convolution. The forgetful functor

Sat(HckG,S/DivdY
,Λ)→ Dét(GrG,S/DivdY

,Λ)

is fully faithful. If d = 1 and S = SpdFq, then one can compare it to the category considered by
Zhu [Zhu17] and Yu [Yu19], defined in terms of the Witt vector affine Grassmannian. Moreover,
the categories for S = SpdOC and S = SpdC are naturally equivalent to the category for S =

SpdFq, via the base change functors; here C = Ê. Thus, the Satake category is, after picking a
reductive model ofG, naturally the same for the Witt vector affine Grassmannian and the B+

dR-affine
Grassmannian. At this point, we could in principle use Zhu’s results [Zhu17] (refined integrally by

Yu [Yu19]) to identify the Satake category with the category of representations of Ĝ, at least when
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G is unramified. However, for the applications we actually need finer knowledge of the functoriality
of the Satake equivalence including the case for d > 1; we thus prove everything we need directly.

More precisely, we now switch to (Div1
X)d in place of DivdY , replacing also the use of YS by XS ;

the two local Hecke stacks are locally isomorphic, so this poses no problems. For any finite set I,
let

HckIG = HckG,(Div1
X)I

and consider the monoidal category

SatIG(Λ) = Sat(HckIG,Λ).

In fact, the monoidal structure naturally upgrades to a symmetric monoidal structure. This relies
on the fusion product, for which it is critical to allow general finite sets I. Namely, given finite sets
I1, . . . , Ik, letting I = I1 t . . . t Ik, one has an isomorphism

HckIG×(Div1)I (Div1)I;I1,...,Ik ∼=
k∏
j=1

Hck
Ij
G ×(Div1)I (Div1)I;I1,...,Ik

where (Div1)I;I1,...,Ik ⊂ (Div1)I is the open subset where xi 6= xi′ whenever i, i′ ∈ I lie in different
Ij ’s. The exterior tensor product then defines a functor

�kj=1 :

k∏
j=1

Sat
Ij
G (Λ)→ SatI;I1,...,IkG (Λ)

where SatI;I1,...,IkG (Λ) is the variant of SatIG(Λ) for HckIG×(Div1)I (Div1)I;I1,...,Ik . However, the re-

striction functor

SatIG(Λ)→ SatI;I1,...,IkG (Λ)

is fully faithful, and the essential image of the exterior product lands in its essential image. Thus,
we get a natural functor

∗kj=1 :
k∏
j=1

Sat
Ij
G (Λ)→ SatIG(Λ),

independent of the ordering of the Ij . In particular, for any I, we get a functor

SatIG(Λ)× SatIG(Λ)→ SatItIG (Λ)→ SatIG(Λ),

using functoriality of SatJG(Λ) in J , which defines a symmetric monoidal structure ∗ on SatIG(Λ),
commuting with ?. This is called the fusion product. In general, for any symmetric monoidal
category (C, ∗) with a commuting monoidal structure ?, the monoidal structure ? necessarily agrees
with ∗; thus, the fusion product refines the convolution product. (As usual in geometric Satake, we
actually need to change ∗ slightly by introducing certain signs into the commutativity constraint,
depending on the parity of the support of the perverse sheaves.)

Moreover, restricting A ∈ SatIG(Λ) to GrIG and taking the pushforward to (Div1)I , all cohomol-
ogy sheaves are local systems of Λ-modules on (Div1)I . By a version of Drinfeld’s lemma, these
are equivalent to representations of W I

E on Λ-modules. This defines a symmetric monoidal fibre
functor

F I : SatIG(Λ)→ RepW I
E

(Λ),
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where RepW I
E

(Λ) is the category of continuous representations of W I
E on finite projective Λ-modules.

Using a version of Tannaka duality, one can then build a Hopf algebra in the Ind-category of
RepW I

E
(Λ) so that SatIG(Λ) is given by its category of representations (internal in RepW I

E
(Λ)). For

any finite set I, this is given by the tensor product of I copies of the corresponding Hopf algebra

for I = {∗}, which in turn is given by some affine group scheme G

∧

over Λ with WE-action.

Theorem VI.0.2 (Theorem VI.11.1). There is a canonical isomorphism G

∧∼= Ĝ with the Lang-

lands dual group, under which the action of WE on G

∧

agrees with the usual action of WE on Ĝ up
to an explicit cyclotomic twist. If

√
q ∈ Λ, the cyclotomic twist can be trivialized, and SatIG(Λ) is

naturally equivalent to the category of (ĜoWE)I-representations on finite projective Λ-modules.

For the proof, one can restrict to Λ = Z/`nZ; passing to a limit over n, one can actually
build a group scheme over Z`. Its generic fibre is reductive, as the Satake category with Q`-
coefficients is (geometrically) semisimple: For this, we use the degeneration to the Witt vector
affine Grassmannian and the decomposition theorem for schemes. To identify the reductive group,
we argue first for tori, and then for rank 1 groups, where everything reduces to G = PGL2 which is
easy to analyze by using the minuscule Schubert cell. Here, the pinning includes a cyclotomic twist
as of course the cohomology of the minuscule Schubert variety P1 of GrPGL2 contains a cyclotomic
twist. Afterwards, we apply hyperbolic localization in order to construct symmetric monoidal

functors SatG → SatM for any Levi M of G, inducing dually maps M

∧

→ G

∧

. This produces many

Levi subgroups of G

∧

Q` from which it is easy to get the isomorphism with ĜQ` , including a pinning.

As these maps M
∧

→ G
∧

are even defined integrally, and Ĝ(Z`) ⊂ Ĝ(Q`) is a maximal compact open
subgroup by Bruhat–Tits theory, generated by the rank 1 Levi subgroups, one can then deduce

that G

∧∼= Ĝ integrally, again with an explicit (cyclotomic) pinning.

We will also need the following addendum regarding a natural involution. Namely, the local
Hecke stack HckIG has a natural involution sw given by reversing the roles of the two G-torsors; in
the presentation in terms of LG, this is induced by the inversion on LG. Then sw∗ induces naturally
an involution of SatIG(Λ), and thus involution can be upgraded to a symmetric monoidal functor

commuting with the fibre functor, thus realizing a WE-equivariant automorphism of Ǧ ∼= Ĝ.

Proposition VI.0.3 (Proposition VI.12.1). The action of sw∗ on SatIG induces the automor-

phism of Ĝ that is the Cartan involution of the split group Ĝ, conjugated by ρ̂(−1).

VI.1. The Beilinson–Drinfeld Grassmannian

First, we define the base space of the Beilinson–Drinfeld Grassmannian for any d ≥ 0.

Definition VI.1.1. For any d ≥ 0, consider the small v-sheaves on PerfFq given by

DivdY = (SpdOE)d/Σd, DivdY = (SpdE)d/Σd, DivdX = Divd = (SpdE/ϕZ)d/Σd,

where Σd is the symmetric group.

Proposition VI.1.2. For any d ≥ 0, there is a functorial injection

(i) from DivdY(S) into the set of closed Cartier divisors on YS,

(ii) from DivdY (S) into the set of closed Cartier divisors on YS,
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(iii) from DivdX(S) into the set of closed Cartier divisors on XS.

Moreover, in case (i) and (ii), if S = Spa(R,R+) is affinoid perfectoid, then for any closed Cartier
divisor D ⊂ YS resp. D ⊂ YS in the image of this embedding, the adic space D = Spa(Q,Q+) is
affinoid. In case (iii), the same happens locally in the analytic topology on S.

Proof. We handle case (i) first. Over (SpdOE)d and for S = Spa(R,R+) affinoid, we get

d untilts R]i , i = 1, . . . , d of R, and there are elements ξi ∈ WOE (R+) generating the kernel of

θi : WOE (R+) → R]+i . Each of the ξi defines a closed Cartier divisor by Proposition II.1.4. Then

ξ =
∏
i ξi defines another closed Cartier divisor, given by Spa(A,A+) for A = WOE (R+)[ 1

[$] ]/ξ,

and A+ the integral closure of WOE (R+)/ξ, where $ ∈ R is a pseudouniformizer.

Now the ideal sheaf of this closed Cartier divisor is a line bundle, and by [SW20, Proposition
19.5.3], line bundles on YS satisfy v-descent. Thus, even if we are only given a map S → DivdY =

(SpdOE)d/Σd, we can still define a line bundle I ⊂ OYS , and it still defines a closed Cartier
divisor as this can be checked v-locally. Also, V (I) ⊂ YS is quasicompact over S, as this can
again be checked v-locally. This implies that it is contained in some affinoid YS,[0,n], and hence

D = Spa(A,A+) is affinoid in general.

The case (ii) now follows formally by passing to an open subset, and case (iii) by passing to the
quotient under Frobenius. �

Remark VI.1.3. As in [Far18a] one checks that DivdY(S) is the set of “relative Cartier divisors”
of degree d, that is to say Cartier divisors that give degree d Cartier divisors when pulled back via
any geometric point Spa(C,C+)→ S. The same holds for DivdY and DivdX .

In the following we will consider a perfectoid space S equipped with a map f : S → DivdY
(resp. f : S → DivdY , resp. f : S → DivdX). We denote by DS ⊂ YS (resp. DS ⊂ YS , DS ⊂ XS)
the corresponding closed Cartier divisor. Let IS ⊂ OYS (resp. IS ⊂ OYS , IS ⊂ OXS ) be the
corresponding invertible ideal sheaf.

Let us note the following descent result for vector bundles.

Proposition VI.1.4. Sending S as above to the category of vector bundles on DS defines a
v-stack.

Proof. Any vector bundle on DS defines a v-sheaf on PerfS : This reduces formally to the
structure sheaf of DS , which then further reduces to the structure of OYS (resp. OYS , resp. OXS ).
It remains to prove that v-descent of vector bundles is effective. The case of XS reduces to YS as
locally on S, the relevant DS is isomorphic; and clearly YS reduces to YS .

Now assume first that S = Spa(C,C+) for some complete algebraically closed C. Then DS

is given by a finite sum of degree 1 Cartier divisors on YS , and one can reduce by induction to
the case of degree 1 Cartier divisors, where the result is [SW20, Lemma 17.1.8] applied to the
corresponding untilt of S.

On the other hand, assume that T → S is an étale cover with a vector bundle ET on DT

equipped with a descent datum to DS ; we want to prove descent to DS . By the argument of de
Jong–van der Put [dJvdP96, Proposition 3.2.2], cf. [KL15, Proposition 8.2.20], one can reduce to
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the case that T → S is a finite étale cover. Then DT → DS is also finite étale (as YT → YS is),
and the result follows from usual finite étale descent.

Now let S be general and T → S a v-cover with a vector bundle ET on DT equipped with a
descent datum to DS . For any geometric point Spa(C,C+)→ S, one can descent ET×SSpa(C,C+) to
a vector bundle ESpa(C,C+) on DSpa(C,C+). Now we follow the proof of [SW20, Lemma 17.1.8] to

see that one can in fact descend ET in an étale neighborhood of Spa(C,C+), which is enough by the
previous paragraph. We can assume that S and T are affinoid. As ESpa(C,C+) is necessarily free,
also ET×SSpa(C,C+) is free, and by an étale localization we can assume that ET is free. Then the
descent datum is given by some matrix with coefficients in ODT×ST . Moreover, by approximating
the basis coming via pullback from ESpa(C,C+), we can ensure that this matrix has coefficients in

1+[$]O+
YT×ST

(YT×ST,[0,n])/ξ for some n so that DS ⊂ YS,[0,n]; here ξ is a generator of IS . Now one

uses that the v-cohomology group H1
v (S,O(Y[0,n])

+) is almost zero, as follows from almost vanishing
in the perfectoid case, and writing it as a direct summand of the positive structure sheaf of the
base change to OE [π1/p∞ ]∧. Then the argument from [SW20, Lemma 17.1.8] applies, showing that
one can successively improve the basis to produce a basis invariant under the descent datum in the
limit. �

Assuming that DS is affinoid, as is the case locally on S, we let

B+
DivdY

(S) (resp. B+
DivdY

(S), resp. B+
DivdX

(S))

be (the global sections of) the completion of OYS along IS (resp. of OYS along IS , resp. of OXS
along IS), and

BDivd(−)
(S) = B+

Divd(−)

(S)[ 1
IS ].

This defines v-sheaves B+
Divd(−)

⊂ BDivd(−)
over Divd(−) in all three cases. In the case of d = 1, those

rings are the ones that are usually denoted B+
dR, resp. BdR.

Definition VI.1.5. Let Z be an affine scheme over OE. The positive loop space L+
DivdY

Z

(resp. loop space LDivdY
Z) of Z is the v-sheaf over DivdY given by

S 7→ L+
DivdY

(S) = Z(B+
DivdY

(S)) (resp. S 7→ LDivdY
(S) = Z(BDivdY

(S))).

Similarly, if Z is an affine scheme over E, one defines the positive loop space L+
DivdY

Z and L+
DivdX

Z

(resp. loop space LDivdY
Z and LDivdX

Z).

We note that we use affinity of Z to see that these are actually v-sheaves. Now we can define
the local Hecke stacks.

Definition VI.1.6. Let G be a reductive group over OE (resp. over E, resp. over E). The
local Hecke stack HckG,DivdY

(resp. HckG,DivdY
, resp. HckG,DivdX

) is the functor sending an affinoid

perfectoid S → DivdY (resp. S → DivdY , resp. S → DivdX , assuming that DS is affinoid) to the

groupoid of pairs of G-bundles E1, E2 over B+
DivdY

(S) (resp. over B+
DivdY

(S), resp. over B+
DivdX

(S))

together with an isomorphism E1
∼= E2 over BDivdY

(S) (resp. over BDivdY
(S), resp. over BDivdX

(S)).
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Proposition VI.1.7. The local Hecke stack HckG,DivdY
(resp. HckG,DivdY

, resp. HckG,DivdX
) is a

small v-stack. There is a natural isomorphism of étale stacks over DivdY (resp. over DivdY , resp. over

DivdX)
HckG,DivdY

∼= (L+
DivdY

G)\(LDivdY
G)/(L+

DivdY
G)

(resp.
HckG,DivdY

∼= (L+
DivdY

G)\(LDivdY
G)/(L+

DivdY
G),

resp.
HckG,DivdX

∼= (L+
DivdX

G)\(LDivdX
G)/(L+

DivdX
G).)

Proof. The category of vector bundles over B+
DivdY

(resp. B+
DivdY

, B+
DivdX

) satisfies v-descent:

It is enough to check this modulo powers of the ideal IS , where the result is Proposition VI.1.4.
By the Tannakian formalism, it follows that the category of G-bundles also satisfies v-descent, so
one can descend E1, E2. The isomorphism between E1 and E2 over BDivdYS

(resp. over BDivdY
(S),

resp. over BDivdX
(S)) is then given by a section of an affine scheme over the respective ring, which

again satisfies v-descent. Smallness follows from the argument of Proposition III.1.3.

Any G-bundle over B+
DivdY

(S) is étale locally on S trivial. Indeed, if S is a geometric point then

B+
DivdY

(S) is a product of complete discrete valuation rings with algebraically closed residue field,

so that all G-torsors are trivial. In general, note that triviality of the G-torsor over B+
DivdY

(S) is

implied by triviality modulo IS (as one can always lift sections over nilpotent thickenings). Then
the result follows from [GR03, Proposition 5.4.21]. Trivializing E1 and E2 étale locally then directly
produces the given presentations. �

Similarly, one can define the Beilinson–Drinfeld Grassmannians.

Definition VI.1.8. Let G be a reductive group over OE (resp. over E, resp. over E). The
Beilinson–Drinfeld Grassmannian GrG,DivdY

(resp. GrG,DivdY
, resp. GrG,DivdX

) is the functor sending

an affinoid perfectoid S → DivdY (resp. S → DivdY , resp. S → DivdX , assuming again that DS is

affinoid) to the groupoid of G-bundles E over B+
DivdY

(S) (resp. over B+
DivdY

(S), resp. over B+
DivdX

(S))

together with a trivialization of E over BDivdY
(S) (resp. over BDivdY

(S), resp. over BDivdX
(S)).

Proposition VI.1.9. The Beilinson–Drinfeld Grassmannian GrG,DivdY
(resp. GrG,DivdY

, resp. GrG,DivdX
)

is a small v-sheaf. There is a natural isomorphism of étale sheaves over DivdY (resp. over DivdY ,

resp. over DivdX)
GrG,DivdY

∼= (LDivdY
G)/(L+

DivdY
G)

(resp.
GrG,DivdY

∼= (LDivdY
G)/(L+

DivdY
G),

resp.
GrG,DivdX

∼= (LDivdX
G)/(L+

DivdX
G).)

Proof. The proof is identical to the proof of Proposition VI.1.7. �
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The positive loop group L+
DivdY

G admits the natural filtration by closed subgroups

(L+
DivdY

G)≥m ⊂ L+
DivdY

G

defined for all m ≥ 1 by the kernel of

G(B+
DivdY

)→ G(B+
Div1
Y
/ImS );

we refer to these as the principal congruence subgroups of L+
Div1
Y
G. Similar definitions of course

apply also over DivdY and DivdX . For d = 1, one can easily describe the graded pieces of this
filtration (and again the result also holds for Div1

Y and Div1
X).

Proposition VI.1.10. There are natural isomorphisms

L+
Div1
Y
G/(L+

Div1
Y
G)≥1 ∼= G♦

and
(L+

Div1
Y
G)≥m/(L+

Div1
Y
G)≥m+1 ∼= (LieG)♦{m}

where {m} signifies a “Breuil-Kisin twist” by ImS /I
m+1
S .

Proof. The first equality follows directly from the definitions, while the second comes from
the exponential. �

For general d, we still have the following result.

Proposition VI.1.11. For any d and m ≥ 1, the quotient

(L+
DivdY

G)≥m/(L+
DivdY

G)≥m+1

sends a perfectoid space S → DivdY with corresponding Cartier divisor DS ⊂ YS with ideal sheaf IS
to

(LieG⊗OE I
m
S /Im+1

S )(S)

where ImS /I
m+1
S is a line bundle on DS. This is representable in locally spatial diamonds, partially

proper, and cohomologically smooth of `-dimension equal to d times the dimension of G.

Moreover, one can filter

(L+
DivdY

G)≥m/(L+
DivdY

G)≥m+1 ×DivdY
(Div1

Y)d

with subquotients given by twists of

(LieG)♦ ×Div1
Y ,πi

(Div1
Y)d

where πi : (Div1
Y)d → Div1

Y is the projection to the i-th factor.

Proof. The description of the subquotient follows from the exponential sequence again. To
check that it is representable in locally spatial diamonds, partially proper, and cohomologically
smooth, we can pull back to (Div1

Y)d, and then these properties follow from the existence of the

given filtration. For this in turn, note that over (Div1
Y)d, we have d ideal sheaves I1, . . . , Id, and

one can filter ODS by ODS/I1, I1/I1I2, . . ., I1 · · · Id−1/I1 · · · Id, each of which is, after pullback
to an affinoid perfectoid space S, isomorphic to O

S]i
. �
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One can also show that the first quotient is cohomologically smooth, but this is slightly more
subtle.

Proposition VI.1.12. For any d, the quotient

L+
DivdY

G/(L+
DivdY

G)≥1 → DivdY

parametrizes over a perfectoid space S → DivdY maps DS → G. For any quasiprojective smooth
scheme Z over OE, the sheaf

TZ → DivdY

taking a perfectoid S over DivdY to maps DS → Z is representable in locally spatial diamonds, par-

tially proper, and cohomologically smooth over DivdY of `-dimension equal to d times the dimension
of Z; in particular, this applies to this quotient group.

Proof. The description of the quotient group is clear. To analyze TZ , we first note that if Z
is an affine space, then the result holds true, as was proved in the previous proposition. In fact,
after pullback via the quasi-pro-étale surjective morphism (Div1

Y)d → DivdY , there is a sequence of
morphisms

TAn = W1 −→W2 −→ · · · −→Wd+1 = (Div1
Y)d

where, for S affinoid perfectoid with S →Wi+1 giving rise to the untilts (S]1, . . . , S
]
d) ∈ (Div1

Y)d(S),

Wi ×Wi+1 S → S is locally on S isomorphic to An,♦
S]i

.

If Z ′ → Z is any separated étale map between schemes over OE , we claim that TZ′ → TZ is
also separated étale. For this, we analyze the pullback along any S → TZ given by some perfectoid
space S and a map DS → Z. Then D′ = DS ×Z Z ′ → DS is separated étale, and the fibre product
TZ′ ×TZ S parametrizes S′ → S with a lift DS′ → D′ over DS . By Lemma VI.1.13 below, this is
representable by a perfectoid space separated étale over S. In case Z ′ → Z is an open immersion,
it follows that TZ′ → TZ is injective and étale, thus an open immersion.

Now note that for any geometric point of TZ , the corresponding map DS → Z has finite
image, and is thus contained in some open affine subscheme. It follows that TZ admits an open
cover by TZ′ for affine Z ′. If Z is affine, then one sees directly that TZ is representable in locally
spatial diamonds and partially proper by taking a closed immersion into AnOE for some n. For
cohomological smoothness, we observe that we can in fact choose these affines so that they admit
étale maps to AdOE , as again we only need to arrange this at finitely many points at a time. Now

the result follows from the discussion of AdOE and of separated étale maps. �

Lemma VI.1.13. Let S be a perfectoid space with a map S → DivdY giving rise to the Cartier
divisor DS ⊂ YS. Let D′ → DS be a separated étale map. Then there is a separated étale map
S′ → S such that for T → S, maps T → S′ over S are equivalent to lifts DT → D′ over DS.

Proof. By descent of separated étale maps [Sch17a, Proposition 9.7], we can assume that S
is strictly totally disconnected. Exhausting D′ by a rising union of quasicompact subspaces, we can
assume that D′ is quasicompact. In any geometric fibre, D′ is then a disjoint union of open subsets

(as any geometric fibre is, up to nilpotents, a finite disjoint union of untilts Spa(C]i , C
]+
i )), and this

description spreads into a small neighborhood by [Sch17a, Proposition 11.23, Lemma 15.6]. We
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can thus reduce to the case that D′ → DS is an open immersion. Now the lemma follows from the
observation that the map |DS | → |S| is closed. �

VI.2. Schubert varieties

Now we recall the Schubert varieties. Assume in this section that G is a split reductive group
over OE (or over E, but in that case we can always choose a model over OE). Fix a split torus
and Borel T ⊂ B ⊂ G. Note that we can always pass to the situation of split G by making a finite
étale extension of OE resp. E; this way, the results of this section are useful in the general case.
Similarly, the cases of XS and YS reduce easily to the case of YS , so we only do the latter case
explicitly here.

Assume first that d = 1. In that case, for every geometric point S = Spa(C,C+) → Div1
Y =

SpdOE given by an untilt S] = Spa(C], C]+) of S, one has B+
Div1
Y

= B+
dR(C]) and BDiv1

Y
= BdR(C])

for the usual definition of B+
dR and BdR (relative to OE). Recall that B+

dR(C]) is a complete discrete

valuation ring with residue field C], fraction field BdR(C]), and uniformizer ξ. It follows that by
the Cartan decomposition

G(BdR(C])) =
⊔

µ∈X∗(T )+

G(B+
dR(C]))µ(ξ)G(B+

dR(C])),

so as a set

HckG,Div1
Y

(S)/∼= = X∗(T )+,

the dominant cocharacters of T . Recall that on X∗(T )+, we have the dominance order, where
µ ≥ µ′ if µ− µ′ is a sum of positive coroots with Z≥0-coefficients.

Remark VI.2.1. Since we work over Y and do not restrict ourselves to Y , we include the case
of the Cartier divisor π = 0. For this divisor, C] = C and B+

dR(C]) = WOE (C).

Definition VI.2.2. For any µ ∈ X∗(T )+, let

HckG,Div1
Y ,≤µ

⊂ HckG,Div1
Y

be the subfunctor of all those maps S → HckG,Div1
Y

such that at all geometric points S′ = Spa(C,C+)→
S, the corresponding S′-valued point is given by some µ′ ∈ X∗(T )+ with µ′ ≤ µ. Moreover,

GrG,Div1
Y ,≤µ

⊂ GrG,Div1
Y

is the preimage of HckG,Div1
Y ,≤µ

⊂ HckG,Div1
Y

.

Recall the following result.

Proposition VI.2.3 ([SW20, Proposition 20.3.6]). The inclusion

HckG,Div1
Y ,≤µ

⊂ HckG,Div1
Y

is a closed subfunctor and

HckG,Div1
Y

= lim−→
µ

HckG,Div1
Y ,≤µ

;
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thus, similar properties hold for GrG,Div1
Y

. Here, the index category is the partially ordered set of

µ’s under the dominance order, which is a disjoint union (over π1(G)) of filtered partially ordered
sets.

The map GrG,Div1
Y ,≤µ

→ Div1
Y is proper and representable in spatial diamonds.

Proof. It is enough to prove the assertions over GrG,Div1
Y

as this is a v-cover of HckG,Div1
Y

.

Then [SW20, Proposition 20.3.6] gives the results, except for the assertion that

GrG,Div1
Y

= lim−→
µ

GrG,Div1
Y ,≤µ

.

For this, note that the map from right to left is clearly an injection. For surjectivity, note that
for any quasicompact S with a map S → GrG,Div1

Y
, only finitely many strata can be met, as the

meromorphic isomorphism of G-bundles necessarily has bounded poles. This, coupled with the
fact GrG,Div1

Y
→ Div1

Y is separated while GrG,Div1
Y ,≤µ

→ Div1
Y is proper, implies that the map⊔

µ GrG,Div1
Y ,≤µ

→ GrG,Div1
Y

is a v-cover, whence we get the desired surjectivity. �

In particular,

HckG,Div1
Y ,µ

= HckG,Div1
Y ,≤µ

\
⋃
µ′<µ

HckG,Div1
Y ,≤µ′

⊂ HckG,Div1
Y ,≤µ

is an open subfunctor, and similarly its preimage GrG,Div1
Y ,µ
⊂ GrG,Div1

Y ,≤µ
. By the Cartan decom-

position, the space HckG,Div1
Y ,µ

has only one point in every geometric fibre over Div1
Y . This point

can in fact be defined as a global section

[µ] : Div1
Y → GrG,Div1

Y ,µ

given by µ(ξ) ∈ (LDivdY
G)(S) whenever ξ is a local generator of IS ; up to the action of L+

DivdY
G,

this is independent of the choice of ξ.

Proposition VI.2.4. The map

[µ] : Div1
Y → HckG,Div1

Y ,µ

given by µ is a v-cover. This gives an isomorphism

HckG,Div1
Y ,µ
∼= [Div1

Y/(L
+
Div1
Y
G)µ]

where (L+
Div1
Y
G)µ ⊂ L+

Div1
Y
G is the closed subgroup stabilizing [µ] ∈ GrG,Div1

Y
(S). Recalling the

principal congruence subgroups

(L+
Div1
Y
G)≥m ⊂ L+

Div1
Y
G,

we let

(L+
Div1
Y
G)≥mµ = (L+

Div1
Y
G)µ ∩ (L+

Div1
Y
G)≥m ⊂ (L+

Div1
Y
G)µ.

Then

(L+
Div1
Y
G)µ/(L

+
Div1
Y
G)≥1

µ
∼= (P−µ )♦ ⊂ L+

Div1
Y
G/(L+

Div1
Y
G)≥1 ∼= G♦
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and

(L+
Div1
Y
G)≥mµ /(L+

Div1
Y
G)≥m+1

µ
∼= (LieG)♦µ≤m{m} ⊂ (L+

Div1
Y
G)≥m/(L+

Div1
Y
G)≥m+1 ∼= (LieG)♦{m},

where P−µ ⊂ G is the parabolic with Lie algebra (LieG)µ≤0, and (LieG)µ≤m ⊂ LieG is the subspace
on which µ acts via weights ≤ m via the adjoint action.

In particular,

GrG,Div1
Y ,µ
∼= L+

Div1
Y
G/(L+

Div1
Y
G)µ

is cohomologically smooth of `-dimension 〈2ρ, µ〉 over Div1
Y .

Proof. We first handle the case G = GLn with its standard upper-triangular Borel and di-
agonal torus. In that case, µ is given by some sequence k1 ≥ . . . ≥ kn of integers, and GrG,Div1

Y ,µ

parametrizes B+
Div1
Y

-lattices

Ξ ⊂ Bn
Div1
Y

that are of relative position µ at all points. Let S = Spa(R,R+) be an affinoid perfectoid space
with a map S → Div1

Y = SpdOE given by an untilt S] = Spa(R], R]+) over OE of S. By the proof

of [SW20, Proposition 19.4.2], the R]-modules

FiliΞ(R])n = (ξiΞ ∩B+
dR(R])n)/(ξiΞ ∩ ξB+

dR(R])n)

are finite projective of rank equal to the number of occurrences of −i among k1, . . . , kn. Localizing,
we may assume that they are finite free. We may then pick a basis e1, . . . , en of (R])n so that
any FiliΞ(R])n is freely generated by a subset e1, . . . , eni of e1, . . . , en. Lifting eni−1+1, . . . , eni to

elements of fni−1+1, . . . , fni ∈ ξiΞ∩B+
dR(R])n, and setting gni−1+1 = ξ−ifni−1+1, . . ., gni = ξ−ifni , or

equivalently gj = ξkjfj for j = 1, . . . , n, one sees that f1, . . . , fn form a B+
dR(R])-basis of B+

dR(R])n,

and g1, . . . , gn will form a B+
dR(R])-basis of Ξ. Thus, changing basis to the fi’s, one has moved Ξ

to the lattice

ξk1B+
dR(R])⊕ . . .⊕ ξknB+

dR(R]).

This is the lattice corresponding to [µ] ∈ GrGLn,Div1
Y

, showing that the map

Div1
Y → HckGLn,Div1

Y ,µ

is indeed surjective.

Moreover, the stabilizer (L+
Div1
Y

GLn)µ of ξk1B+
dR(R]) ⊕ . . . ⊕ ξknB+

dR(R]) in L+
Div1
Y

GLn is the

set of all matrices A = (Aij) ∈ GLn(B+
Div1
Y

) such that for i < j, Aij ∈ ξki−kjB+
Div1
Y

. This easily

implies the description of

(L+
Div1
Y

GLn)µ/(L
+
Div1
Y

GLn)≥1
µ
∼= (P−µ )♦ ⊂ GL♦n

and

(L+
Div1
Y

GLn)≥mµ /(L+
Div1
Y

GLn)≥m+1
µ

∼= (Lie GLn)♦µ≤m{m} ⊂ (Lie GLn)♦{m}.

The description also implies that (L+
Div1
Y

GLn)µ contains L+
Div1
Y
P−µ and (L+

Div1
Y
Ua)
≥µ(a) for any pos-

itive root a.
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In general, picking a closed immersion of G into GLn (compatible with the torus and the Borel),
one sees that

(L+
Div1
Y
G)µ/(L

+
Div1
Y
G)≥1

µ ⊂ (P−µ )♦ ⊂ G♦

and

(L+
Div1
Y
G)≥mµ /(L+

Div1
Y
G)≥m+1

µ ⊂ (LieG)♦µ≤m{m} ⊂ (LieG)♦{m}

as these subquotients embed into the similar subquotient for GLn. Moreover, one sees that
(L+

Div1
Y
G)µ contains L+

Div1
Y
P−µ and (L+

Div1
Y
Ua)
≥µ(a) for any positive root a. These imply that the two

displayed inclusions are actually equalities.

A consequence of these considerations is that the map

L+
Div1
Y
G/(L+

Div1
Y
G)µ → L+

Div1
Y

GLn /(L
+
Div1
Y

GLn)µ

is a closed immersion (as this happens on all subquotients for the principal congruence filtra-
tion). The target is isomorphic to GrGLn,Div1

Y ,µ
, which contains GrG,Div1

Y ,µ
as a closed subspace (by

[SW20, Proposition 20.3.7]). We see that we get an inclusion

L+
Div1
Y
G/(L+

Div1
Y
G)µ ↪→ GrG,Div1

Y ,µ
⊂ GrGLn,Div1

Y ,µ

of closed subspaces, with the same geometric points: This implies that it is an isomorphism (e.g.,
as the map is then necessarily a closed immersion, thus qcqs, so one can apply [Sch17a, Lemma
12.5]). From here, all statements follow. �

Remark VI.2.5. The map

GrG,Div1
Y ,µ

= L+
Div1
Y
G/(L+

Div1
Y
G)µ → L+

Div1
Y
G/(L+

Div1
Y
G)≥1

µ
∼= (G/P−µ)♦

is the Bia lynicki-Birula map, see [CS17].

Passing to general d, we first note that any geometric fibre of

HckG,DivdY
→ DivdY

is isomorphic to a product of geometric fibres of HckG,Div1
Y
→ Div1

Y . More precisely, if f :

Spa(C,C+)→ DivdY is a geometric point, it is given by an unordered tuple Spa(C]i , C
]+
i ), i ∈ I with

|I| = d, of untilts over OE . Some of these may be equal, so one can partition I into sets I1, . . . , Ir
of equal untilts. Then we really have r untilts, given by maps f1, . . . , fr : Spa(C,C+)→ Div1

Y , and
one has an isomorphism

HckG,DivdY
×DivdY ,f

Spa(C,C+) ∼=
r∏
i=1

HckG,Div1
Y
×Div1

Y ,fi
Spa(C,C+),
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and similarly

L+
DivdY

G×DivdY ,f
Spa(C,C+) ∼=

r∏
i=1

L+
Div1
Y
G×Div1

Y ,fi
Spa(C,C+),

LDivdY
G×DivdY ,f

Spa(C,C+) ∼=
r∏
i=1

LDiv1
Y
G×Div1

Y ,fi
Spa(C,C+),

GrG,DivdY
×DivdY ,f

Spa(C,C+) ∼=
r∏
i=1

GrG,Div1
Y
×Div1

Y ,fi
Spa(C,C+).

Indeed, it suffices to prove this on the level of the positive loop and loop group, where in turn it
follows from a similar decomposition of B+

DivdY
after pullback, which is clear.

In particular, we can define the following version of Schubert varieties.

Definition VI.2.6. For any unordered collection µ• = (µj)j∈J of elements µj ∈ X∗(T )+ with
|J | = d, let

HckG,DivdY ,≤µ•
⊂ HckG,DivdY

be the subfunctor of all those S → HckG,DivdY
such that at all geometric points Spa(C,C+) → S,

then equipped with an (unordered) tuple of d untilts Spa(C]i , C
]+
i ), i ∈ I with |I| = d, there is some

bijection between ψ : I ∼= J such that the relative position of E1 and E2 at Spa(C]i , C
]+
i ) is bounded

by ∑
j∈J,C]

ψ(j)
∼=C]i

µj .

Let

GrG,DivdY ,≤µ•
⊂ GrG,DivdY

be the preimage of HckG,DivdY ,≤µ•
⊂ HckG,DivdY

.

Proposition VI.2.7. The inclusion

HckG,DivdY ,≤µ•
⊂ HckG,DivdY

is a closed subfunctor. The map GrG,DivdY ,≤µ•
→ DivdY is proper, representable in spatial diamonds,

and of finite dim. trg.

Proof. This can be checked after pullback to (Div1
Y)d. Then it follows from [SW20, Propo-

sition 20.5.4]. �

Moreover, we have the following result. Here, we let

(L+
DivdY

G)<m = L+
DivdY

G/(L+
DivdY

G)≥m

be the quotient by the principal congruence subgroup.
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Proposition VI.2.8. For any µ• = (µj)j∈J as above, the action of L+
DivdY

G on GrG,DivdY ,≤µ•

factors over (L+
DivdY

G)<m where m is chosen so that for µ =
∑

j∈J µj, all weights of µ on LieG are

≤ m.

Proof. We need to see that the action of (L+
DivdY

G)≥m is trivial. As everything is separated,

this can be checked on geometric points, where one reduces to d = 1 by a decomposition into
products. Then it follows from Proposition VI.2.4. �

VI.3. Semi-infinite orbits

For this section, we continue to assume that G is split, and again we only spell out the case of
DivdY ; analogous results hold for DivdY and DivdX , and follow easily from the case presented.

Previously, we stratified the affine Grassmanian using the Cartan decomposition, the strata
being affine Schubert cells. We now use the Iwasawa decomposition to obtain another stratification
by semi-infinite orbits.

Fix a cocharacter λ : Gm → T ⊂ G, inducing a Levi Mλ with Lie algebra (LieG)λ=0, a parabolic
Pλ = P+

λ with Lie algebra (LieG)λ≥0 and its unipotent radical Uλ with Lie algebra (LieG)λ>0. We
get an action of the v-sheaf Gm (taking an affinoid perfectoid space S = Spa(R,R+) of characteristic
p to R×) on GrG,DivdY

via the composition of the Teichmüller map

[·] : Gm → L+
DivdY

Gm,

the map
L+

DivdY
λ : L+

DivdY
Gm → L+

DivdY
G

and the action of L+
DivdY

G on GrG,DivdY
. We wish to apply Braden’s theorem in this setup. For this

purpose, we need to verify Hypothesis IV.6.1. To construct the required stratification, we use the
affine Grassmannian

GrPλ,DivdY

associated to the parabolic Pλ. Note that this admits a map

GrPλ,DivdY
→ GrMλ,DivdY

→ GrMλ,DivdY

where Mλ is the Levi quotient of Pλ and Mλ is the maximal torus quotient of Mλ (the cocenter).
Then GrMλ,DivdY

admits a surjection from a disjoint union of copies of (Div1
Y)d parametrized by

X∗(Mλ)d. While there are many identifications between these copies, the sum µ :=
∑d

i=1 µi ∈
X∗(Mλ) defines a well-defined locally constant function

(VI.3.1) GrMλ,DivdY
→ X∗(Mλ).

More precisely, for Spa(C,C+)→ GrMλ,DivdY
a geometric point, let C]1, . . . , C

]
r be the corresponding

distinct untilts with 1 ≤ r ≤ d. Then

GrMλ,DivdY
×DivdY

Spa(C,C+) ∼=
r∏
i=1

GrMλ,Div1
Y
×Div1

Y
Spa(C,C+)
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where the morphism Spa(C,C+) → Div1
Y is given by C]i on the i-th component of the product.

This is identified with
r∏
i=1

X∗(Mλ)× Spa(C,C+)

and the weighted sum morphism X∗(Mλ)r → X∗(Mλ) (weighing each term with the multiplicity

of C]i as an untilt of C in the morphism Spa(C,C+)→ DivdY) defines thus a function

GrMλ,DivdY
×DivdY

Spa(C,C+) −→ X∗(Mλ).

This defines the locally constant function of (VI.3.1).

For ν ∈ X∗(Mλ) let
Grν

Pλ,DivdY
⊂ GrPλ,DivdY

be the corresponding open and closed subset obtained as the preimage.

Proposition VI.3.1. The map

GrPλ,DivdY
=
⊔
ν

Grν
Pλ,DivdY

→ GrG,DivdY

is bijective on geometric points, and it is a locally closed immersion on each Grν
Pλ,DivdY

. The union⋃
ν′≤ν Grν

′

Pλ,DivdY
has closed image in GrG,DivdY

. The action of Gm via L+λ on GrPλ,DivdY
extends to

an action of the monoid A1, and the Gm-fixed points agree with GrMλ,DivdY
.

Applying this proposition also in the case of the inverse Gm-action, and pulling back to a
relative Schubert variety, verifies Hypothesis IV.6.1 in this situation.

Proof. The action of Gm on Pλ via conjugation extends to an action of the monoid A1.
Applying loop spaces to this observation and the observation that the map LDivdY

Pλ → GrPλ,DivdY
is

equivariant for the action of L+
DivdY

Gm on the source via conjugation and on the target via the given

action (as we quotient by the right action of L+
DivdY

Pλ) gives the action of the monoid L+
DivdY

A1,

and thus of A1 via restricting to Teichmüller elements. As everything is separated, this also shows
that Gm-fixed points necessarily lie in the image of LDivdY

Mλ, thus the Gm-fixed points agree with

GrMλ,DivdY
.

Bijectivity of the map
GrPλ,DivdY

→ GrG,DivdY

on geometric points follows from the Iwahori decomposition. It remains to prove that the map is
a locally closed immersion on each Grν

Pλ,DivdY
, and the union over ν ′ ≤ ν is closed. Picking a closed

embedding into GLn, this reduces to the case G = GLn, and by writing any standard parabolic
as an intersection of maximal parabolics, we can assume that Pλ ⊂ GLn is a maximal parabolic.
Passing to a higher exterior power, we can even assume that Pλ ⊂ GLn is the mirabolic, fixing
a one-dimensional quotient of the standard representation. In that case, GrGLn,DivdY

parametrizes

finite projective B+
DivdY

-modules M with an identification M ⊗B+

DivdY

BDivdY
∼= Bn

DivdY
, and GrPλ,DivdY
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parametrizes such M for which the image L ⊂ BDivdY
of M in the quotient Bn

DivdY
→ BDivdY

:

(x1, . . . , xn) 7→ xn is a line bundle over B+
DivdY

. It also suffices to prove the result after pullback

along (Div1
Y)d → DivdY . Now the result follows from the next lemma. �

In the following, the “relative position” of a B+-lattice L ⊂ B to the standard lattice B+ ⊂ B
refers to the image under the map

GrGm,DivdY
→ X∗(Gm) = Z

defined above.

Lemma VI.3.2. Let S = Spa(R,R+) be an affinoid perfectoid space over Fq with untilts S]i =

Spa(R]i , R
]+
i ) over OE for i = 1, . . . , n. Let ξi ∈WOE (R+) generate the kernel of θi : WOE (R+)→

R]+i and let ξ = ξ1 · · · ξn. Let B+ be the ξ-adic completion of WOE (R+)[ 1
[$] ] where $ ∈ R is a

pseudouniformizer, and let B = B+[1
ξ ]. Finally, let

L ⊂ B
be a finitely generated B+-module that is open and bounded, i.e. there is some integer N such that
ξNB+ ⊂ L ⊂ ξ−NB+ ⊂ B.

For any m ∈ Z, let Sm ⊂ S be the subset of those points at which the relative position of L to
B+ ⊂ B is given by m. Then

⋃
m′≥m Sm′ is closed, and if Sm = S then the B+-module L is a line

bundle.

Proof. We can assume that L ⊂ B+ via multiplying by a power of ξ. Let s ∈ S be any
point, corresponding to a map Spa(K(s),K(s)+)→ Sm. Let B+

s be the version of B+ constructed
from (K(s),K(s)+). Then B+

s is a finite product of discrete valuation rings, and the image Ls of
L ⊗B+ B+

s in B+
s is necessarily free of rank 1. Then s ∈ Sm if and only if the length of B+

s /Ls
as B+

s -module is given by m. Localizing on S if necessary, we can find an element l ∈ L ⊂ B
whose image in Ls is a generator. In a neighborhood of s, the element l generates a submodule
L′ = B+ · l ⊂ L whose relative position to B+ is bounded above by m at all points by the next
lemma, and then the relative position of L ⊂ B is also bounded above by m at all points as L′ ⊂ L.
This gives the desired semicontinuity of the stratification (noting that as L is open and bounded,
only finitely many values of m can appear). If Sm = S, then the containment L′ ⊂ L has to be an
equality, and hence L = L′ is generated by l, so L is a line bundle. �

Lemma VI.3.3. In the situation of the previous lemma, let f ∈ B+ be any element, and consider
the map

|S| → Z≥0 ∪ {∞}
sending any point s of S to the length of B+

s /f as B+
s -module. This map is semicontinuous in the

sense that for any m ≥ 0, the locus where it is ≤ m is open.

Proof. For any i = 1, . . . , n, one can look at the closed subspace Si ⊂ S where the image of f

in R]i vanishes. On the open complement of all Si, the function is identically 0. By induction, we

can thus pass to a closed subspace Si ⊂ S, where we can consider the function fi = f
ξi

; the length

function for f is then the length function for fi plus one. This gives the result. �
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Example VI.3.4. Suppose λ ∈ X∗(T ) is regular dominant. Then Pλ = B. We then obtain the
stratification by semi-infinite orbits

Sν = Grν
B,DivdY

for ν ∈ X∗(T ). One has Sν ↪→ GrG,Div1
Y

, a locally closed immersion, and

GrG,Div1
Y

=
⋃

ν∈X∗(T )

Grν
B,DivdY

(disjoint union) at the level of points.

We can now apply Theorem IV.6.5. Here, we also use the opposite parabolic P−λ ⊂ G. If

S → DivdY is a small v-stack, we denote

GrG,S/DivdY
= GrG,DivdY

×DivdY
S

and similarly
HckG,S/DivdY

= HckG,DivdY
×DivdY

S.

For any A ∈ Dét(GrG,S/DivdY
,Λ), we call A bounded if it arises via pushforward from some finite

union GrG,S/DivdY ,≤µ•
⊂ GrG,S/DivdY

. We let

Dét(GrG,S/DivdY
,Λ)bd ⊂ Dét(GrG,S/DivdY

,Λ)

be the corresponding full subcategory.

Corollary VI.3.5. Let S → DivdY be any small v-stack. Consider the diagram

GrPλ,DivdY
q+

xx

p+

&&
GrG,DivdY

GrMλ,DivdY

GrP−λ ,DivdY

q−
ff

p−
88

and denote by q+
S etc. the base change along S → DivdY . Consider the full subcategory

Dét(GrG,S/DivdY
,Λ)Gm-mon,bd ⊂ Dét(GrG,S/DivdY

,Λ)bd

of all A ∈ Dét(GrG,S/DivdY
,Λ) that are bounded and Gm-monodromic in the sense of Definition IV.6.11.

On Dét(GrG,S/DivdY
,Λ)Gm-mon,bd, the natural map

R(p−S )∗R(q−S )! → R(p+
S )!(q

+
S )∗

is an equivalence, inducing a “constant term” functor

CTPλ : Dét(GrG,S/DivdY
,Λ)Gm-mon,bd → Dét(GrMλ,S/DivdY

,Λ)bd.

This functor commutes with any base change in S and preserves the condition of being universally
locally acyclic over S (which is well-defined for bounded A).
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Proof. This follows from Proposition VI.3.1 and Theorem IV.6.5, Proposition IV.6.12 and
Proposition IV.6.14. �

Example VI.3.6 (Follow-up to Example VI.3.4). In the context of Example VI.3.4, suppose
d = 1. Then, GrT,S/Div1

Y
= X∗(T ) × S, and the corresponding semi-infinite orbits are denoted by

Sν ⊂ GrG,Div1
Y

for ν ∈ X∗(T ). Thus,

CTB(A) =
⊕

ν∈X∗(T )

R(pν)!(A|Sν )

with pν : Sν ×Div1
Y
S → S ⊂ GrT,S/Div1

Y
the embedding indexed by ν.

As a final topic here, let us analyze more closely the semi-infinite orbits in the special fibre,
i.e. for the Witt vector affine Grassmannian GrWitt

G (so that (GrWitt
G )♦ ∼= GrG,SpdFq/Div1

Y
), which is

an increasing union of perfections of projective varieties over Fq by [BS17], cf. also [Zhu17]. For
any λ ∈ X∗(T ) as above, we have the semi-infinite orbit

Sλ = LU · [λ] ⊂ GrWitt
G .

Proposition VI.3.7. For any µ ∈ X∗(T )+, the intersection Sλ∩GrWitt
G,≤µ is representable by an

affine scheme.

Proof. Picking a closed immersion G ↪→ GLn, one can reduce to G = GLn. In that case, there
is an ample line bundle L on GrWitt

G constructed in [BS17]. We first claim that the pullback of L to
GrWitt

B is trivial. Indeed, recall that if SpecR→ GrWitt
G corresponds to a lattice Ξ ⊂WOE (R)[ 1

π ]n,
then L is given by det(π−mWOE (R)/Ξ) for any large enough m, using the determinant

det : Perf(WOE (R) on R)→ Pic(R),

which is multiplicative in exact triangles. On GrWitt
B , one has a universal filtration of Ξ com-

patible with the standard filtration on the standard lattice, which induces a similar filtration on
Ξ/πmWOE (R), where all the graded quotients are locally constant (and constant on Sλ). This

means that the line bundle is naturally trivialized over each connected component Sλ of GrWitt
B .

We claim that this section over Sλ extends uniquely to a section over the closed subset
⋃
λ′≤λ Sλ′

that vanishes over the complement of Sλ, showing that the intersection of Sλ with each GrWitt
G,≤µ

must be affine. To see this, by the v-descent results of [BS17], it suffices to check that for any
rank 1 valuation ring V with a map SpecV → GrWitt

G whose generic point SpecK maps into Sλ,
the section of L over SpecK extends to SpecV and is nonzero in the special fibre precisely when
all of SpecV maps into Sλ. Now the filtration

0 = ΞK,0 ⊂ ΞK,1 ⊂ . . . ⊂ ΞK,n = ΞK

with
ΞK,i = ΞK ∩WOE (K)[ 1

π ]i ⊂WOE (K)[ 1
π ]i

has the property that
ΞK,i/ΞK,i−1 = πλiWOE (K)

for the cocharacter λ = (λ1, . . . , λn). Moreover, the filtration by the ΞK,i extends integrally to the
filtration

0 = Ξ0 ⊂ Ξ1 ⊂ . . . ⊂ Ξn = Ξ
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with

Ξi = Ξ ∩WOE (V )[ 1
π ]i ⊂WOE (V )[ 1

π ]i,

which is still a filtration by finite projective WOE (V )-modules by [SW20, Lemma 14.2.3]. The
injection of Ξi/Ξi−1 into WOE (V )[ 1

π ] (projecting to the i-th coordinate) has image contained in

WOE (V )[ 1
π ] ∩ πλiWOE (K) = πλiWOE (V ),

so we get natural injections Ξi/Ξi−1 ↪→ πλiWOE (V ), that are isomorphisms after inverting π or [a]
for a pseudouniformizer a ∈ V . Now the relevant line bundle can be written as the tensor product
of the line bundles given by the determinants of the complexes

πλiWOE (V )/(Ξi/Ξi−1) ∈ Perf(WOE (R) on R).

These line bundles are indeed naturally trivial over K as the perfect complex is acyclic there. Now
this complex is concentrated in degree 0, and is torsion, so admits a filtration by complexes of the
form V/a ∼= [aV ↪→ V ] for pseudouniformizers a ∈ V . The associated line bundle on V is then given
by the alternating tensor product V ⊗V (aV )−1 = a−1V , and the natural section by 1 ∈ a−1V . We
see that the section is indeed integral, and that it is nonzero in the special fibre if and only if all
the above complexes are acyclic, equivalently if Ξi/Ξi−1 → πλiWOE (V ) is an isomorphism. But
this is precisely the condition that all of SpecV maps into Sλ. �

The union
⋃
λ,〈2ρ,λ〉≤d Sλ ⊂ GrWitt

G is closed, thus so is⋃
λ,〈2ρ,λ〉≤d

Sλ ∩GrWitt
G,≤µ ⊂ GrWitt

G,≤µ .

For d = 〈2ρ, µ〉, this is all of GrWitt
G,≤µ, while for d = −〈2ρ, µ〉 it contains only a point, corresponding

to [λ] for λ the antidominant representative of the Weyl orbit of µ. Also, only d of the same parity
as 〈2ρ, µ〉 are relevant. By Proposition VI.3.7, the successive complements⋃

λ,〈2ρ,λ〉≤d

Sλ ∩GrWitt
G,≤µ \

⋃
λ,〈2ρ,λ〉≤d−2

Sλ ∩GrWitt
G,≤µ =

⊔
nu,〈2ρ,λ〉=d

Sλ ∩GrWitt
G,≤µ

are affine. This means that at each step, the dimension can drop by at most 1. However, in 〈2ρ, µ〉
steps, it drops by 〈2ρ, µ〉. We get the following corollary on Mirković–Vilonen cycles, cf. [MV07,
Theorem 3.2], and [GHKR10], [Zhu17, Corollary 2.8] for a different proof based on point counting,
the classical Satake isomorphism, and the Kato-Lusztig formula [Kat82], [Lus83].

Corollary VI.3.8. The scheme Sλ ∩GrWitt
G,≤µ is equidimensional of dimension 〈ρ, µ+ λ〉.

VI.4. Equivariant sheaves

Now we go back to the setting of general reductive groups G over OE (resp. over E if we work
over DivdY or DivdX). As usual, let Λ be some coefficient ring killed by some integer n prime to p.
We want to study Dét(−,Λ) for the local Hecke stack

HckG,DivdY
= L+

DivdY
G\GrG,DivdY
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or its versions for DivdY and DivdX . Neither this nor its bounded versions HckG,DivdY ,≤µ•
(say, when

G is split) is an Artin stack as L+
DivdY

G is not finite-dimensional. However, Proposition VI.2.8 shows

that on the bounded version, the action factors over a finite-dimensional quotient.

First, we observe that on the level of Dét(−,Λ), one can then forget about the rest of the action.

Proposition VI.4.1. Let H be a group small v-sheaf over a small v-sheaf S that admits a
filtration H≥m ⊂ H by closed subgroups such that, v-locally on S, for each m ≥ 1 each quotient
H≥m/H≥m+1 admits a further finite filtration with graded pieces given by (A1

S]
)♦ for some untilt

S] of S (that may vary). Let X be some small v-sheaf over S with an action of H that factors over
H<m = H/H≥m for some m > 0. Then the pullback functor

Dét(H
<m\X,Λ)→ Dét(H\X,Λ)

is an equivalence.

Proof. Both stacks live over the classifying stack [H<m\S] of H<m over S. Applying descent
along S → [H<m\S], one reduces to the case that H<m is trivial. In that case, the map X/H →
X/H<m = X admits a section s : X → X/H, and it is enough to prove that s∗ is fully faithful.
Doing descent once more, it is enough to prove that for any affinoid perfectoid space S′ over S over
which a filtration by A1’s exists, pullback

Dét(S
′,Λ)→ Dét(S

′ ×H,Λ)

is fully faithful. Replace S by S′ and let f : H → S be the projection. We need to see that for all
A ∈ Dét(S,Λ), the map

A→ Rf∗f
∗A

is an isomorphism; doing this for all S, it is enough to check it on global sections, i.e.

RΓ(S,A)→ RΓ(S ×H, f∗A)

is an isomorphism. Using Postnikov towers, we can assume that A ∈ D+
ét(S,Λ). We can write H as

a filtered colimit of subgroups Hj ⊂ H such that each Hj is a successive extension as before, but
now the quotients are balls inside each A1

S]
. In particular, each Hj is a spatial diamond, and it is

enough to prove that
RΓ(S,A)→ RΓ(S ×Hj , f

∗A)

is an isomorphism for all j. Now each Hj = lim←−mH
<m
j is an inverse limit of spatial diamonds, so

by [Sch17a, Proposition 14.9] it is enough to prove that

RΓ(S,A)→ RΓ(S ×H<m
j , f∗nA)

is an isomorphism for all m and j. But this follows easily from each H<m
j being a successive

extension of balls inside A1
S]

. �

Using hyperbolic localization, we can prove the following important conservativity result.

Proposition VI.4.2. Assume that B ⊂ G is a Borel. Let S → DivdY be any small v-sheaf. Let
A ∈ Dét(HckG,S/DivdY

,Λ) with support quasicompact over S. Assume that the hyperbolic localization

CTB(A) = 0 of the pullback of A to GrG,S/DivdY
vanishes. Then A = 0.

The similar assertion holds with DivdY and DivdX in place of DivdY .
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Proof. Note that the formation of CTB commutes with any base change in S, by Corol-
lary VI.3.5. We can thus assume that S = Spa(C,C+) is strictly local. Up to replacing d by a
smaller integer, removing double points, we can assume that the map S → DivdY is given by d

distinct untilts S]i over OE , i = 1, . . . , d. Let E′|E be an extension splitting G, assumed unramified

in our situation where we work over Y. We can then lift all S]i to OE′ , and thereby reduce to the
case of split G. The corresponding geometric fibre

HckG,S/DivdY

has a stratification enumerated by µ1, . . . , µd ∈ X∗(T )+, with strata

[S/(
d∏
i=1

(L+
Div1
Y
G)µi ×Div1

Y
S)].

If A is nonzero, we can find a maximal such stratum on which A is nonzero. Now we apply
Corollary VI.3.5, see Example VI.3.6. One has an isomorphism

S ×X∗(T )d ∼= GrT,S/DivdY
.

Over the copy of S enumerated by the antidominant representatives of (the Weyl group orbits
of) µ1, . . . , µn the functor CTB is the pullback of A to a section of the stratum corresponding to
µ1, . . . , µn ∈ X∗(T )+ (which, as we recall, correspond to a maximal stratum where A is nonzero).
This shows that the restriction of A to a section over this maximal stratum is zero. This gives the
desired contradiction, so A = 0. �

VI.5. Affine flag variety

At a few isolated spots, it will be useful to use the affine flag variety, the main point being that
the Schubert varieties in the affine flag variety admit explicit resolutions of singularities, given by
Demazure resolutions (also known as Bott–Samelson resolutions). It will be enough to appeal to
these in the setting of a split reductive group G, with a reductive model over OE and Borel B ⊂ G
defined over OE , for d = 1, and for a small v-stack S → Div1

Y factoring over SpdOC where C = Ê,
so we restrict attention to this setting.

Consider the base change GA of G to A = WOE (OC[). We have Fontaine’s map θ : A → OC ,
and we can define an “Iwahori” group scheme I → GA, flat over A, whose points in a ker θ-
torsionfree A-algebra R are given those elements g ∈ G(R) such that θ(g) ∈ G(R ⊗A OC) lies in
B(R⊗AOC). Similarly, for any parabolic P ⊂ G containing B, we get a “parahoric” group scheme
P → GA, flat over A, whose points in a ker θ-torsionfree A-algebra R are those g ∈ G(R) such
that θ(g) ∈ P (R ⊗A OC). In particular, this applies to the parabolics Pi corresponding to the
simple reflections si; let Pi be the corresponding parahorics. Still more generally, for any affine
simple reflection si, one can define a parabolic Pi → G flat over A, and such that I → G factors
over Pi. (The construction of these parahoric group schemes over A can be reduced to the case
of WOE (k)[[u]] via a faithfully flat embedding WOE (k)[[u]] ↪→ A along which everything arises via
base change, and then one can appeal to the work of Bruhat–Tits [BT84, Section 3.9.4].)
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Definition VI.5.1. In the situation above, including a small v-stack S over SpdOC , mapping
to Div1

Y , let

F`G,S → S

be the étale quotient LG/L+I, where L+I(R,R+) = I(B+
dR(R])).

Note here that as S lives over SpdOC , any Spa(R,R+) over S comes with an untilt R] over
OC , in which case B+

dR(R]) is an A = WOE (OC)-algebra, so that I(B+
dR(R])) is well-defined.

Proposition VI.5.2. There is a natural projection map

F`G,S → GrG,S/Div1
Y

that is a torsor under (G/B)♦. In particular, it is proper, representable in spatial diamonds, and
cohomologically smooth.

Proof. This follows from the identification L+G/L+I ∼= (G/B)♦, which follows from the
definition, and the similar properties of (G/B)♦ → SpdOE . �

We analyze the stratification of F`G,S into L+I-orbits. Let N(T ) ⊂ T be the normalizer of T ,
and

W̃ = N(T )(BdR(C ′))/T (B+
dR(C ′))

be the affine Weyl group, for any complete algebraically closed field C ′ over OE with a map
C[ → C ′[; this is naturally independent of the choice of C ′. As T (BdR(C ′))/T (B+

dR(C ′)) ∼= X∗(T ),
there is a short exact sequence

0→ X∗(T )→ W̃ →W → 0,

where W is the usual Weyl group of G.

Proposition VI.5.3. The decomposition of F`G,S(C ′) into L+I(C ′)-orbits is given by

F`G,S(C ′) =
⊔
w∈W̃

L+I(C) · w.

Proof. If C ′ lives over E, we can choose an isomorphism BdR(C ′) ∼= C ′((ξ)) and the result
follows from the classical result. If C ′ lives over the residue field Fq of E, this reduces to the
assertion for the Witt vector affine flag variety, for which we refer to [Zhu17]. �

Recall that W̃ acts on X∗(T ). Fixing the alcove a corresponding to the Iwahori group I, one
gets a set of affine simple reflections si as the reflections along the faces of the alcove; these generate

a normal subgroup Waff ⊂ W̃ . Letting Ω ⊂ W̃ denote the stabilizer of the alcove, there is a split
short exact sequence

1→Waff → W̃ → Ω→ 1.

One gets the Bruhat order on W̃ : If wi = wi,0ωi ∈ W̃ = Waff o Ω for i = 1, 2 are two elements,
then w1 ≤ w2 if ω1 = ω2 and in one (hence every) presentation of w2 as a product of affine simple
reflections, w1 is obtained by removing some factors.
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Definition VI.5.4. For w ∈ W̃ , the affine Schubert cell is the subfunctor F`G,w,S ⊂ F`G,S of
all maps Spa(R,R+) → F`G,S that on all geometric points lie in the L+I-orbit of w. The affine
Schubert variety is the subfunctor F`G,≤w,S of all maps Spa(R,R+)→ F`G,S that on all geometric
points lie in the L+I-orbit of w′ for some w′ ≤ w.

Theorem VI.5.5. For each w ∈ W̃ , the subfunctor F`G,≤w,S ⊂ F`G,S is closed, and F`G,≤w,S →
SpdOC is proper and representable in spatial diamonds, of finite dim. trg. The subfunctor F`G,w,S ⊂
F`G,≤w,S is open and dense.

Proof. We will prove the theorem by constructing the Demazure resolution of F`G,≤w,S . Write

w = w0ω ∈ W̃ = Waff o Ω, and fix a decomposition w0 =
∏l
j=1 sij as a product of affine simple

reflections of minimal length, so l(w) = l(w0) = l. We write ẇ for the element w with such a choice
of decomposition.

For each affine simple reflection si, we have a corresponding parahoric group Pi → GA corre-
sponding to the face of a; one has L+Pi/L+I ∼= (P1)♦.

Definition VI.5.6. The Demazure variety corresponding to ẇ is the étale sheaf

Demẇ,S = L+Psi1 ×
L+I L+Psi2 ×

L+I . . .×L+I L+Psil/L
+I → S,

equipped with the left L+I-action and the L+I-equivariant map

Demẇ,S → F`G,S
given by (p1, . . . , pl) 7→ p1 · · · pl · ω.

It is clear from the definition that Demẇ → S is a successive (P1)♦-fibration over S, and in
particular is a spatial diamond, proper over S of finite dim. trg. As F`G,S → S is partially proper,
it follows that the image of Demẇ,S → F`G,S is proper. Moreover, the image can be identified on
geometric points, and we see that Demẇ,S → F`G,≤w,S is surjective, F`G,≤w,S ⊂ F`G,S is closed,
and F`G,≤w,S is proper over S. In particular, F`G,w,S ⊂ F`G,≤w,S is open, as the complement is a

finite union of closed subfunctors. As F`G,S → GrG,S is locally a product with (G/B)♦, it follows
from [SW20, Theorem 19.2.4] that F`G,S ×GrG,S GrG,≤µ,S is a spatial diamond, and thus so is
F`G,≤w,S , as it is a closed subspace for µ large enough.

Also, by checking on geometric points and reducing to the classical case, the map Demẇ,S →
F`G,≤w,S is an isomorphism over F`G,w,S whose preimage is given by

(L+Psi1 \ L
+I)×L+I (L+Psi2 \ L

+I)×L+I . . .×L+I (L+Psil \ L
+I)/L+I.

This implies that F`G,w,S ⊂ F`G,≤w,S is dense, as desired. As usual, a consequence of this discussion
is that the Bruhat order is independent of the choice of ẇ. �

Using Demazure resolutions, one can prove that the standard sheaves on the affine flag variety
are universally locally acyclic.

Proposition VI.5.7. For any w ∈ W̃ , let jw : F`G,w,S ↪→ F`G,≤w,S be the open embedding.
Then jw!Λ ∈ Dét(F`G,≤w,S ,Λ) is universally locally acyclic over S.
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Proof. Using Proposition IV.2.11, it suffices to prove the same for j̃w : F`G,w,S ↪→ Demẇ,S

and j̃w!Λ. Then j̃w!Λ can be resolved in terms of Λ and all iẇ′,ẇ,∗Λ for

iẇ′,ẇ : Demẇ′,S → Demẇ,S

the closed immersion from another Demazure variety, corresponding to a subword of ẇ′ of ẇ; note
that combinatorially, we are dealing with the situation of a normal crossing divisor at the boundary.
By cohomological smoothness of all Demẇ′,S → S and Proposition IV.2.11, the result follows. �

VI.6. ULA sheaves

We will be interested in universally locally acyclic sheaves on the local Hecke stack.

Definition VI.6.1. Let S → DivdY be any small v-stack. An object

A ∈ Dét(HckG,S/DivdY
,Λ)

is universally locally acyclic over S if it is bounded, and its pullback to

GrG,S/DivdY

is universally locally acyclic over S.

Let

DULA
ét (HckG,S/DivdY

,Λ) ⊂ Dét(HckG,S/DivdY
,Λ)

be the corresponding full subcategory.

This definition is a priori not symmetric in the two bundles E1, E2 parametrized by the local
Hecke stack. However, we can check that it actually is.

Proposition VI.6.2. Consider the automorphism

sw : HckG,S/DivdY
∼= HckG,S/DivdY

switching E1 and E2. Then A ∈ Dét(HckG,S/DivdY
,Λ) is universally locally acyclic over S if and only

if sw∗A is universally locally acyclic over S.

Proof. Fix any large enough substack U ⊂ HckG,S/DivdY
quasicompact over S containing the

support of A. Let (LDivdY
G)U ⊂ LDivdY

G be the preimage of U . Universal local acyclicity after

pullback to GrG,DivdY
is equivalent to universal local acyclicity after pullback to

(LDivdY
G)U/(L

+
DivdY

G)≥m

for any m > 0, by Proposition VI.1.11 and Proposition VI.1.12. We need to see that this is
equivalent to universal local acyclicity after pullback to

(L+
DivdY

G)≥m\(LDivdY
G)U

for any m > 0. For this, we note that these two pro-systems in m are pro-isomorphic. By the
next lemma, the transition maps back and forth are also cohomologically smooth, which implies
the desired equivalence. �



208 VI. GEOMETRIC SATAKE

In the following lemma, we call a map f universally locally acyclic if Λ is f -universally locally
acyclic.

Lemma VI.6.3. Let

X4
f3−→ X3

f2−→ X2
f1−→ X1

f0−→ X0

be surjective maps of locally spatial diamonds that are compactifiable and of locally finite dim. trg.
Assume that f0 ◦ f1 and f1 ◦ f2 are cohomologically smooth. Then f0 is universally locally acyclic.
If f1 is universally locally acyclic and f0 ◦ f1 is cohomologically smooth, then f1 is cohomologically
smooth. Thus, if f0 ◦ f1, f1 ◦ f2 and f2 ◦ f3 are cohomologically smooth, then f0 and f1 are
cohomologically smooth.

We would expect that f3 : X4 → X3 should be unnecessary in order for f0 to be cohomologically
smooth.

Proof. We claim that for any map g0 : Y0 → X0, with pullbacks gi : Yi → Xi and f̃i : Yi+1 →
Yi, the natural transformation

f∗0Rg
!
0 → Rg!

1f̃
∗
0

is an isomorphism. Indeed, we have natural maps

f∗2 f
∗
1 f
∗
0Rg

!
0 → f∗2 f

∗
1Rg

!
1f̃
∗
0 → f∗2Rg

!
2f̃
∗
1 f̃
∗
0 → Rg!

3f̃
∗
2 f̃
∗
1 f̃
∗
0

and the composite of any two maps is an isomorphism. By the two-out-of-six-lemma, this implies

that all maps are isomorphisms. By surjectivity of f1 and f2, this implies that f∗0Rg
!
0 → Rg!

1f̃
∗
0

is an isomorphism. Applying this with Y0 = X1 and to the constant sheaf Λ then shows, by the
criterion of Theorem IV.2.23, that Λ is f0-universally locally acyclic.

Now assume that f1 is universally locally acyclic and f0 ◦ f1 is cohomologically smooth, then

R(f0 ◦ f1)!Λ ∼= f∗1Rf
!
0Λ⊗L

Λ Rf
!
1Λ

is invertible. This implies that both tensor factors are invertible, and in particularRf !
1Λ is invertible,

so f1 is cohomologically smooth. For the final statement, we now know that the hypotheses imply
that f0 and f1 are universally locally acyclic, so the displayed equation implies that f0 and f1 are
cohomologically smooth. �

Using the conversativity result Proposition VI.4.2, we can characterize universally locally acyclic
sheaves in terms of their hyperbolic localization. Note that we can always reduce to the case of
quasisplit G by étale localization on S.

Proposition VI.6.4. Let B ⊂ G be a Borel with torus quotient T . Let S be a small v-stack
with a map S → DivdY , and let

A ∈ Dét(HckG,S/DivdY
,Λ)bd.

Then A is universally locally acyclic over S if and only if the hyperbolic localization

CTB(A) ∈ Dét(GrT,S/DivdY
,Λ)bd

is universally locally acyclic over S. This, in turn, is equivalent to the property that

RπT,S,∗CTB(A) ∈ Dét(S,Λ)

is locally constant with perfect fibres.
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Here
πT,S : GrT,S/DivdY

→ S

is the projection.

Proof. The forward direction follows from Corollary VI.3.5 and the ind-properness of πT,S and
Corollary IV.2.12. For the converse direction, we may assume that S is strictly totally disconnected
and G is split. Note that to prove universal local acyclicity of A, it is enough to prove that the
map

p∗1RHom(A,Rπ!
G,SΛ)⊗L

Λ p
∗
2A→ RHom(p∗1A,Rp

!
2A)

is an isomorphism (by Theorem IV.2.23). (Implicitly, we pass here to a bounded part of HckG,DivdY

and replace the quotient by L+
DivdY

G by a finite-dimensional quotient in order to be in the setting

of Artin stacks.) By Proposition VI.4.2 applied to G × G, it is enough to prove this after ap-
plying CTB−×B, where B− is the opposite Borel. Using that hyperbolic localization commutes
with exterior tensor products, and Proposition IV.6.13, this translates exactly into the similar iso-
morphism characterizing universal local acyclicity of CTB(A). The final statement follows from
Proposition IV.2.28. �

In the case of one leg, one can completely characterize universally locally acyclic sheaves.

Proposition VI.6.5. Assume that G is split. Let S → Div1
Y be any small v-stack. Consider

A ∈ Dét(HckG,S/Div1
Y
,Λ)bd.

Then A is universally locally acyclic over S if and only if for all µ ∈ X∗(T )+, the restriction of A
to the section [µ] : S → HckG,S/Div1

Y
is locally constant with perfect fibres in Dét(S,Λ).

If G is not split, a similar characterization holds, by applying the result étale locally to reduce
to the case of split G. Again, there is also the obvious version for Div1

Y and Div1
X .

Proof. First, we prove that if all fibres are locally constant with perfect fibres, then A is
universally locally acyclic. This easily reduces to the case of jµ!Λ where

jµ : HckG,Div1
Y ,µ

↪→ HckG,Div1
Y

is the inclusion of an open Schubert cell, and S = Div1
Y . We can also argue v-locally on Div1

Y and
so base change to the case S = SpdOC . In that case, Proposition VI.5.2 and Proposition IV.2.13
show that it suffices to prove the similar assertion for the affine flag variety, where it follows from
Proposition VI.5.7.

Now for the converse, we argue by induction on the support of A. On a maximal Schubert cell
GrG,S/Div1

Y ,µ
where A is nonzero, its restriction is universally locally acyclic, and as on the Hecke

stack this stratum is the classifying space of a (pro-)cohomologically smooth group, it follows that
the restriction of A along the section [µ] : S → HckG,S/Div1

Y
is locally constant with perfect fibres.

Replacing A by the cone of
jµ!A|Hck

G,S/Div1
Y ,µ
→ A,

the claim follows. �
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In the following corollaries, we no longer assume that G is split.

Corollary VI.6.6. Let S → Div1
Y be any small v-stack. Then

DULA
ét (HckG,S/Div1

Y
,Λ)

is stable under Verdier duality and − ⊗L
Λ −, RHomΛ(−,−) as well as j!j

∗, Rj∗j
∗, j!Rj

!, Rj∗Rj
!

where j is the locally closed immersion of a Schubert cell. Moreover, all of these operations commute
with all pullbacks in S.

Proof. Stability under Verdier duality and compatibility with base change in S follow from
Corollary IV.2.25. For the other assertions, one can reduce to the case that G is split by working
locally on S, where it follows from the previous proposition, and juggling with the six functors, and
the stalkwise characterization of the previous proposition. �

Corollary VI.6.7. For a complete algebraically closed extension C of E with residue field k,
taking S = SpdOC , S = SpdC and S = Spd k, the functors

DULA
ét (HckG,SpdC/Div1

Y
,Λ)← DULA

ét (HckG,SpdOC/Div1
Y
,Λ)→ DULA

ét (HckG,Spd k/Div1
Y
,Λ)

are equivalences.

Proof. Use that the formation of RHom commutes with any base change in S, and that the
category of locally constant sheaves with perfect fibres on any such S is equivalent to the category
of perfect Λ-modules. �

In fact, the previous results extend to the case of general d as long as S → DivdY has image in

the open subset (DivdY) 6= ⊂ DivdY where all untilts are distinct. After passing to a finite étale cover

of S, we can then in fact assume that S maps to (Div1
Y)d6=.

Proposition VI.6.8. Assume that G is split. Let S → (Div1
Y)d6= → DivdY be a small v-stack.

Consider
A ∈ Dét(HckG,S/DivdY

,Λ)bd.

Then A is universally locally acyclic over S if and only if for all µ1, . . . , µd ∈ X∗(T )+, the restriction
of A to the section [µ•] : S → HckG,S/DivdY

is locally constant with perfect fibres in Dét(S,Λ).

The category
DULA

ét (HckG,S/DivdY
,Λ)

is stable under Verdier duality and − ⊗L
Λ −, RHomΛ(−,−) as well as j!j

∗, Rj∗j
∗, j!Rj

!, Rj∗Rj
!

where j is the locally closed immersion of a Schubert cell. Moreover, all of these operations commute
with all pullbacks in S.

Proof. We have the decomposition

HckG,S/DivdY
∼=

d∏
i=1

HckG,S/πiDiv1
Y

where π1, . . . , πd : S → Div1
Y are the d projections, and the product on the right is taken over S. One

can then stratify according to Schubert cells parametrized by tuples µ• = (µ1, . . . , µd) and the above
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arguments imply the result. Here, in the beginning, to see that jµ•!Λ is universally locally acyclic,
one uses that exterior tensor products preserve universal local acyclicity, see Corollary IV.2.25, to
reduce to the case of one leg. �

VI.7. Perverse Sheaves

For any small v-stack S → DivdY , we define a (relative) perverse t-structure on

Dét(HckG,S/DivdY
,Λ)bd.

Definition/Proposition VI.7.1. Let S → DivdY be a small v-stack. There is a unique t-

structure (pD≤0, pD≥0) on Dét(HckG,S/DivdY
,Λ)bd such that

A ∈ pD≤0
ét (HckG,S/DivdY

,Λ)bd

if and only if for all geometric points Spa(C,C+)→ S and open Schubert cells of

HckG,Spa(C,C+)/DivdY
,

parametrized by some µ1, . . . , µr ∈ X∗(T )+ (where r is the number of distinct untilts at Spa(C,C+)→
DivdY), the pullback of A to this open Schubert cell sits in cohomological degrees ≤ −

∑r
i=1〈2ρ, µi〉.

Proof. We note that on any bounded closed subset of Z ⊂ HckG,DivdY
there is a presentable

stable ∞-category Dét(Z ×DivdY
S,Λ) refining the derived category, and the given class of objects is

stable under all colimits and extensions (and is generated by a set of objects). Thus, the existence
and uniqueness of the t-structure follow from [Lur16, Proposition 1.4.4.11]. Moreover, one easily
checks that when enlarging Z, the inclusion functors are t-exact, so these glue to a t-structure in
the direct limit. �

Let

Perv(HckG,S/DivdY
,Λ) ⊂ Dét(HckG,S/DivdY

,Λ)bd

be the heart of the perverse t-structure. On it, pullback to the affine Grassmannian is fully faithful.

Proposition VI.7.2. The pullback functor

Perv(HckG,S/DivdY
,Λ)→ Dét(GrG,S/DivdY

,Λ)bd

is fully faithful.

Moreover, if

A ∈ pD≤0
ét (HckG,S/DivdY

,Λ)bd and B ∈ pD≥0
ét (HckG,S/DivdY

,Λ)bd,

then RHomΛ(A,B) ∈ D≥0
ét (HckG,S/DivdY

,Λ)bd.

Proof. For the final statement, we need to see that if C ∈ D≤−1
ét (HckG,S/DivdY

,Λ)bd, then there

are no nonzero maps C → RHomΛ(A,B); equivalently, there are no nonzero maps C ⊗L
Λ A → B.

But this follows from the simple observation that C ⊗L
Λ A lies in pD≤−1.
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Now using this property of RHomΛ(A,B), descent implies that it is enough to see that if
A,B ∈ Perv(HckG,S/DivdY

,Λ), then any map between their pullbacks to GrG,S/DivdY
is automati-

cally invariant under the action of L+
DivdY

G. This follows from Lemma VI.7.3 applied to a finite-

dimensional approximation of

GrG,S/DivdY
×DivdY

L+
DivdY

G→ GrG,S/DivdY
. �

We used the following lemma on actions of connected groups on étale sheaves.

Lemma VI.7.3. Let f : Y → X be a compactifiable cohomologically smooth map of locally spatial
diamonds with a section s : X → Y . Assume that all geometric fibres of f are connected. Then for
all A ∈ D≥0

ét (X,Λ), the map

H0(Rf∗f
∗A)→ H0(A)

given by evaluation at the section s is an isomorphism.

Proof. Note that

Rf∗f
∗A ∼= RHom(Rf!Rf

!Λ, A)

where Rf!Rf
!Λ sits in cohomological degrees ≤ 0 with H0 ∼= Λ. Indeed, this reduces easily to

the case of discrete Λ, and then to Λ = F`, and can be checked on geometric stalks. But if
S = Spa(C,C+) and i : {s} ↪→ S is the closed point, then i∗Rf!Rf

!F` ∈ D(F`) with dual

RHom(i∗Rf!Rf
!F`,F`) ∼= RΓ(Y, f∗i∗F`)

which sits in degrees ≥ 0 and is equal to F` in degree 0, as the geometric fibres are connected.
Using the section, we get Rf!Rf

!Λ ∼= Λ ⊕ B for some B that sits in cohomological degrees ≤ −1,
and the lemma follows. �

Unfortunately, it is a priori not easy to describe the category pD≥0. It is however possible to
describe it via hyperbolic localization. This also implies that pullbacks in S are t-exact.

Proposition VI.7.4. For any S′ → S → DivdY , pullback along

HckG,S′/DivdY
→ HckG,S/DivdY

is t-exact for the perverse t-structure. Moreover, if G is split, then

CTB : Dét(HckG,S/DivdY
,Λ)bd → Dét(GrT,S/DivdY

,Λ)

satisfies the following exactness property. There is the natural locally constant map GrT,DivdY
→

X∗(T ) measuring the sum of relative positions, and by pairing with 2ρ, we get a locally constant
map deg : GrT,DivdY

→ Z. Then CTB[deg] is t-exact for the perverse t-structure on the source, and

the standard t-structure on the right. As CTB[deg] is conservative, this implies in particular that

A ∈ pD≤0
ét (HckG,S/DivdY

,Λ)bd (resp. A ∈ pD≥0
ét (HckG,S/DivdY

,Λ)bd)

if and only if

CTB(A)[deg] ∈ D≤0
ét (GrT,S/DivdY

,Λ) (resp. CTB(A)[deg] ∈ D≥0
ét (GrT,S/DivdY

,Λ)).
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Proof. To prove t-exactness of pullbacks, we need to see that pullback commutes with t-
truncations. By descent, it is enough to check that this holds v-locally on S; this allows us to
reduce to the case that G is split. It is then enough to prove t-exactness of CTB[deg], as by
conservativity of CTB[deg] (see Proposition VI.4.2) this gives the characterization in terms of the
t-structure in terms of CTB[deg], and the latter characterization is clearly preserved under pullback
(as hyperbolic localization commutes with pullback, see Corollary VI.3.5).

We can assume that S → DivdY lifts to S → (Div1
Y)d. We have a stratification of S into finitely

many strata ia : Sa ↪→ S, obtained by pulling back the partial diagonals of (Div1
Y)d. Accordingly,

we get triangles expressing A as a successive extension of ia!i
∗
aA resp. Ria∗Ri

!
aA; if A ∈ pD≤0

(resp. A ∈ pD≥0), then also all ia!i
∗
aA ∈ pD≤0 (resp. Ria∗Ri

!
aA ∈ pD≥0). This allows us to reduce

to the cases of ia!i
∗
aA and Ria∗Ri

!
aA. As hyperbolic localization commutes with all functors by

Proposition IV.6.12, we can then reduce to the case that S = Sa for some a. Reducing d if
necessary, we can then assume that S maps into the locus of distinct untilts (Div1

Y)d6= ⊂ (Div1
Y)d.

There is then a stratification in terms of open Schubert cells

jµ• : HckG,S/DivdY ,µ•
↪→ HckG,S/DivdY

parametrized by µ• = (µ1, . . . , µd), µi ∈ X∗(T )+. Now A ∈ pD≤0 if and only if all

j∗µ•A ∈ D
≤−dµ•

for dµ• =
∑d

i=1〈2ρ, µi〉, and dually A ∈ pD≥0 if and only if all

Rj!
µ•A ∈ D

≥−dµ• .

Using excision triangles, we can then assume that

A = jµ•!Aµ• , Aµ• ∈ D≤−dµ• (HckG,S/DivdY ,µ•
,Λ)

resp.

A = Rjµ•∗Aµ• , Aµ• ∈ D≥−dµ• (HckG,S/DivdY ,µ•
,Λ).

Moreover, filtering by cohomology sheaves, we can actually assume that Aµ• is concentrated in
degree −dµ• . Recall that

[µ•] : S → HckG,S/DivdY ,µ•

is a v-cover, and the automorphism group of the stratum is an inverse limit of smooth and connected
groups (as follows from Proposition VI.2.4 and the Künneth formula); this implies that for com-
plexes concentrated in one degree, pullback under [µ•]

∗ is fully faithful, cf. Lemma VI.7.3. We can
thus assume that Aµ• comes via pullback from some B ∈ D(S,Λ) concentrated in cohomological
degree −dµ• . Note that at this point, the desired statement (that CTB(A)[deg] sits in the correct
degrees) can be checked after pullback along Spa(C,C+) → S, so we can assume S = Spa(C,C+)
is strictly local, and it is enough to check that CTB(A)[deg] sits in the correct degrees in the fibre
over the closed point of S. This fibre in turn depends only on the restriction of A to the fibre over
the closed point of S, by Proposition IV.6.12. We can thus assume that B is in fact constant. We
can assume Λ = Z/nZ for some n prime to p, and then by dévissage that Λ = F` for some ` 6= p.
One can then further reduce to the case B = F`[dµ• ]. Also, by the Künneth formula, we can then
reduce to the case d = 1. Thus, finally

A = jµ!F`[〈2ρ, µ〉]
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resp.
A = Rjµ∗F`[〈2ρ, µ〉],

and we want to see that CTB(A)[deg] ∈ D≤0 (resp. CTB(A)[deg] ∈ D≥0). By Proposition IV.6.13,
it suffices to handle the first case. Note that A is now universally locally acyclic, and the claim
can be checked in the universal case S = Div1

Y . As GrT,Div1
Y
→ Div1

Y is a disjoint union of X∗(T )

many copies of Div1
Y , and the image is universally locally acyclic, thus locally constant, it is in fact

enough to check the result after pullback to the special fibre S = SpdFq → Div1
Y , where

GrG,SpdFq/Div1
Y
∼= (GrWitt

G )♦.

Using [Sch17a, Section 27], we can now translate all computations to the setting of schemes.
Let λ ∈ X∗(T ) be any element, giving rise to the semi-infinite orbit Sλ ⊂ GrWitt

G , i.e.

Sλ = GrWitt
B ×GrWitt

T
[λ].

By Corollary VI.3.8, the dimension of Sλ ∩GrWitt
G,µ is bounded by 〈ρ, λ+ µ〉. The restriction of

CTB(jµ!F`[〈2ρ, µ〉])

to [λ] ∈ GrWitt
T is given by

RΓc((Sλ ∩GrWitt
G,µ )Fq ,F`)[〈2ρ, µ〉]

and thus sits in degrees ≤ 2〈ρ, λ+ µ〉 − 〈2ρ, µ〉 = 〈2ρ, λ〉, giving the desired bound. �

We note that if d = 1, G is split, and S = Spd k → Div1
Y for k = Fq, then under the full

inclusion
Perv(HckG,Spd k/Div1

Y
,Λ) ⊂ Dét(GrG,Spd k/Div1

Y
,Λ)bd,

the identification GrG,Spd k/Div1
Y
∼= (GrWitt

G,k )♦ and the full embedding

Dét(GrWitt
G,k ,Λ)bd ↪→ Dét(GrG,Spd k/Div1

Y
,Λ)bd

from [Sch17a, Proposition 27.2], the category

Perv(HckG,Spd k/Div1
Y
,Λ)

identifies with the full subcategory

PervL+G(GrWitt
G,k ,Λ) ⊂ Dét(GrWitt

G,k ,Λ)bd

of L+G-equivariant perverse sheaves on GrWitt
G,k ; this was considered by Zhu [Zhu17] and Yu [Yu19].

In particular, this discussion implies the following result that we will need later.

Proposition VI.7.5. Assume that G is split, so that for any µ ∈ X∗(T )+ we have the inclusion

jµ : HckG,Div1
Y ,µ

↪→ HckG,Div1
Y

of the open Schubert cell, of dimension dµ = 〈2ρ, µ〉. Then

pjµ!Λ[dµ] = pH0(jµ!Λ[dµ]), pRjµ∗Λ[dµ] = pH0(Rjµ∗Λ[dµ])

are universally locally acyclic, and their image under CTB[deg] is locally finite free over Λ. Their
formation commutes with any base change in Λ. The natural map

pRjµ∗Λ[dµ](dµ)→ D(pjµ!Λ[dµ])
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is an isomorphism.

Moreover, if Λ is a Z`-algebra, then there is some integer a = a(µ) (independent of Λ) such
that the kernel and cokernel of the map

pH0(jµ!Λ[dµ])→ pH0(Rjµ∗Λ[dµ])

are killed by `a.

We remark that the final statement ultimately makes use of the decomposition theorem (and
thus requires the degeneration to the Witt vector affine Grassmannian).

Proof. Consider A = jµ!Λ[dµ] ∈ pD≤0, which is universally locally acyclic. Then CTB(A)[deg]
sits in degrees ≤ 0, and is universally locally acyclic. Moreover, its degree 0 part is locally finite free
over Λ. Indeed, this can be computed in terms of the top compactly supported cohomology group
of the Mirković–Vilonen cycles Sλ ∩ GrG,µ, which (as for any separated variety) is finite free over
Λ. As CTB(A)[deg] is t-exact, this implies that A′ = pH0(A) has the property that CTB(A′)[deg]
is locally finite free over Λ. Applying Verdier duality and using Proposition IV.6.13, we see that
CTB(D(A))[deg] ∼= D(w∗0CTB(A)[deg]) (where w0 is the longest Weyl group element), which then
sits in cohomological degrees ≥ 0, and is finite free in degree 0, with degree 0 parts also under
Verdier duality. This shows that the natural map

pRjµ∗Λ[dµ](dµ)→ D(pjµ!Λ[dµ])

is an isomorphism. The proof also shows that the formation commutes with any base change in Λ.

For the final statement, we can first of all reduce by universal local acyclicity and Corol-
lary VI.6.7 to the same statement on GrWitt

G,k . By base change, we can assume that Λ = Z/`NZ,
and we can even formally pass to the inverse limit over N , and then invert `; it is thus enough to
show that on the perfectly projective scheme GrWitt

G,k,≤µ, the map

pjµ!Q`[dµ]→ pRjµ∗Q`[dµ]

is an isomorphism. This follows from [Zhu17, Lemma 2.1], cf. also [Gai01, Proposition 1], [Lus83].
Let us recall the argument. It is enough to prove injectivity, as then surjectivity follows by Poincaré
duality (as the two sheaves are Verdier dual, as we have already proved), using that we are working
with field coefficients now. Let jµ!∗Q`[dµ] be the image of the displayed map (i.e., the intersection

complex of GrWitt
G,k,≤µ). It is enough to see that for i : GrWitt

G,k,<µ ↪→ GrWitt
G,k,≤µ the complementary

closed, that i∗jµ!∗Q`[dµ] lies in pD≤−2. Indeed, we have a short exact sequence

0→ i∗K → pjµ!Q`[dµ]→ jµ!∗Q`[dµ]→ 0

for some perverse sheaf K on GrWitt
G,k,<µ; but this gives a map i∗jµ!∗Q`[dµ]→ K[1], so if i∗jµ!∗Q`[dµ] ∈

pD≤−2, then necessarily K = 0.

To prove that i∗jµ!∗Q`[dµ] ∈ pD≤−2, it suffices to prove that all geometric fibres of jµ!∗Q`[dµ]
are concentrated in degrees of the same parity as dµ; indeed, any other stratum in GrG,k,≤µ has
dimension of the same parity as dµ, so the trivial bound i∗jµ!∗Q`[dµ] ∈ pD≤−1 gets amplified by
one on each stratum for parity reasons. This parity claim about the intersection complex can be
checked smooth locally. We have the smooth map F`Witt

G,k → GrWitt
G,k from the Witt vector affine

flag variety, and choosing the element w in the Iwahori-Weyl group corresponding to the generic
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stratum on the preimage of the Schubert cell, we get the smooth map F`Witt
G,k,≤w → GrWitt

G,k,≤µ. It

is thus enough to prove the similar claim about the intersection complex of F`Witt
G,k,≤w. Choosing a

reduced expression ẇ = s1 · · · sr · ω as above, we get the Demazure-Bott-Samuelson resolution

πẇ : DemWitt
ẇ → F`Witt

G,k,≤w.

This has the property that all geometric fibres admit stratifications into affine spaces, cf. [Zhu17,
Section 1.4.2]. In particular, all geometric fibres of Rπẇ∗Q` sit only in even degrees. On the other
hand, by the decomposition theorem, the intersection complex is a direct summand of Rπẇ∗Q`[dµ],
giving the claim. �

As a consequence of Proposition VI.7.4, we see, perhaps surprisingly, that containment in pD≥0

can be checked in geometric fibres over S. (Note however that we are using a relative perverse
t-structure.) This gives a complete justification for calling it a relative perverse t-structure.

Corollary VI.7.6. Let S → DivdY be any small v-stack and let

A ∈ Dét(HckG,S/DivdY
,Λ)bd.

Then A ∈ pD≥0
ét if and only if this holds true after pullback to all strictly local Spa(C,C+)→ S. In

particular,
A ∈ Perv(HckG,S/DivdY

,Λ)

if and only if for all strictly local Spa(C,C+) → S, the pullback of A to HckG,Spa(C,C+)/DivdY
is

perverse.

Also note that over geometric points, we are simply considering the usual perverse t-structure
corresponding to the stratification in terms of open Schubert cells, and then pD≥0 admits its usual
characterization in terms of !-restriction to the open Schubert cells.

Proof. It suffices to check after a cover, as pullback is t-exact. This allows us to reduce
to the case that G is split. But then it follows from the condition in terms of the hyperbolic
localization. �

VI.7.1. The Satake category. We also get the following characterization. The condition
asked here is stronger than perversity.

Proposition VI.7.7. Let S be any small v-stack over DivdY and assume that G is split. Then

A ∈ DULA
ét (HckG,S/DivdY

,Λ)

has the property that A is a flat perverse sheaf (in the sense that A ⊗L
Λ M is perverse for all

Λ-modules M) if and only if
RπT∗CTB(A)[deg] ∈ Dét(S,Λ)

is étale locally on S isomorphic to a finite projective Λ-module in degree 0.

Proof. The functor RπT∗CTB(A)[deg] preserves universally locally acyclic sheaves and hence
takes values in sheaves that are locally constant with perfect fibres. By Proposition VI.7.4 and as
any bounded part of GrT,DivdY

→ DivdY is finite over the base, the condition A ∈ pD≤0 is equivalent
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to RπT∗CTB(A)[deg] ∈ D≤0. The flatness then ensures that this is locally isomorphic to a perfect
complex of Tor-amplitude [0, 0], i.e. a finite projective Λ-module in degree 0. �

In the following definition, S → DivdY is any small v-stack, and G is general.

Definition VI.7.8. Let

Sat(HckG,S/DivdY
,Λ) ⊂ Dét(HckG,S/DivdY

,Λ)

be the full subcategory of all objects that are universally locally acyclic and flat perverse.

This definition has the virtue that it is invariant under switching sw∗. Let us give some examples
of objects in the Satake category, when d = 1. Assume for simplicity that G is split. For any
µ ∈ X∗(T )+, we get the open Schubert cell

jµ : HckG,Div1
Y ,µ

↪→ HckG,Div1
Y

of dimension dµ = 〈2ρ, µ〉. The following proposition gives the analogue of highest weight modules
in the Satake category.

Proposition VI.7.9. The perverse sheaves

pjµ!Λ[dµ] = pH0(jµ!Λ[dµ]), pRjµ∗Λ[dµ] = pH0(Rjµ∗Λ[dµ])

lie in the Satake category Sat(HckG,Div1
Y
,Λ).

Proof. This follows from Proposition VI.7.7 and Proposition VI.7.5. �

Definition/Proposition VI.7.10. The functor

RπG,S∗ : Sat(HckG,S/DivdY
,Λ)→ Dét(S,Λ)

of pullback to GrG,S/DivdY
and pushforward along πG,S : GrG,S/DivdY

→ S takes values in complexes

C ∈ Dét(S,Λ) such that all Hi(C) are local systems of finite projective Λ-modules, and each functor

Hi(RπG,S∗) : Sat(HckG,S/DivdY
,Λ)→ LocSys(S,Λ).

is exact.

Let

FG,S =
⊕
i∈Z
Hi(RπG,S∗) : Sat(HckG,S/DivdY

,Λ)→ LocSys(S,Λ).

The functor FG,S is exact, faithful, and conservative. Moreover, if f : A→ B is a map in

Sat(HckG,S/DivdY
,Λ)

such that kerFG,S(f) is a direct summand of FG,S(A), then f admits a kernel in Sat(HckG,S/DivdY
,Λ);

similarly for cokernels.

The final statement in particular ensures the condition of “existence of coequalizers of FG,S-split
parallel pairs” appearing in the Barr–Beck theorem.
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Remark VI.7.11. It is not clear whether there are natural isomorphisms FG,S(sw∗A) ∼= FG,S(A),
so this fibre functor is (at least a priori) destroying part of the symmetry. What makes this question
slightly delicate is that it is asking for extra structure, and ideally one would like to produce this
structure in a clean way; it is conceivable that one can reduce to geometric points and then use the
affirmative answers we give later under stronger assumptions on S.

Proof. Localize on S to reduce to the case that G is split, and fix a Borel B ⊂ G with
torus T . Using the stratification of GrG into the strata Sν , we get a filtration on RπG,S∗A whose
associated graded is given by

⊕
ν Rpν!A|Sν . Restricting to connected components of GrG and for A

in the Satake category, these are concentrated in degrees of the same parity, so the corresponding
spectral sequence necessarily degenerates. Thus, most of this follows from Proposition VI.7.7 and
Proposition VI.4.2. Faithfulness of FG,S reduces to conservativity and the Barr–Beck type assertion,
so it remains to prove the Barr–Beck type assertion. For this, consider the kernel of f in the category
of all perverse sheaves on HckG,S/DivdY

. We need to see that this is still universally locally acyclic,

and flat perverse. These properties can be checked after applying hyperbolic localization, shift
by deg, and pushforward to S (using various t-exactness properties), where they follow from the
assumption of being a direct summand. �

The Satake category also carries a Verdier duality functor. Again, it is not clear that this
functor commutes naturally with sw∗ (we will settle it later under stronger assumptions on S).

Proposition VI.7.12. The image of the fully faithful functor

Sat(HckG,S/DivdY
,Λ)→ Dét(GrG,S/DivdY

,Λ)

is stable under Verdier duality DGr
G,S/DivdY

/S. The induced functor

D : Sat(HckG,S/DivdY
,Λ)op → Sat(HckG,S/DivdY

,Λ)

is an equivalence, with D2 = id. Moreover, it makes the diagram

Sat(HckG,S/DivdY
,Λ)op D //

FG,S

��

Sat(HckG,S/DivdY
,Λ)

FG,S

��
LocSys(S,Λ)op V 7→V ∗ // LocSys(S,Λ)

commute naturally.

Proof. The Verdier dual D(A) ∈ Dét(GrG,S/DivdY
,Λ) can actually be defined already inDét(HckG,S/DivdY

,Λ)bd

by using Verdier duality along bounded subsets of HckG → [∗/L+G]. It follows from Verdier du-
ality that it commutes with the passage to cohomology, i.e. the functor FG,S , and from this one
can deduce that it is flat perverse and hence lies in the Satake category. Biduality follows from
Corollary IV.2.25. �

Moreover, the formation of the Satake category is compatible with constant term functors. We
define a locally constant function

degP : GrM,DivdY
→ Z
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as the composite of the projection to X∗(M) considered before and the map X∗(M)→ Z given by
pairing with 2ρG − 2ρM .

Proposition VI.7.13. Let P ⊂ G be a parabolic with Levi M . Let S → DivdY be any small
v-stack. Consider the diagram

GrG,S/DivdY

qS←− GrP,S/DivdY

pS−→ GrM,S/DivdY
.

Then the functor RpS!q
∗
S [degP ] defines a functor

CTP,S [degP ] : Sat(HckG,S/DivdY
,Λ)→ Sat(HckM,S/DivdY

,Λ).

These functors are compatible with composition, i.e. if P ′ ⊂ P is a further parabolic with image
Q ⊂M and Levi M ′, then there is a natural equivalence

CTP ′,S [degP ′ ]
∼= CTQ,S [degQ] ◦ CTP,S [degP ] : Sat(HckG,S/DivdY

,Λ)→ Sat(HckM ′,S/DivdY
,Λ)

(and for triple compositions, the obvious diagram commutes).

Proof. Let λ : Gm → G be a cocharacter such that P = Pλ. This induces in particular a Levi
splitting M ↪→ P as the centralizer of λ. We can then divide the diagram

GrG,S/DivdY

qS←− GrP,S/DivdY

pS−→ GrM,S/DivdY
.

by L+
DivdY

M to see that one can refine RpS!q
∗
S into a functor

Dét(HckG,S/DivdY
,Λ)→ Dét(HckM,S/DivdY

,Λ)

via first pulling back to L+
DivdY

M\GrG,S/DivdY
. It is clear that these functors are compatible with

composition.

We want to see that the image is contained in the Satake category. First, by Proposition IV.6.14,
we see that the image is universally locally acyclic. Now the claim follows from Proposition VI.7.7
and the compatibility with composition (used for the Borel B ⊂ P ), after passing to an étale cover
to assume that G is split. �

VI.8. Convolution

For any d and small v-stack S → DivdY , the category

Dét(HckG,S/DivdY
,Λ)

is naturally a monoidal category. Indeed, with all loop groups taken over DivdY , there is a convolution
morphism

HckG,DivdY
×DivdY

HckG,DivdY

a←− L+G\LG×L+G LG/L+G
b−→ L+G\LG/L+G = HckG,DivdY

where the morphism a is an L+G-torsor, and the right morphism is ind-proper (its fibres are the
fibres of GrG,DivdY

→ DivdY). If one denotes by aS and bS the pullbacks along S → DivdY , one can

then define the convolution product ? on

Dét(HckS/DivdY
,Λ)bd
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via A1 ? A2 = RbS∗a
∗
S(A1 � A2) for A1, A2 ∈ Dét(HckS/DivdY

,Λ)bd. It is easy to see that this is

associative by writing out the corresponding convolution diagrams with multiple factors.

In fact, modulo the problem that [DivdY/L
+
DivdY

G] → [DivdY/LDivdY
G] is not representable in lo-

cally spatial diamonds (only ind-representable), the category Dét(HckS/DivdY
,Λ)bd is precisely the

category of endomorphisms of [DivdY/L
+
DivdY

G]×DivdY
S in the 2-category CT for T = [DivdY/LDivdY

G]×DivdY

S. This problem is corrected by passing to bounded sheaves – one can extend the formalism to the
case of maps that are ind-representable in locally spatial diamonds, with closed immersions in the
ind-system, using categories of bounded sheaves as morphisms.

Convolution interacts nicely with the classes of sheaves we have previously singled out. In
particular, it preserves (flat) perverse sheaves; this observation goes back to Lusztig [Lus83].

Proposition VI.8.1. Let A1, A2 ∈ Dét(HckS/DivdY
,Λ)bd.

(i) If A1 and A2 are universally locally acyclic, then A1 ? A2 is universally locally acyclic.

(ii) If A1 and A2 lie in pD≤0, then A1 ? A2 ∈ pD≤0.

(iii) If A1, A2 ∈ Sat(HckG,S/DivdY
,Λ), then also A1 ? A2 ∈ Sat(HckG,S/DivdY

,Λ).

Proof. Part (i) follows from Proposition IV.2.11 and Proposition IV.2.26. For part (ii), we
first make some reductions. Namely, the claim can be checked if S = Spa(C,C+) is strictly local
and G split. Moreover, by a dévissage one can assume that A1 and A2 are the !-extensions of the
constant sheaves on open Schubert cells; in particular, these are universally locally acyclic. By the
Künneth formula one can then reduce to the case d = 1. In that case, we can pass to the universal

case S = Div1
Y . Over (Div1

Y)2, we can consider the moduli space H̃ckG,(Div1
Y )2 of G-bundles E0, E1,

E2 over B+
(Div1

Y )2 together with isomorphisms between E0 and E1 over B+
(Div1

Y )2 [ 1
I1 ] and between E1

and E2 over B+
(Div1

Y )2 [ 1
I2 ], where I1, I2 ⊂ OYS are the ideal sheaves parametrizing the two Cartier

divisors. Away from the diagonal, this is isomorphic to HckG,(Div1
Y )2
6=/Div2

Y
, while over the diagonal

it is isomorphic to

L+
Div1
Y
G\LDiv1

Y
G×

L+

Div1
Y
G
LDiv1

Y
G/L+

Div1
Y
G.

There are two natural projections

p1, p2 : H̃ckG,(Div1
Y )2 → HckG,Div1

Y

keeping track of E0 and E1 resp. E1 and E2, and a projection

m : H̃ckG,(Div1
Y )2 → HckG,(Div1

Y )2/Div2
Y

keeping track of E0 and E2. One can the form B = Rm∗(p
∗
1A1 ⊗L

Λ p
∗
2A2). Recall that we reduced

to the case that A1 and A2 are moreover universally locally acyclic. By Proposition IV.2.11 and
Proposition IV.2.26, one sees that also

B ∈ DULA
ét (HckG,(Div1

Y )2/Div2
Y
,Λ).

Away from the diagonal, this is simply the exterior tensor product of A1 and A2 and in particular
lies in pD≤0. Looking at CTB(B)[deg], we get a universally locally acyclic sheaf on (a bounded
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subset of) GrT,(Div1
Y )2/Div2

Y
whose restriction away from the diagonal lies in degrees ≤ 0. This

implies that the whole sheaf lies in degrees ≤ 0: As any bounded subset of GrT,(Div1
Y )2/Div2

Y
is finite

over (Div1
Y)2, it suffices to check this for the pushforward to (Div1

Y)2. But this pushforward is
locally constant with perfect fibres, and the complement of the diagonal is dense.

Thus, using Proposition VI.7.4, the restriction of B to the diagonal lies in pD≤0. But this
restriction is precisely A1 ? A2, giving the desired result. Finally, part (iii) easily follows from (i),
(ii), and the observation that convolution commutes with Verdier duality. �

VI.8.1. Dualizability. Next, we observe that all objects are dualizable.

Proposition VI.8.2. All objects of the monoidal category Sat(HckG,S/DivdY
,Λ) are (left and

right) dualizable. The right dual of A ∈ Sat(HckG,S/DivdY
,Λ) is given by sw∗D(A) where sw :

HckG,DivdY
∼= HckG,DivdY

is the switching isomorphism (induced by inversion on LDivdY
G).

Remark VI.8.3. In the classical setting, this is asserted without indication of proof in [MV07,
end of Section 11].

Proof. All objects of DULA(HckG,S/DivdY
,Λ) are left dualizable, with right dual given by

sw∗D(A): This follows from Proposition IV.2.24 (modulo the technical nuisance that everything is
only ind-representable here; everything adapts to that setting). Here, sw simply arises by swapping
source and target. Also note that the condition of being universally locally acyclic is invariant
under sw∗ by Proposition VI.6.2, so also using Proposition VI.7.12, the functor sw∗D(A) preserves
the Satake category. �

Remark VI.8.4. Again, we stress that all results above also hold if G is reductive over E, and
we replace DivdY with DivdY or DivdX . Indeed, the case of DivdY follows from the case of DivdY as it
is an open subset, at least if G admits a reductive model over OE . In general, this happens étale
locally, making it possible to reduce to this case. Then the case of DivdX follows from the case of

DivdY as any map S → DivdX can locally be lifted to a map S → DivdY in such a way that the
corresponding pullbacks of the local Hecke stacks are isomorphic.

VI.9. Fusion

Now let G be a reductive group over E. From now on, we fix the base field k = Fq and work
on the category Perfk. For brevity, we define for any finite set I with d = |I| the local Hecke stack

HckIG = HckG,DivdX
×DivdX

(Div1
X)I

and correspondingly
GrIG = GrG,DivdX

×DivdX
(Div1

X)I .

Definition VI.9.1. For any finite set I, the Satake category

SatIG(Λ)

is the category Sat(HckIG,Λ) of all

A ∈ Dét(HckIG,Λ)

that are universally locally acylic and flat perverse over (Div1
X)I .
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By Proposition VI.7.10, we get a (not yet monoidal) fibre functor

F I : SatIG(Λ)→ LocSys((Div1
X)I ,Λ).

The target category LocSys((Div1
X)I ,Λ) is in fact very explicit.

Proposition VI.9.2. The category LocSys((Div1
X)I ,Λ) is naturally equivalent to the category

RepW I
E

(Λ) of continuous representations of W I
E on finite projective Λ-modules.

Proof. This is a consequence of Proposition IV.7.3. �

For any map f : I → J of finite sets, there is a natural monoidal functor SatIG(Λ)→ SatJG(Λ).

Indeed, there is a natural closed immersion HckJG×(Div1
X)J (Div1

X)I ↪→ HckIG, so pull-push along

HckIG ← HckJG×(Div1
X)J (Div1

X)I → HckJG

defines the desired functor. It is easy to see that this functor is compatible with composition of
maps of finite sets. Moreover, the functors SatIG(Λ)→ SatJG(Λ) make the diagram

SatIG(Λ) //

F I

��

SatJG(Λ)

FJ

��
RepW I

E
(Λ) // RepWJ

E
(Λ)

commute naturally, where the lower functor is pullback under W J
E →W I

E .

Actually, the functor I 7→ SatIG(Λ) has further functoriality, given by the fusion product.
Namely, for finite sets I1, . . . , Ik with disjoint union I = I1 t . . . t Ik, there is a natural monoidal
functor

SatI1G (Λ)× . . .× SatIkG (Λ)→ SatIG(Λ),

functorial in I1, . . . , Ik and compatible with composition. To construct this, let

j : (Div1
X)I;I1,...,Ik ⊂ (Div1

X)I

be the open subset where xi 6= xi′ whenever i, i′ ∈ I = I1 t . . . t Ik lie in different Ij ’s, and let

SatI;I1,...,IkG (Λ) ⊂ DULA
ét (HckIG×(Div1

X)I (Div1
X)I;I1,...,Ik ,Λ)

be defined similarly as SatIG(Λ).

Proposition VI.9.3. The restriction functor

j∗ : SatIG(Λ)→ SatI;I1,...,IkG (Λ)

is fully faithful. Similarly,

j∗ : LocSys((Div1
X)I ,Λ)→ LocSys((Div1

X)I;I1,...,Ik ,Λ)

is fully faithful.
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Proof. For the first part, it suffices to prove that for all A ∈ SatIG(Λ), the natural map

A→ pH0(Rj∗j
∗A)

is an isomorphism. Let i : Z ↪→ (Div1
X)I be the complementary closed. It suffices to see that

i∗i
!A ∈ pD≥2. Working locally to reduce to the case G split, and applying the t-exact hyperbolic

localization functor RπT∗CTB[deg], taking values in local systems of finite projective Λ-modules
on SatIG(Λ), this follows from the observation that i∗i

!Λ ∈ D≥2, which follows from the observation
that Z admits a stratification (by partial diagonals) with smooth strata of `-codimension ≥ 1 inside
the smooth (Div1

X)I .

This final argument in fact proves directly the second part. �

On the other hand, over (Div1
X)I;I1,...,Ik , one has

HckIG×(Div1
X)I (Div1

X)I;I1,...,Ik ∼=
k∏
j=1

Hck
Ij
G ×∏

j(Div1
X)Ij

(Div1
X)I;I1,...,Ik ,

so there is a natural monoidal functor

SatI1G (Λ)× . . .× SatIkG (Λ)→ SatI;I1,...,IkG (Λ)

given by exterior product. Actually, recall that when forming symmetric monoidal tensor products,
there are implicit sign rules when commuting factors. We change these here by hand. Namely, note
that each

HckIG = (HckIG)even t (HckIG)odd

decomposes into open and closed subsets given by the even and the odd part; the even part
contains those Schubert varieties for which dµ• =

∑
i〈2ρ, µi〉 is even, while the odd part contains

those for which dµ• is odd. Note that the dominance order can only nontrivially compare elements
with the same parity, so these are really open and closed subsets. Also note that it follows from
Proposition VI.7.4 that for sheaves concentrated on the even (resp. odd) part, the functor F I is
concentrated in even (resp. odd) degrees. Now we impose that when forming the above exterior
product, we introduce a minus sign whenever we commute two sheaves concentrated on the odd
parts. A different way to say it is that there is a natural commutative diagram

SatI1G (Λ)× . . .× SatIkG (Λ) //

(F I1 ,...,F Ik )
��

SatI;I1,...,IkG (Λ)

F I;I1,...,Ik
��

LocSys((Div1
X)I1 ,Λ)× . . .× LocSys((Div1

X)Ik ,Λ)
� // LocSys((Div1

X)I;I1,...,Ik ,Λ)

functorial in I1, . . . , Ik, and under permutations of the sets I1, . . . , Ik. Indeed, note that the functors
F I invoke a shift by deg, which exactly introduces this sign rule. This in fact pins down this choice
of signs by faithfulness of the functors.

Definition/Proposition VI.9.4. The image of

SatI1G (Λ)× . . .× SatIkG (Λ)→ SatI;I1,...,IkG (Λ)

lands in SatIG(Λ) ⊂ SatI;I1,...,IkG (Λ), defining the fusion product

∗ : SatI1G (Λ)× . . .× SatIkG (Λ)→ SatIG(Λ),



224 VI. GEOMETRIC SATAKE

a functor of monoidal categories, functorial in I1, . . . , Ik. It makes the diagram

SatI1G (Λ)× . . .× SatIkG (Λ)
∗ //

(F I1 ,...,F Ik )
��

SatIG(Λ)

F I

��
LocSys((Div1

X)I1 ,Λ)× . . .× LocSys((Div1
X)Ik ,Λ)

� // LocSys((Div1
X)I ,Λ)

commute functorially in I1, . . . , Ik and permutations of I1, . . . , Ik.

Proof. We can define a convolution local Hecke stack

HckI;I1,...,IkG → (Div1
X)I

as follows. It parametrizes G-bundles E0, . . . , Ek over B+
(Div1

X)I
together with isomorphisms of Ej−1

and Ej after inverting Ii for all i ∈ Ij , for j = 1, . . . , k. Here Ii ⊂ OXS is the ideal defining the i-th
Cartier divisor. There are natural projections

pj : HckI;I1,...,IkG → Hck
Ij
G , j = 1, . . . , k

remembering Ej−1 and Ej , and

m : HckI;I1,...,IkG → HckIG

remembering E0 and Ek. Given Aj ∈ Sat
Ij
G (Λ), one can then define

B = Rm∗(p
∗
1A1 ⊗L

Λ . . .⊗L
Λ p
∗
kAk) ∈ Dét(HckIG,Λ).

This is still universally locally acyclic, by Proposition IV.2.11 and Proposition IV.2.26. After
pullback to (Div1

X)I;I1,...,Ik , the map m is an isomorphism, and we simply get the exterior product
of all Ai. Moreover, working locally to reduce to the case G is split, we see that RπT∗CTB(B)[deg]
is a local system of finite projective Λ-modules, as it is locally constant with perfect fibres, and over
the dense open subset (Div1

X)I;I1,...,Ik , the perfect complex is a finite projective module in degree
0. This means that B ∈ SatIG(Λ), as desired. �

In particular, for any finite set I, this structure makes SatIG(Λ) into an E∞-monoid object in
monoidal categories, functorially in I, by using the composite

SatIG(Λ)× . . .× SatIG(Λ)→ SatIt...tIG (Λ)→ SatIG(Λ),

using the functor corresponding to the natural map I t . . . t I → I. Recall that E∞-monoid
structures on monoidal categories are the same as symmetric monoidal category structures refining
the given monoidal category structure. Thus, each SatIG(Λ) has become naturally a symmetric
monoidal category with the fusion product, refining the monoidal convolution product; and every-
thing is functorial in I. Moreover, by the final part of Definition/Proposition VI.9.4, the functor

F I : SatIG(Λ)→ LocSys((Div1
X)I ,Λ) ∼= RepW I

E
(Λ)

is a symmetric monoidal functor, functorially in I.

A consequence of these symmetric monoidal structures are the following natural isomorphisms.
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Corollary VI.9.5. For A ∈ SatIG(Λ), there are natural isomorphisms

F I(sw∗A) ∼= F I(A), D(sw∗A) ∼= sw∗D(A).

Moreover, D is naturally a symmetric monoidal functor, and D◦F I ∼= (F I)∗ as symmetric monoidal
functors.

Proof. By Proposition VI.8.2, all A ∈ SatIG(Λ) are dualizable, with dual sw∗D(A). In a
symmetric monoidal category, this means that there are natural isomorphisms

sw∗Dsw∗D(A) ∼= A.

As both sw∗ and D are self-inverse, this amounts to the commutation of D and sw∗.

Also, as F I is symmetric monoidal, it follows that F I(sw∗D(A)) and F I(A) are naturally dual.
But by Proposition VI.7.12, the dual of F I(A) is also F I(D(A)). Replacing D(A) by A, we find a
natural isomorphism F I(sw∗A) ∼= F I(A).

Finally, it is easy to see that the whole construction of the fusion product is compatible with
Verdier duality, making Verdier duality a symmetric monoidal functor, compatibly with the fibre
functor. �

Moreover, the constant term functors are compatible with the fusion product. More precisely,
given a parabolic P ⊂ G with Levi M , we have the constant term functors

CTI
P [degP ] : SatIG(Λ)→ SatIM (Λ).

Proposition VI.9.6. For any finite set I decomposed into finite sets I = I1 t . . . t Ik, the
diagram

SatI1G (Λ)× . . .× SatIkG (Λ) //

(CT
I1
P [degP ],...,CT

Ik
P [degP ])

��

SatIG(Λ)

CTIP [degP ]
��

SatI1M (Λ)× . . .× SatIkM (Λ) // SatIM (Λ)

commutes functorially in I and permutations of I1, . . . , Ik.

Proof. After passing to the open subset (Div1
X)I;I1,...,Ik , this follows from the Künneth formula,

so Proposition VI.9.3 gives the result. �

In particular, the functor

CTI
P [degP ] : SatIG(Λ)→ SatIM (Λ)

is naturally symmetric monoidal with respect to the fusion product. Moreover, everything is com-
patible with composition, for another parabolic P ′ ⊂ P .
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VI.10. Tannakian reconstruction

Our next goal is to construct a group scheme whose category of representations recovers the
symmetric monoidal category SatIG(Λ). More precisely, we want to use some relative Tannaka
duality over RepW I

E
(Λ). To achieve this, we need the following proposition. Given any finite

and Galois-stable subsets Wi ⊂ X∗(T )+, i ∈ I, closed under the dominance order, we have a
quasicompact closed substack

HckIG,(Wi)i
⊂ HckIG

and we get a corresponding full subcategory

SatIG,(Wi)i
(Λ) ⊂ SatIG(Λ).

Proposition VI.10.1. The functor

F I : SatIG,(Wi)i
(Λ)→ RepW I

E
(Λ)

admits a left adjoint LI(Wi)i
, satisfying the following properties.

(i) There is a natural isomorphism

LI(Wi)i
(V ) ∼= LI(Wi)i

(1)⊗ V, V ∈ RepW I
E

(Λ),

where 1 ∈ RepW I
E

(Λ) is the tensor unit, and we use that SatIG(Λ) is tensored over RepW I
E

(Λ).

(ii) There is a natural isomorphism

LI(Wi)i
(1) ∼= ∗i∈I L{i}Wi

(1)

as the fusion of L
{i}
Wi

(1) ∈ Sat
{i}
G,Wi

(Λ).

(iii) If I = {i} has one element and W = Wi, then the left adjoint is the restriction of the left
adjoint to

F ′ =
⊕
m

Hm(RπG∗) : Perv(Hck
{i}
G,W ,Λ)→ ModWE

(Λ).

Proof. It is enough to find the value LI(Wi)i
(1) satisfying (ii) and (iii). Indeed, then the

formula in (i) defines the left adjoint in general. Assume now that (iii) holds, and let us denote

PWi = L
{i}
Wi

(1). Then for part (ii) we first observe that

F ′I =
⊕
m

Hm(RπG∗) : Perv(HckIG,(Wi)i
,Λ)→ Shvét((Div1

X)I ,Λ)

admits a left adjoint, and this left adjoint evaluated on the unit, P(Wi)i , is generically on (Div1
X)I

given by an exterior tensor product of the corresponding left adjoints for I being a singleton.
Indeed, note that there is a natural map

P(Wi)i → ∗i∈I PWi

adjoint to the section of
F ′I(∗i∈I PWi)

∼=�i∈I F
′(PWi)

given by the exterior tensor product of the classes given by (iii). To check that this is an isomorphism
generically, we can by étale descent reduce to the case that G is split. In that case, one can make
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the left adjoint explicit in terms of the left adjoint to hyperbolic localization. Writing hyperbolic
localization as a composite of !-pullback and ∗-pushforward, this left adjoint is then given in terms
of ∗-pullback and !-pushforward, and the perverse pH0. As generically, everything decomposes
geometrically into a product, it follows from the Künneth formula that the left adjoint commutes
with exterior products. But as any B ∈ SatIG,(Wi)i

(Λ) is equal to pH0(Rj∗j
∗B) as in the discussion

of the fusion product, we see that

F ′I(B) ∼= Hom(P(Wi)i , B) ∼= Hom(P(Wi)i ,
pH0(Rj∗j

∗B))

∼= Hom(P(Wi)i , Rj∗j
∗B)

∼= Hom(j∗P(Wi)i , j
∗B)

∼= Hom(j∗ ∗i∈I PWi , j
∗B)

∼= Hom(∗i∈I PWi ,
pH0(Rj∗j

∗B)) ∼= Hom(∗i∈I PWi , B).

It remains to prove part (iii). We can assume that Λ = Z/`cZ, using base change. Note first
that

F ′ =
⊕
m

Hm(RπG∗) : Perv(Hck
{i}
G,W ,Λ)→ ModWE

(Λ)

admits a left adjoint L′W , by the adjoint functor theorem. We need to see that when evaluated
at the unit, PW := L′W (1) is universally locally acyclic, and flat perverse. By the characterization
of these properties, it suffices to show that F ′(PW ) ∈ ModWE

(Λ) is a representation on a finite
projective Λ-module. This does not depend on the WE-action, so we can check these things after
pullback along SpdC → Div1

X , where C is a completed algebraic closure of E. In particular, we
can assume that G is split. For any open Schubert cell

jµ : HckG,SpdC,µ ↪→ HckG,SpdC,W

for µ ∈W , of dimension dµ = 〈2ρ, µ〉, we can compute

Hom(PW ,
pRjµ∗Λ[dµ]) = F ′(pRjµ∗Λ[dµ]).

By Proposition VI.7.9, this is a finite free Λ-module. Using adjunction, we thus see that

Hom(pj∗µPW ,Λ[dµ])

is a finite free Λ-module for all µ ∈ W . Now pj∗µPW is concentrated on an open Schubert cell
HckG,SpdC,µ, which is covered by SpdC, and concentrated in degree −dµ. It is thus given by the
constant sheaf M [dµ] for some Λ-module M , and we know that Hom(M,Λ) is finite free over Λ.
As we reduced to Λ = Z/`mZ, this implies that M is free.

Now argue by induction on W , and take a maximal element µ ∈W ; let W = W \ {µ}. We get
an exact sequence

0→ K → pjµ!j
∗
µPW → PW → Q→ 0

in Perv(HckG,SpdC ,Λ) supported on W . In fact, we necessarily have Q = PW (as they represent the
same functor), for which we know by induction that F ′(Q) is a finite free Λ-module. We claim that
K = 0. As K lies in the kernel of pjµ!j

∗
µPW → pRjµ∗j

∗
µPW , it follows from Proposition VI.7.5 that

`aK = 0 for some a independent of Λ. Using functoriality of the construction for Λ′ = Z/`a+cZ→
Λ = Z/`cZ and that pjµ!j

∗
µPW lies in the Satake category (so in particular it is flat over Λ), we see

the image of K ′ in K is equal to 0. On the other hand, as all constructions are compatible with base
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change, the map K ′ → K had to be surjective. It follows that K = 0, as desired. (Alternatively,
we could have reduced to Z`-coefficients, in which case pjµ!j

∗
µPW → pRjµ∗j

∗
µPW is injective (as the

kernel is both `-torsion free and killed by `a), implying K = 0 directly.) �

Now we use the following general Tannakian reconstruction result. This is essentially an ax-
iomatization of [MV07, Proposition 11.1]. Recall that a symmetric monoidal category is rigid if
all of its objects are dualizable.

Proposition VI.10.2. Let A be a rigid symmetric monoidal category, and let C be a symmetric
monoidal category with a tensor action of A. Moreover, let

F : C → A
be a symmetric monoidal A-linear conservative functor, such that C admits and F reflects coequaliz-
ers of F -split parallel pairs. Assume that C can be written as a filtered union of full subcategories Ci,
stable under coequalizers of F -split parallel pairs and the A-action, such that F |Ci is representable
by some Xi ∈ C.

Then
H = lim−→

i

F (Xi)
∨ ∈ Ind(A)

admits a natural structure as a bialgebra (with commutative multiplication and associative comul-
tiplication), and C is naturally equivalent to the symmetric monoidal category of representations of
H in A. If C is rigid, then H admits an inverse, i.e. is a Hopf algebra.

Here, the symmetric monoidal category of representations ofH is the category of comodules over
H as a coalgebra, endowed with the symmetric monoidal structure coming from the commutative
multiplication on H.

Proof. Consider Fi = F |Ci : Ci → A. This admits the left adjoint A 7→ A⊗Xi, as

HomCi(A⊗Xi, Y ) ∼= HomCi(Xi, A
∨ ⊗ Y ) ∼= F (A∨ ⊗ Y ) ∼= A∨ ⊗ F (Y ) ∼= Hom(A,F (Y )).

By the Barr–Beck monadicity theorem, it follows that Ci is equivalent to the category of modules
over the monad

A 7→ F (A⊗Xi) ∼= A⊗ F (Xi).

Note that the monad structure here is equivalently turning F (Xi) into an associative algebra
Ai ∈ A, and its category of modules is the category of modules over Ai. Passing to duals, we note
that F (Xi)

∨ is a coalgebra, and its category of comodules is equivalent to the category of modules
over Ai, i.e. to Ci. Now we can take a colimit over i and see that

H = lim−→
i

F (Xi)
∨

is naturally a coalgebra whose category of comodules in A is equivalent to C. The functor is the
following: Any X ∈ C defines the object F (X) ∈ A and for any i large enough so that X ∈ Ci a
map F (X)⊗Xi → X (by adjunction), thus a map

F (X)⊗ F (Xi) ∼= F (F (X)⊗Xi)→ F (X),

and hence dually we get the map

F (X)→ F (X)⊗ F (Xi)
∨ → F (X)⊗H.
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Moreover, for any i, j there is some k such that

Ci ⊗ Cj ⊂ Ck :

indeed, Ci (resp. Cj) is generated by Xi (resp. Xj) under tensors with A and coequalizers of F -split
parallel pairs, so Ci⊗Cj is generated by Xi⊗Xj under these operations. Thus, for any k such that
Xi ⊗Xj ∈ Ck, we actually have Ci ⊗ Cj ⊂ Ck. Let Xk ∈ Ck represent F |Ck ; then we have a natural
map

Xk → Xi ⊗Xj .

Indeed, this is adjoint to a map 1 → F (Xi ⊗Xj) = F (Xi) ⊗ F (Xj), for which we use the tensor
product of the unit maps 1→ F (Xi), 1→ F (Xj). This means that there is a natural map

H⊗H = lim−→
i,j

F (Xi)
∨ ⊗ F (Xj)

∨ ∼= lim−→
i,j

F (Xi ⊗Xj)
∨ → lim−→

k

F (Xk)
∨ = H,

which turns H into a commutative algebra, where the unit is induced by the maps Xi → 1 adjoint
to 1 = F (1) ∈ A (inducing maps 1 = F (1)→ F (Xi)

∨).

It is a matter of unraveling definitions that this makes H into a Hopf algebra whose symmetric
monoidal category of representations in A is exactly C. If C is rigid, one also sees that A admits
an inverse. Indeed, one can write

F (Xi)
∨ ∼= F (X∨i ) ∼=Hom(Xi, X

∨
i ) ∼=Hom(Xi ⊗Xi, 1)

and the switching of the two factors defines the desired involution on A. Here Hom ∈ A denotes
the internal Hom over A. �

We can apply Proposition VI.10.2 to SatIG(Λ) to get Hopf algebras

HIG(Λ) ∈ Ind(RepW I
E

(Λ)).

Proposition VI.10.3. The exterior tensor product

�i∈I :
∏
i∈I

Sat
{i}
G (Λ)→ SatIG(Λ)

induces an isomorphism ⊗
i∈I
H{i}G (Λ) ∼= HIG(Λ).

Proof. This is a consequence of the construction of the Hopf algebras together with Proposi-
tion VI.10.1 (ii), noting that

F I(∗i∈I Ai) ∼=
⊗
i∈I

F (Ai). �

We see that all information about the categories SatIG(Λ) is in the Hopf algebra

HG(Λ) = H{∗}G (Λ) ∈ Ind(RepWE
(Λ)).

Note also that the construction of HG(Λ) is compatible with base change in Λ, so it is enough to
consider the case Λ = Z/nZ with n prime to p. In fact, note that we can formally take the inverse
limit over n to define

SatG(Ẑp) = lim←−
n

SatG(Z/nZ)
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with a fibre functor into

Repcont
WE

(Ẑp) = lim←−
n

RepWE
(Z/nZ),

the category of continuous representations of WE on finite free Ẑp = lim←−n Z/nZ-modules, yielding
a Hopf algebra

HG ∈ Ind(Repcont
WE

(Ẑp)).

This can equivalently be thought of as an affine group scheme G

∧

over Ẑp, with an action of WE

that is in a suitable sense continuous.

VI.11. Identification of the dual group

Our goal is to identify G

∧

with the Langlands dual group of G. Recall that the universal Cartan
of G defines a cocharacter group X∗ as an étale sheaf on Spec(E), i.e. equivalently a finite free
abelian group X∗ together with an action of the absolute Galois group of E, and in particular of
WE . It comes with the WE-stable set of coroots Φ∨ ⊂ X∗, and the subset of positive roots Φ∨+.
Dually, we have the cocharacters X∗ and dominant Weyl chamber (X∗)+ ⊂ X∗, and the roots
Φ ⊂ X∗, containing the positive roots Φ+ ⊂ Φ. These data give rise to a pinned Chevalley group

scheme Ĝ over Ẑp (or already over Z, but we will only consider it over Ẑp) corresponding to the

dual root data (X∗,Φ, X∗,Φ
∨). Being pinned, there are distinguished torus and Borel T̂ ⊂ B̂ ⊂ Ĝ,

isomorphisms X∗(T̂ ) ∼= X∗ under which the positive coroots Φ∨+ correspond to the weights of T̂ on

Lie B̂/Lie T̂ , so

Lie B̂/Lie T̂ =
⊕
a∈Φ∨+

Lie Ûa

for root subgroups Ûa ⊂ B̂. Moreover, one has fixed pinnings

ψa : Lie Ûa ∼= Ẑp

for all simple roots a. We want to endow Ĝ with a WE-action. We already have the WE-action on
(X∗,Φ, X∗,Φ

∨), but we need to twist the action on the pinning. More precisely, let us write the
pinning instead with a Tate twist as

ψa : Lie Ûa ∼= Ẑp(1).

Then WE acts naturally on the pinning as well, and thereby induces an action of WE on Ĝ.

We aim to prove the following theorem. Recall that we write G

∧

for the Tannaka group arising
from the Satake category. Generally, we will denote by −∧various objects defined via the Satake
category, while by −̂ we will denote objects formally defined as Langlands duals.

Theorem VI.11.1. There is a canonical WE-equivariant isomorphism G

∧∼= Ĝ.

We note that the formulation of this theorem is slightly more precise than the formulation in
[MV07], where no canonical isomorphism is given. Also, we handle the case of non-split groups.

Note that in particular, G

∧

only depends on G up to inner automorphisms; this is not clear.
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To prove the theorem, we can work over Z` for some ` 6= p: Indeed, the statement of the
theorem is equivalent to having isomorphisms over Z/nZ for all n prime to p (by the Tannakian
perspective), so the reduction follows from the Chinese remainder theorem.

We will now first prove the theorem when the group G is split; more precisely, if we have fixed a
split torus and Borel T ⊂ B ⊂ G and trivializations of all simple root groups Ua ⊂ B. Afterwards,
we will verify that the isomorphism does not depend on this pinning (essentially, as pinnings vary

algebraically, while automorphisms of Ĝ/Z` form an `-adic group), and finally use Galois descent
to deduce the result in general.

Note first that if G = T is a torus, then GrT,Div1
X

∼= X∗(T ) × Div1
X , and it is clear that SatT

is just the category of X∗(T )-graded objects in Repcont
WE

(Z`). This implies that T

∧∼= T̂ is the dual

torus with X∗(T̂ ) = X∗(T ).

We have the symmetric monoidal constant term functor

CTB[deg] : SatG → SatT ,

and it commutes with the fibre functors by the identity
⊕

iHi(RπG∗) ∼= H0(RπT∗CTB[deg]). This

gives rise to a WE-equivariant map T̂ = T

∧

→ G

∧

. Using the objects Aµ = pjµ!Z`, whose µ-weight

space is 1-dimensional, we see that the map T

∧

→ G

∧

must be a closed immersion.

We have the following information about the generic fibre G

∧

Q` , following [MV07, Section 7].
First, it follows from Proposition VI.7.5 that its category of representations SatG(Q`) is given by

SatG(Q`) ∼=
⊕
µ

Repcont
WE

(Q`)⊗Aµ.

(Here

SatG(Q`) = SatG(Z`)[1
` ],

where SatG(Z`) = lim←−m SatG(Z/`mZ).) The category of representations of G

∧

Q` as an abstract group
scheme is then given by

SatG(Q`)⊗Repcont
WE

(Q`) Vect(Q`) ∼=
⊕
µ

Vect(Q`)⊗Aµ,

and in particular is semisimple. As Aµ ∗Aµ′ contains Aµ+µ′ as a direct summand and X+
∗ is finitely

generated as a monoid, we see that SatG(Q`) has a finite number of tensor generators. This implies

that G

∧

Q` is of finite type by [DM82, Proposition 2.20]. Moreover, it is connected as SatG(Q`)
does not have nontrivial finite tensor subcategories (as for any Aµ with µ 6= 0, the tensor category
generated by Aµ contains all Anµ), cf. [DM82, Corollary 2.22]. As SatG(Q`) is semisimple, we even

know that G

∧

Q` is reductive by [DM82, Proposition 2.23]. For any simple object Aµ, the weights

of Aµ on T̂Q` → G

∧

Q` are contained in the set of all λ ∈ X∗ = X∗(T̂ ) such that the dominant
representative of λ is bounded by µ in the dominance order, and contains µ (with weight 1). This

implies that T

∧

Q` → G

∧

Q` is a maximal torus of G

∧

Q` . We can also define a subgroup B

∧

⊂ G

∧

as the
stabilizer of the filtration associated to the cohomological grading of F (stabilizing the filtration⊕

m≤iR
mπG∗ on the fibre functor F =

⊕
mR

mπG∗); then B

∧

Q` ⊂ G

∧

Q` is a Borel.
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Now we analyze the case G = PGL2. In that case, we have the minuscule cocharacter µ : Gm →
G giving rise to the minuscule Schubert cell GrG,Div1

X ,µ
∼= P1

Div1
X

. Then

F (Aµ) = H0(P1)⊕H2(P1) = Z` ⊕ Z`(−1)

as WE-representation. This is a representation of G

∧

, giving a natural map G

∧

→ GL(Z` ⊕ Z`(−1)).

We claim that this is a closed immersion, with image given by SL(Z` ⊕ Z`(−1)). Note that T

∧

acts

on Z`⊕Z`(−1) with weight ±1, and in particular lands inside SL(Z`⊕Z`(−1)). As G

∧

Q` is reductive
of rank 1, it necessarily follows that

G

∧

Q` → SL(Q` ⊕Q`(−1))

is an isomorphism, and integrally we get a map G

∧

→ SL(Z` ⊕ Z`(−1)). This gives a map G

∧

F` →
SL(F` ⊕ F`(−1)). Let H ⊂ SL(F` ⊕ F`(−1)) be the closed subgroup that is the image of G

∧

F` . Note

that the irreducible representations of G

∧

F` (as an abstract group) are in bijection with dominant
cocharacters, corresponding to the simple objects Bµ = jµ!∗F` on GrG,SpdC ; each Bµ has a highest
weight vector given by weight µ. It follows that H satisfies the hypothesis of the next lemma.

Lemma VI.11.2. Let H be a closed subgroup of SL2 /F` containing the diagonal torus such that
its set of irreducible representations injects into Z≥0 via consideration of highest weight vectors.
Then H = SL2.

Proof. Using a power of Frobenius, one can assume that H is reduced, and thus smooth. By
[DM82, Corollary 2.22] and consideration of highest weight vectors, one also sees that H must
be connected. Then H is either the torus, or a Borel, or SL2. The first cases lead to too many
irreducible representations. �

Thus, the map G

∧

F` → SL(F` ⊕ F`(−1)) is surjective. Together with the isomorphism on the

generic fibre, this implies formally that G

∧

→ SL(Z` ⊕ Z`(−1)) is an isomorphism by the following
lemma (used on the level of the corresponding Hopf algebras).

Lemma VI.11.3. Let f : M → N be a map of flat Z`-modules such that M/`→ N/` is injective
and M [1

` ]→ N [1
` ] is an isomorphism. Then f is an isomorphism.

Proof. As M is flat, f : M → N is injective; moreover, for any x ∈ N there is some minimal k
such that `kn = f(m) lies in the image of M . But if k > 0, then m lies in the kernel of M/`→ N/`,
a contradiction. �

The subgroup B

∧

⊂ G

∧

is then given by the Borel stabilizing the line Z` ⊂ Z` ⊕ Z`(−1). Its
unipotent radical is the space of maps Z`(−1)→ Z`, which is canonically isomorphic to Z`(1). This
finishes the proof of the theorem for G = PGL2.

If now G is of rank 1, we get the map G→ Gad
∼= PGL2, where the isomorphism Gad

∼= PGL2

is uniquely determined by our choice of pinning. The map

GrG,Div1
X
→ GrGad,Div1

X

is an isomorphism when restricted to each connected component, inducing an isomorphism

GrG,Div1
X

∼= π1(G)×π1(Gad) GrGad,Div1
X
.
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Here of course π1(Gad) ∼= Z/2Z. This implies that SatG can be equivalently described as the
category of A ∈ SatGad

together with a refinement of the Z/2Z-grading to a π1(G)-grading. This

implies that G

∧

= Gad

∧

×µ2 Z

∧

where Z

∧

is the split torus with character group π1(G). Thus, one gets

an isomorphism G

∧∼= Ĝ also in this case, including the isomorphism ψa on the root group.

Coming back to a general split group G, let a be any simple coroot. We now look at the
corresponding minimal Levi subgroups Ma ⊂ G properly containing T , with parabolic Pa ⊂ B. We
have the symmetric monoidal constant term functor

CTPa [degPa ] : SatG → SatMa ,

commuting with the functors to SatT . This induces a map Ma

∧

→ G

∧

, commuting with the inclusion

of T

∧

into both. In particular, passing to Lie algebras, we see that a ∈ X∗ = X∗(T

∧

) is a root of G

∧

,

and a∨ ∈ X∗ = X∗(T

∧

) is a coroot of G

∧

. Moreover, if sa ∈W is the corresponding simple reflection

for G, we also see that sa ∈W

∧

, the Weyl group of the reductive group G

∧

Q` . Using this information

for all a, we see that W ⊂W

∧

, and that under X∗ = X∗(T

∧

) resp. X∗ = X∗(T

∧

), we have

Φ∨ ⊂ Φ(G

∧

Q`), Φ ⊂ Φ∨(G

∧

Q`).

Moreover, for any irreducible object Aµ ∈ SatG(Q`), the weights of Aµ are contained in the convex
hull of the W -orbit of µ. This implies that these inclusions must be isomorphisms — indeed, the

directions of the edges emanating from µ, for µ regular, correspond to Φ(G

∧

Q`). Together with the
isomorphisms on simple root groups, we get a unique isomorphism

G
∧

Q`
∼= ĜQ` .

Under this isomorphism, the map M̂a
∼= Ma

∧

→ G

∧

is compatible with the map M̂a → Ĝ induced by
Langlands duality. It follows that

G

∧

(Z̆`) ⊂ G

∧

(Q̆`) ∼= Ĝ(Q̆`)

is a subgroup containing all M̂a(Z̆`). But these generate Ĝ(Z̆`), so Ĝ(Z̆`) ⊂ G

∧

(Z̆`). Now pick a

representation G

∧

→ GLN (given by some object of SatG) that is a closed immersion over Q`. By

the inclusion Ĝ(Z̆`) ⊂ G

∧

(Z̆`), we see that the map ĜQ`
∼= G

∧

Q` → GLN extends to a map Ĝ→ GLN .

By Lemma VI.11.4, this is necessarily a closed immersion, at least if ` 6= 2 or Ĝ is simply connected.

We can always reduce to the case that Ĝ is simply connected by arguing with the adjoint group Gad

(whose dual group Ĝad is simply connected) first, as in the discussion of rank-1-groups above. It

then follows that G

∧

→ GLN factors over Ĝ ↪→ GLN , giving a map G

∧

→ Ĝ that is an isomorphism

in the generic fibre, and surjective in the special fibre (as any F`-point of Ĝ lifts to Z̆`, and then to

G

∧

(Z̆`)), and hence an isomorphism by Lemma VI.11.3.

Lemma VI.11.4 ([PY06, Corollary 5.2]). Let H be a reductive group over Z`, H ′ some affine
group scheme of finite type over Z`, and let ρ : H → H ′ be a homomorphism that is a closed
immersion in the generic fibre. Assume that ` 6= 2, or that no almost simple factor of the derived
group of HQ`

is isomorphic to SO2n+1 (e.g., the derived group of H is simply connected). Then ρ

is a closed immersion.

This finishes the proof of Theorem VI.11.1 when G is split, and endowed with a splitting. Now
we prove independence of the choice of splitting. For this, we note that in fact the cohomological
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grading on F alone determines T

∧

⊂ G

∧

as its stabilizer, and B

∧

⊂ G

∧

as the stabilizer of the associated
filtration. It remains to check that the isomorphisms

ψa : Lie Ûa ∼= Z`(1)

are independent of the choices. For this, consider the flag variety F` over E, parametrizing Borels
B ⊂ G. Each such Borel comes with its torus T , which is the universal Cartan and thus descends to
E. Equivalently, note that tori over F` are equivalent to étale Z-local systems, and as F` is simply
connected all of them come via pullback from E; this then gives the so-called universal Cartan T
over E, which is split as G is split. Let a be a simple coroot of G. At each point of F`, we get

the corresponding parabolic Pa ⊃ B, with Levi Ma. Let F̃`a → F` parametrize pinnings of Ma,

i.e. isomorphisms of Ua with the additive group; this is a Gm-torsor. Over F̃`a, the universal group
Ma is constant, with adjoint group Ma,ad

∼= PGL2. Consider

S = F̃`
♦
/ϕZ → SpdE/ϕZ = Div1

X .

Applying the constant term functor for Pa over S gives a symmetric monoidal functor

Sat(HckG,Div1
X
×Div1

X
S,Z`)→ Sat(HckMa,Div1

X
×Div1

X
S,Z`);

here, being symmetric monoidal is verified by repeating the construction of the fusion product after
the smooth pullback S → Div1

X . Both sides admit fibre functors to LocSys(S,Z`); this contains
LocSys(Div1

X ,Z`) = Repcont
WE

(Z`) fully faithfully, and we can consider the symmetric monoidal full
subcategories on which the fibre functors land in this subcategory. As the constant term functor is
compatible with fibre functors, it induces a symmetric monoidal functor on these full subcategories,
which are then easily seen to be equivalent to SatG and SatM (reconstructing both starting from
Schubert cells). This shows that the constant term functor SatG → SatMa is naturally independent
of the choice of Borel, reducing us to the rank 1 case. In the rank 1 case, we can then further
reduce to PGL2, and we have the minuscule Schubert variety, which is the flag variety F` ∼= P1 of
G ∼= PGL2. There are canonical isomorphisms

H0(F`) = Z`, H2(F`) = Z`(−1),

and Ûa is canonically isomorphic to Hom(H2(F`), H0(F`)) ∼= Z`(1).

Thus, we have shown that if G is split, the isomorphism G

∧∼= Ĝ is canonical. Finally, the
general case follows by Galois descent from a finite Galois extension E′|E splitting G.

VI.12. Cartan involution

Any Chevalley group scheme Ĝ comes with the Cartan involution, induced by the map on
root data which on X∗ is given by µ 7→ −w0(µ) where w0 is the longest Weyl group element.
Under the geometric Satake equivalence, this has a geometric interpretation: Namely, it essentially
corresponds to the switching equivalence sw∗. Note that one can upgrade

sw∗ : SatIG(Λ)→ SatIG(Λ)

to a symmetric monoidal functor by writing it as the composition of Verdier duality and the
duality functor sw∗D in SatIG(Λ); moreover, this symmetric monoidal functor commutes with the
fibre functor F I (as symmetric monoidal functors), cf. Corollary VI.9.5. Thus, sw∗ induces an

automorphism of the Tannaka group G

∧

, commuting with the WE-action.
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Proposition VI.12.1. Under the isomorphism G

∧∼= Ĝ with the dual group, the isomorphism

sw∗ is given by the Cartan involution, up to conjugation by ρ̂(−1) ∈ Ĝad(Z`).

Remark VI.12.2. There is a different construction of the commutativity constraint on SatG,
not employing the fusion product, that relies on the Cartan involution — this is essentially a
categorical version of the classical Gelfand trick to prove commutativity of the Satake algebra.
For the Satake category, this construction was first proposed by Ginzburg [Gin90], who however
overlooked the sign ρ̂(−1). Zhu’s proof [Zhu17] of the geometric Satake equivalence for GrWitt

G

used this approach, taking careful control of the signs; these are related to the work of Lusztig–Yun
[LY13]. We remark that Zhu gives a different construction of the commutation of sw∗ with the fibre
functor, using instead that the two actions (on left and right) of H∗([∗/L+G],Q`) on H∗(HckG, A)
agree for A ∈ SatG(Q`).

Proof. We note that this is really a proposition: The statement only asks about the com-
mutation of a certain diagram, not some extra structure. For the statement, we can also forget
about the WE-action. In particular, enlarging E, we can assume that G is split. As in the proof

of Theorem VI.11.1, one can reduce to the case that G is adjoint, so Ĝ is semisimple and simply
connected. We also fix a pinning of G.

Now, being pinned, G has its own Cartan involution θ : G→ G, and by the functoriality of all
constructions under isomorphisms, the induced automorphism of SatG corresponds to the Cartan

involution of Ĝ. In other words, we need to see that the automorphism θ∗sw∗ : SatG → SatG (which

is symmetric monoidal, and commutes with the fibre functors) induces conjugation by ρ

∧

(−1) on G

∧

.

We claim that the natural cohomological grading on the fibre functor F : SatG(Λ)→ RepWE
(Λ)

is compatible with sw∗. In other words, we need to see that in Corollary VI.9.5, the isomorphism
F (A) ∼= F (sw∗A) is compatible with the grading, which follows from its construction. In particular,

it follows that the automorphism of G

∧

restricts to the identity on the corresponding cocharacter

2ρ

∧

: Gm ⊂ G

∧

. This implies already that it preserves T

∧

and the Borel B

∧

(as the centralizer and

dynamical parabolic). Any such automorphism of G

∧

is given by conjugation by some element

s ∈ T

∧

ad ⊂ G

∧

ad. We need to see that s = ρ

∧

(−1). Equivalently, the automorphism acts by negation

on any simple root space U

∧

a of G

∧

.

We claim that the symmetric monoidal automorphism θ∗sw∗ : SatG → SatG (commuting with
the fibre functor) is compatible with the constant term functors CTP , for any standard parabolic
P ⊃ B, and the similar functor on Levi subgroups. Let θ′ be the composition of θ with conjugation
by w0. We know, by the proof of Theorem VI.11.1, that any inner automorphism of G induces the

identity on G

∧

. Thus, it suffices to prove the similar claim for θ′∗sw∗ : SatG → SatG. Let P− ⊂ G
be the opposite parabolic of P ; then θ′(P−) = P , and the induced automorphism of the Levi M
is given by the corresponding automorphism θ′M defined similarly as θ′. Now Proposition IV.6.13
and the fusion definition of the symmetric monoidal structure (along with the definition of sw∗ as
the composite of Verdier duality and internal duality) give the claim.

These observations reduce us to the case G = PGL2. We note that in this case the Cartan
involution is the identity, so we can ignore θ. We have the minuscule Schubert variety iµ : GrG,µ =

P1 ⊂ GrG and the sheaf A = iµ∗Z`[1](1
2) ∈ SatG (assuming without loss of generality

√
q ∈ Λ to
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introduce a half-Tate twist), and we know G

∧

= SL(F (A)), where

F (A) = F (A)1 ⊕ F (A)−1 = H0(P1)(1
2)⊕H2(P1)(1

2).

The image of A under sw∗ is isomorphic to A itself; fix an isomorphism. Then on the one hand

F (A) ∼= F (sw∗A)

as the functor sw∗ : SatG → SatG commutes with the fibre functor F , while on the other hand

F (sw∗A) ∼= F (A)

as the two objects are isomorphic. We need to see that the composite isomorphism is given by the
diagonal action of (u,−u) for some u ∈ Z×` (this claim is independent of the chosen isomorphism
between A and sw∗A). We already know that the isomorphism is graded, so it is given by diagonal
multiplication by (u1, u2) for some units u1, u2 ∈ Z×` .

Recall that the first isomorphism is constructed as the composite of Verdier duality and internal
duality in SatG. Now the Verdier dual of A is A itself (because of the half-Tate twist), and the
Verdier duality pairing

F (A)⊗ F (A)→ Z`
is the tautological pairing; in particular, restricted to F (A)−1⊗F (A)1 and F (A)1⊗F (A)−1 it is the
same map, up to the natural commutativity constraint on Z`-modules. It follows that the internal
dual A∨ of A is also isomorphic to A, and picking such an identification we need to understand the
induced pairing

F (A)⊗ F (A)→ F (1) = Z`,
and show that when restricted to F (A)−1⊗F (A)1 and F (A)1⊗F (A)−1, the two induced maps differ
by a sign (up to the natural commutativity constraint); this claim is again independent of the chosen
isomorphism between A∨ and A. But this is a question purely internal to the symmetric monoidal
category SatG ∼= Rep(SL2) with its fibre functor. In there, we have the tautological representation
V = Z2

` = Z`e1 ⊕ Z`e2, and it has the determinant pairing V ⊗ V → Z` as SL2-representation,
realizing the internal duality. The determinant pairing is alternating, so takes opposite signs on
(e1, e2) and (e2, e1), as desired. �



CHAPTER VII

D�(X)

In order to deal with smooth representations of G(E) on Q`-vector spaces (not Banach spaces),
we extend (a modified form of) the 6-functor formalism from [Sch17a] to the larger class of solid
pro-étale sheaves. The results in this chapter were obtained in discussions with Clausen, and Mann
has obtained analogues of some of these results in the case of schemes. (Strangely enough, in some
respects the formalism actually works better for diamonds than for schemes.)

More precisely, we want to find a “good” category of Q`-sheaves on [∗/G(E)] that corresponds

to smooth representations of G(E) with values in Q`-vector spaces, and extends to a category of
Q`-sheaves on BunG with a good formalism of six operations that allows us to extend the preceding
results for étale torsion coefficients. The first idea would be to take pro-systems of étale torsion
sheaves as Z`-coefficients and invert formally `; this formalism is easy to construct, see [Sch17a,
Section 26]. This would give rise to continuous representations of G(E) in Q`-Banach spaces, and
we do not want that:

• supercuspidal representations of G(E) in Q`-vector spaces are defined over a finite degree exten-
sion of Q`, and after twist admit an invariant lattice that allows us to complete them `-adically,
but we do not want to make such a choice.

• we want to construct semi-simple Langlands parameters using the Bernstein center and not some
`-adic completion of it.

• in usual discussions of the cohomology of the Lubin–Tate tower, or more general Rapoport–Zink
spaces, it is possible to use Q`-coefficients while talking about usual smooth representations. We
want to be able to achieve the same on the level of BunG.

We could take Q`-pro-étale sheaves. This would give rise to representations of G(E) (seen as
a condensed group) with values in condensed Q`-vector spaces. This category is too big; there is
no hope to obtain a formalism of six operations in this too general context. We need to ask for
some “completeness” of the sheaves, for which we take inspiration from the theory of solid abelian
groups developed in [CS].

The idea is the following. We define a category of solid pro-étale Q`-sheaves on BunG with a
good formalism of (a modified form of) six operations. More precisely, for any small v-stack, we
define a full subcategory

D�(X,Z`) ⊂ D(Xv,Z`),
compatible with pullback, and equipped with a symmetric monoidal tensor product (for which
pullback is symmetric monoidal). A complex is solid if and only if each cohomology sheaf is solid,
and this can be checked v-locally. The subcategory D�(X,Z`) is stable under all (derived) limits and
colimits, and the inclusion into D(Xv,Z`) admits a left adjoint. If X is a diamond, then D�(X,Z`)

237
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is also a full subcategory of D(Xqproét,Z`). If X is a spatial diamond, then on the abelian level, the
category of solid Z`-sheaves is the Ind-category of the Pro-category of constructible étale sheaves
killed by some power of `. In this way, one can bootstrap many results from the usual étale case.

For any map f : Y → X of small v-stacks, the pullback functor f∗ admits a right adjoint
Rf∗ : D�(Y,Z`)→ D�(X,Z`) that in fact commutes with any base change, see Proposition VII.2.4.
Similarly, the formation of RHom commutes with any base change. Both of these operations can
a priori be taken in all v-sheaves, but turn out to preserve solid sheaves. This already gives us four
operations.

Unfortunately, Rf! does not have the same good properties as usual. In particular, if f is proper
(and finite-dimensional), Rf∗ does not in general satisfy a projection formula. As a remedy, it turns
out that for all f , the functor f∗ admits a left adjoint

f\ : D�(Y,Z`)→ D�(X,Z`),

given by “relative homology”. This is a completely novel feature, and already for closed immer-
sions this takes usual étale sheaves to complicated solid sheaves. Again f\ commutes with any
base change, and also satisfies the projection formula (which is just a condition here, as there is
automatically a natural map).

When f is “proper and smooth”, one can moreover relative f\ (“homology”) and Rf∗ (“coho-
mology”) in the expected way. One also gets a formula for the dualizing complex of f in terms
of such functors. These results even extend to universally locally acyclic complexes. This solid
5-functor formalism thus has some excellent formal properties. We are somewhat confused about
exactly how expressive it is, and whether it is preferable over the standard 6-functor formalism.
One advantage is certainly that f\ is more canonical, and even defined much more generally, than
Rf! (whose construction for stacky maps would require the resolution of very subtle homotopy
coherence issues, and also can only be defined for certain (finite-dimensional) maps). The main
problem with the solid formalism is that a stratification of a stack does not lead to a semi-orthogonal
decomposition on the level of D�.

On the other hand, for our concerns here, D�(BunG,Z`) is much too large. On [∗/G(E)] this

gives rise to representations of G(E) (as a condensed group) with values in solid Z`-modules. The
category of discrete Q`-vector spaces injects into the category of solid Z`-modules. In fact, Q`-vector
spaces are the same as Ind-finite dimensional vector spaces. Any finite dimensional Q`-vector space
is complete and thus “solid”. This means that if V is a Q`-vector space then it gives rise to the
solid condensed sheaf V ⊗Qdisc`

Q` whose value on the profinite set S is

lim−→
W⊂V

finite dim.

Cont(S,W ).

The category of smooth representations of G(E) with values in discrete Q`-vector spaces injects
in the category of solid Q`-pro-étale shaves on [∗/G(E)]. In fact, since ` 6= p and G(E) is locally
pro-p, representations of the condensed group G(E) on the condensed Q`-vector space V ⊗Qdisc`

Q`

are the same as smooth representations of G(E) on V .
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We then cut out a subcategory Dlis(BunG,Q`) of D�(BunG,Z`) that gives back the category
of smooth representations of G(E) in Q`-vector spaces when we look at [∗/G(E)]. (Of course, we

can also stick with Z`-coefficients.)

VII.1. Solid sheaves

In the following, Ẑ always denotes the pro-étale sheaf Ẑ = lim←−n Z/nZ where n runs over nonzero

integers. We will quickly restrict attention to Ẑp = lim←−(n,p)=1
Z/nZ, allowing only n prime to p.

Let X be a spatial diamond. For any quasi-pro-étale j : U → X that can be written as a
cofiltered inverse limit of qcqs étale ji : Ui → X, we let

j\Ẑ = lim←−
i

ji!Ẑ;

as the pro-system of the Ui is unique, this is well-defined. Note that there is a tautological section

of j\Ẑ over U . Equivalently, if one writes Ẑ[U ] for the free pro-étale sheaf of Ẑ-modules generated
by U (noting that j∗ admits a left adjoint on pro-étale sheaves, being a slice), there is a natural

map Ẑ[U ]→ lim←−i Ẑ[Ui] = j\Ẑ.

When X = Spa(C), j\Ẑ is the sheaf denoted Ẑ[U ]� in [CS], and the same notation will be
appropriate here in general.

Definition VII.1.1. Let F be a pro-étale sheaf of Ẑ-modules on X. Then F is solid if for all
j : U → X as above, the map

Hom(j\Ẑ,F)→ F(U)

is an isomorphism.

Let us begin with the following basic example. We note ν : Xqproét → Xét the projection to the
étale site.

Proposition VII.1.2. For any étale sheaf F of Z/nZ-modules on Xét, ν
∗F is solid.

Proof. This is a consequence of [Sch17a, Proposition 14.9]. �

The notion of solid sheaf is well-behaved:

Theorem VII.1.3. The category of solid Ẑ-sheaves on X is an abelian subcategory of all pro-

étale Ẑ-sheaves on X, stable under all limits, colimits, and extensions. It is generated by the finitely

presented objects j\Ẑ for quasi-pro-étale j : U → X as above, and the inclusion admits a left adjoint
F 7→ F� that commutes with all colimits.

Let F be a pro-étale Ẑ-sheaf on X. The following conditions are equivalent.

(1) The Ẑ-sheaf F is finitely presented in the category of all pro-étale Ẑ-sheaves, and is solid.

(2) The Ẑ-sheaf F is solid, and finitely presented in the category of solid Ẑ-sheaves.

(3) The Ẑ-sheaf F can be written as a cofiltered inverse limit of torsion constructible étale sheaves.
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For any such F , the underlying pro-étale sheaf is representable by a spatial diamond. The category
of F satisfying (1) – (3) is stable under kernels, cokernels, and extensions, in particular an abelian
category, and is equivalent to the Pro-category of torsion constructible étale sheaves.

Moreover, the category of all solid Ẑ-sheaves on X is equivalent to the Ind-category of the
Pro-category of torsion constructible étale sheaves.

Question VII.1.4. If F is a pro-étale Ẑ-sheaf on X whose underlying pro-étale sheaf is repre-
sentable by a spatial diamond, or even is just qcqs, is F necessarily solid? If so, these conditions
would also be equivalent to (1) – (3).

Let us remark the following lemma.

Lemma VII.1.5. Any torsion constructible étale sheaf on the spatial diamond X is represented
by a spatial diamond.

Proof. Let F → X be such a sheaf. We can find a surjection of étale sheaves F ′ =⊕
i ji!Z/niZ → F for some quasicompact separated étale maps ji : Ui → X and nonzero inte-

gers ni (where the direct sum is finite). Then F ′ is quasicompact separated étale over X, and
thus a spatial diamond; and the surjective map F ′ → F is also quasicompact separated étale, in
particular universally open, and so also F is a spatial diamond. �

Before starting the proof, we record a key proposition. Its proof is a rare instance that requires
w-contractible objects — in most proofs, strictly totally disconnected objects suffice.

Proposition VII.1.6. Let X be a spatial diamond and let Fi, i ∈ I, be a cofiltered system of
torsion constructible étale sheaves. Then for all j > 0 the higher inverse limit

Rj lim←−
i

Fi = 0,

taken in the category of pro-étale sheaves on X, vanishes.

Proof. The pro-étale site of X has a basis given by the w-contractible Y → X, that is strictly
totally disconnected perfectoid spaces Y such that the closed points in |Y | are a closed subset and

π0Y is an extremally disconnected profinite set; equivalently, any pro-étale cover Ỹ → Y splits,
cf. [BS15, Section 2.4] for a discussion of w-contractibility. Thus, it suffices to check sections on
Y . In other words, we may assume that X is w-contractible, and prove that

Rj lim←−
i

Fi(X) = 0

for all j > 0. As X is strictly totally disconnected, sheaves on Xét are equivalent to sheaves on |X|.
Moreover, we have the closed immersion f : π0X → |X| given by the closed points, and pullback
along this map induces isomorphisms Fi(X) ∼= (f∗Fi)(π0X). Let S = π0X be the extremally
disconnected profinite set.

Then any torsion constructible sheaf on S is locally constant with finite fibres. In particular,
f∗Fi maps isomorphically toHom(Hom(f∗Fi, S1), S1) where S1 = R/Z is the sheaf of continuous
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maps to the circle. (We could for the moment also use Q/Z, but it will become critical that S1 is
compact.) It follows that

Rj lim←−
i

Fi(X) = ExtjS(lim−→
i

Hom(f∗Fi, S1), S1).

Thus, the result follows from the injectivity of S1 as stated in the next lemma. �

Lemma VII.1.7. Let S be an extremally disconnected profinite set. Then the abelian sheaf R/Z
on S is injective.

Proof. First, we note that R/Z is flasque in a strong sense. Namely, if U ⊂ S is any open

subset with closure U ⊂ S, then U is the Stone-Čech compactification of U (as U ⊂ S is open by
one definition of extremally disconnected spaces, and then βU t (S \ U) → S admits a splitting,
which in particular gives a splitting of the surjection βU → U that is the identity on U , thus
implying that βU ∼= U) and hence any section of R/Z over U extends uniquely to U as R/Z is

compact Hausdorff. Also, all sections over U extend to S, as U is open and closed in S.

Let F ↪→ G be an injection of sheaves on S with a map F → R/Z. Using Zorn’s lemma,

choose a maximal subsheaf of G containing F with an extension of the map to R/Z. Replacing
F by this maximal subsheaf, we can assume that F is maximal already. If F → G is not an
isomorphism, then it is not an isomorphism on global sections (any local section not in the image
can be extended by zero to form a global section not in the image), so we can find a map Z → G
such that F ′ = F ×G Z ⊂ Z is a proper subsheaf, and we can replace G by Z and assume that F is
a proper subsheaf of Z.

For each integer n, we can look at the open subset jn : Un ⊂ S where n ∈ Z lies in F . On this
open subset, we have a map nZ → R/Z, and by the above this extends uniquely to jn : Un ↪→ S.

The extension jn!Z → R/Z necessarily agrees with the restriction of the given map F → R/Z on

the intersection jn!Z ∩ F ⊂ jn!Z, as this contains the dense subset jn!Z and R/Z is separated.

Thus, by maximality of F , we see that necessarily all Un are open and closed, hence so are
all Vn = Un \

⋃
m<n Um. Thus V1, V2, . . . ⊂ S are pairwise disjoint open and closed subsets such

that F =
⊕

n nZ|Vn . But one can then extend to
⊕

n Z|Vn as the continuous maps from Vn to R/Z
form a divisible group. By maximality of F , this means that Vn is empty for all n > 1, and hence
F = Z|V1 is a direct summand of Z, in which case the possibility of extension is clear. �

Now we can give the proof of Theorem VII.1.3.

Proof of Theorem VII.1.3. The Pro-category of torsion constructible étale sheaves is an

abelian category, and by Proposition VII.1.6 the functor to pro-étale Ẑ-sheaves is exact. It is also
fully faithful: For this, it suffices to see that if Fi, i ∈ I, is a cofiltered inverse system of torsion
constructible étale sheaves and G is any étale sheaf, then

lim−→
i

Hom(Fi,G)→ Hom(lim←−
i

Fi,G)

is an isomorphism. But the underlying pro-étale sheaf of each Fi is a spatial diamond over X, so
by [Sch17a, Proposition 14.9] (applied with j = 0) we see that the similar result holds true when
then taking homomorphisms of pro-étale sheaves (without the abelian group structure). Enforcing
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compatibility with addition amounts to a similar diagram for lim←−iFi × lim←−iFi to which the same
argument applies.

We see that the Pro-category of torsion constructible étale sheaves is a full subcategory C of all

pro-étale Ẑ-modules on X, stable under the formation of kernels and cokernels. All of these sheaves
are solid: As the condition of being solid is stable under all limits, it suffices to see that any étale
sheaf is solid; this is Proposition VII.1.2.

Also, by [Sch17a, Lemma 11.22] and Lemma VII.1.5 all objects of C have as underlying pro-
étale sheaf a spatial diamond. One also checks that C is stable under extensions, by reduction to
constructible sheaves (cf. proof of Proposition VII.1.12 below).

Next, we prove that (3) implies (1), so let F be in C; in particular, the underlying pro-étale

sheaf is a spatial diamond. Then for any pro-étale Ẑ-module G, one can describe Hom(F ,G) as the

maps F → G of pro-étale sheaves satisfying additivity and Ẑ-linearity, i.e. certain maps F ×F → G
resp. F × Ẑ→ G agree. This description commutes with filtered colimits (as for spatial diamonds
Y , the functor G 7→ G(Y ) commutes with filtered colimits).

Now we can describe the full category of solid Ẑ-sheaves. Indeed, using that j\Ẑ is finitely

presented in all pro-étale Ẑ-modules by the previous paragraph, we see from the definition that

the category of solid Ẑ-sheaves is stable under all filtered colimits. In particular, we get an exact

functor from the Ind-category of C to solid Ẑ-sheaves. This is also fully faithful, as all objects
of C are finitely presented. Moreover, Ind(C) is an abelian category for formal reasons. We see

that Ind(C) is a full subcategory of the category of pro-étale Ẑ-sheaves stable under kernels and

cokernels, and all of its objects are solid. Conversely, any solid Ẑ-sheaf admits a surjection from a

direct sum of objects of the form j\Ẑ ∈ C, and the kernel of any such surjection is still solid, so we

may write any solid Ẑ-sheaf as the cokernel of a map in Ind(C). As Ind(C) is stable under cokernels,

we see that Ind(C) is exactly the category of solid Ẑ-sheaves.

As filtered colimits of solid sheaves stay solid, it is now formal that (1) implies (2), and (2)
implies (3) as C ⊂ Ind(C) are the finitely presented objects (as C is idempotent-complete). This
finishes the proof of the equivalences.

The identification with Ind(C) shows that the category of solid Ẑ-sheaves is stable under kernels,
cokernels, and filtered colimits. The latter two imply stability under all colimits, and stability under
all limits is clear from the definition. One also easily checks stability under extensions by reduction
to C (again, cf. proof of Proposition VII.1.12). For the existence of the left adjoint, note that it

exists on the free pro-étale Ẑ-modules generated by U , with value j\Ẑ, i.e.

Ẑ[U ]� = j\Ẑ.

As these generate all pro-étale Ẑ-modules, one finds that the left adjoint F 7→ F� exists in general:

one can write any F as a colimit lim−→α
Ẑ[Uα] and (lim−→α

Ẑ[Uα])� = lim−→α
Ẑ[Uα]�. �

We have the following proposition on the functorial behaviour of the notion of solid Ẑ-sheaves.
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Proposition VII.1.8. Let f : Y → X be a map of spatial diamonds. Then pullbacks of solid

Ẑ-sheaves are solid, and the functor f∗ commutes with solidification. Moreover, if f is surjective,

and F is a pro-étale Ẑ-sheaf on X such that f∗F is solid, then F is solid.

Proof. Recall that f∗ commutes with all limits (and of course colimits) by [Sch17a, Lemma

14.4]. To check that f∗ commutes with solidification, it suffices to check on the pro-étale Ẑ-modules

Ẑ[U ] generated by some quasi-pro-étale j : U → X, and in that case the claim follows from f∗

commuting with all limits,

f∗(Ẑ[U ]�) = f∗(lim←−
i

Ẑ[Ui]) = lim←−
i

f∗Ẑ[Ui] = lim←−
i

Ẑ[f∗Ui] = Ẑ[f∗U ]�.

In particular, applied to solid Ẑ-sheaves on X, this implies that their pullback to Y is already solid.

Now assume that f is surjective and F is a pro-étale Ẑ-sheaf on X such that f∗F is solid. Let
j : U = lim←−i Ui → X be a quasi-pro-étale map. We first check that

Hom(j\Ẑ,F)→ F(U)

is injective. Indeed, assume that f : j\Ẑ → F lies in the kernel. Then after pullback to Y , this

map vanishes since f∗Ẑ[U ]� = Ẑ[f∗U ]�. But for any quasi-pro-étale V → X, the map F(V ) →
(f∗F)(V ×XY ) is injective (using [Sch17a, Proposition 14.7] one has f∗F(V ×XY ) = (λ∗XF)(V ×X
Y ) and we conclude since V ×X Y → V is a v-cover), so it follows that f = 0.

We see that an element of F(U) determines at most one map j\Ẑ→ F , and this assertion stays
true after any pullback. By [Sch17a, Proposition 14.7], it suffices to construct the map v-locally;
but it exists after pullback to Y → X, thus proving existence. �

In particular, it makes sense to make the following definition.

Definition VII.1.9. Let Y be a small v-stack and let F be a v-sheaf of Ẑ-modules on Y . Then
F is solid if for all maps f : X → Y from a spatial diamond X, the pullback f∗F comes via pullback

from a solid Ẑ-sheaf on Xqproét.

Regarding passage to the derived category, we make the following definition.

Definition VII.1.10. Let X be a small v-stack. Let D�(X, Ẑ) ⊂ D(Xv, Ẑ) be the full subcate-
gory of all A such that each cohomology sheaf Hi(A) is solid.

As being solid is stable under kernels, cokernels, and extensions, this defines a triangulated
subcategory.

If X is a diamond, one could alternatively define a full subcategory of D(Xqproét, Ẑ) by the same
condition, and pullback from the quasi-pro-étale to the v-site defines a functor. This functor is an
equivalence, by repleteness (to handle Postnikov towers, cf. [BS15, Section 3]) and the following
proposition that is an amelioration of [Sch17a, Proposition 14.7] for solid sheaves.

Proposition VII.1.11. Let X be a diamond and let F be a sheaf of Ẑ-modules on Xqproét that
is solid. Let λ : Xv → Xqproét be the map of sites. Then F → Rλ∗λ

∗F is an isomorphism.
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Proof. We may assume that X is spatial (or strictly totally disconnected). Then F is a filtered

colimit of finitely presented solid Ẑ-sheaves, and the functor Rλ∗ commutes with filtered colimits in
D≥0. We may thus assume that F is finitely presented; in that case F is a cofiltered limit of torsion
constructible étale sheaves, and λ∗ commutes with all limits by [Sch17a, Lemma 14.4]. Thus, we
can assume that F is an étale sheaf, where the claim is [Sch17a, Proposition 14.7]. �

Moreover, solid objects in the derived category satisfy a derived and internal version of Defini-
tion VII.1.1.

Proposition VII.1.12. Let X be a spatial diamond. For all A ∈ D�(X, Ẑ), the map

RHom(j\Ẑ, A)→ Rj∗A|U
is an isomorphism for all quasi-pro-étale j : U → X.

Proof. By taking a Postnikov limit, we can assume that A ∈ D+
� (X, Ẑ), and then one reduces

to the case that A = F [0] is concentrated in degree 0. Now by a resolution of Breen [Bre78,

Section 3] (appropriately sheafified), there is a resolution of any Ẑ-sheaf G where all terms are finite

direct sums of sheaves of the form Ẑ[Gi× Ẑj ]. If G is a spatial diamond, then all Gi× Ẑj are spatial
diamonds, hence

RHom(Ẑ[Gi × Ẑj ],F)

commutes with all filtered colimits. Applied to G = j\Ẑ, Breen’s resolution then implies that
RHom(G,−) commutes with all filtered colimits.

We may thus assume that F is finitely presented. But then Theorem VII.1.3 implies that F is
a limit of constructible étale sheaves, so one can reduce to the case that F is an étale sheaf. But
then Breen’s resolution shows that

RHom(j\Ẑ,F) = lim−→
i

RHom(ji!Ẑ,F) = lim−→
i

Rji∗F|Ui

and [Sch17a, Proposition 14.9] shows that this identifies with Rj∗F|U . �

Proposition VII.1.13. Let X be a spatial diamond. The inclusion

D�(X, Ẑ) ⊂ D(Xqproét, Ẑ)

admits a left adjoint

A 7→ A� : D(Xqproét, Ẑ)→ D�(X, Ẑ).

Moreover, D�(X, Ẑ) identifies with the derived category of solid Ẑ-sheaves on X, and A 7→ A� with

the left derived functor of F 7→ F�. The formation of A 7→ A�, for A ∈ D(Xqproét, Ẑ), commutes
with any base change X ′ → X of spatial diamonds.

Proof. This follows easily from Proposition VII.1.12. �

Proposition VII.1.14. Let X be a spatial diamond. The kernel of A 7→ A� is a tensor ideal.

In particular, there is a unique symmetric monoidal structure −
�

⊗L− on D�(X, Ẑ) making A 7→ A�

symmetric monoidal. It is the left derived functor of the induced symmetric monoidal structure on

solid Ẑ-sheaves. This symmetric monoidal structure commutes with all colimits (in each variable)
and any pullback.



VII.1. SOLID SHEAVES 245

Proof. To check that the kernel is a tensor ideal, take any quasi-pro-étale j : U → X written as
a cofiltered inverse limit of separated étale ji : Ui → X, and any further quasi-pro-étale j′ : U ′ → X.

Then for any solid A ∈ D�(X, Ẑ), we know by Proposition VII.1.12 that the map

RHom(j\Ẑ, A)→ Rj∗A|U
is an isomorphism. Taking sections over U ′ → X, this translates into

RHom(j\Ẑ⊗L
Ẑ Ẑ[U ′], A)→ RHom(Ẑ[U ×X U ′], A)

being an isomorphism. In other words, taking the tensor product of Ẑ[U ] → j\Ẑ with Ẑ[U ′] still
lies in the kernel, but these generate the tensor ideal generated by the kernel.

It is now formal that there is a unique symmetric monoidal structure −
�

⊗L− on D�(X, Ẑ)
making A 7→ A� symmetric monoidal (given by the solidification of the tensor product in all solid
pro-étale sheaves). As solidification commutes with all colimits, so does this tensor product. On

generators j : U → X, j′ : U ′ → X as above, it is given by j\Ẑ
�

⊗Lj′\Ẑ = (j ×X j′)\Ẑ, which still
sits in degree 0; this implies that the functor is a left derived functor. Moreover, this description
commutes with any base change. �

Moreover, the inclusion into all v-sheaves also admits a left adjoint, if X is a diamond. We will

later improve on this proposition when working with Ẑp-coefficients.

Proposition VII.1.15. For any diamond X, the fully faithful embedding

D�(X, Ẑ) ⊂ D(Xv, Ẑ)

admits a left adjoint A 7→ A�. The formation of A� commutes with quasi-pro-étale base change
X ′ → X.

Proof. Assume first that X is strictly totally disconnected. It suffices to construct the left

adjoint on a set of generators, such as the pro-étale sheaves of Ẑ-modules generated by some strictly
totally disconnected Y → X. By [Sch17a, Lemma 14.5], there is a strictly totally disconnected
affinoid pro-étale j : Y ′ → X such that Y → X factors over a map Y → Y ′ that is surjective and

induces a bijection of connected components. Then for any B ∈ D�(Y ′, Ẑ), the map

RΓ(Y ′, B)→ RΓ(Y,B)

is an isomorphism. Indeed, by Postnikov limits this easily reduces to B = F [0] for a solid sheaf of

Ẑ-modules, and then to a finitely presented solid sheaf, and finally to a constructible étale sheaf,
for which the result is proved at the end of the proof of [Sch17a, Lemma 14.4]. This means that

the left adjoint A 7→ A� when evaluated on Ẑ[Y ] exists and is given by j\Ẑ.

The formation of Y ′ → X from Y → X commutes with any quasi-pro-étale base change of
strictly totally disconnected X ′ → X. This implies that A 7→ A� commutes with such base
changes. By descent, this implies the existence of the left adjoint in general, and its commutation
with quasi-pro-étale base change. �

As usual, we also want to have a theory with coefficients in a ring Λ. As before, we assume that
Λ is constant in the sense that it comes via pullback from the point. In our case, this means that
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it comes via pullback from the pro-étale site of a point, i.e. is a condensed ring [CS], and we need

to assume that it is solid over Ẑ; in other words, we allow as coefficients any solid Ẑ-algebra Λ.

Via pullback, this gives rise to a v-sheaf of Ẑ-algebras on any small v-stack X, and we can consider
D(Xv,Λ).

Example VII.1.16. We may consider Λ = Z` as the solid condensed ring lim−→L|Q` finite
OL.

Definition VII.1.17. Let D�(X,Λ) ⊂ D(Xv,Λ) be the full subcategory of all A ∈ D(Xv,Λ)

such that the image of A in D(Xv, Ẑ) is solid.

On the level of ∞-categorical enrichments, we thus see that D�(X,Λ) is the category of Λ-

modules in D�(X, Ẑ). It is then formal that the inclusion D�(X,Λ) ⊂ D(Xv,Λ) admits a symmetric
monoidal left adjoint A 7→ A�, compatible with forgetting the Λ-structure.

Remark VII.1.18. Let us briefly compare the present theory with the one developed in [CS].

Over a geometric point X = SpaC, D�(X, Ẑ) is the derived category of solid Ẑ-modules in the

sense of [CS]. For general Λ, we are now simply considering Λ-modules in D�(X, Ẑ). This is
in general different from the theory of Λ�-modules, which would ask for a stronger completeness
notion relative to Λ. Our present theory corresponds to the analytic ring structure on Λ induced

from Ẑ�.

One might wonder whether for any analytic ring A in the sense of [CS] one can define a category
D(X,A) of “A-complete” pro-étale sheaves on any spatial diamond X. This does not seem to be
the case; it is certainly not formal. In fact, already for A = Z�, problems occur and there is
certainly no abelian category; it is still possible to define a nice derived category, though. For
general A, defining D(X,A) also seems to require extra data beyond the analytic ring structure on
A.

VII.2. Four functors

Now we discuss some functors on solid sheaves. For this, we assume from now on that we work

with coefficients Λ given by a solid Ẑp-algebra (so we stay away from p-adic coefficients). For any
map f : Y → X of small v-stacks, we have the pullback functor f∗ : D�(X,Λ) ⊂ D�(Y,Λ). This
admits a right adjoint Rf∗; in fact, one can simply import Rf∗ from the full D(Y,Λ):

Proposition VII.2.1. Let f : Y → X be a map of small v-stacks and let A ∈ D�(Y,Λ) ⊂
D(Y,Λ). Then Rfv∗A ∈ D(Xv,Λ) lies in D�(X,Λ). In particular, Rfv∗ : D(Yv,Λ) → D(Xv,Λ)
restricts to a functor Rf∗ : D�(Y,Λ)→ D�(X,Λ) that is right adjoint to f∗.

Proof. We can formally reduce to the case Λ = Ẑp. The formation of Rfv∗ commutes with
any pullback (as everything is a slice in the v-site), so using Proposition VII.1.8 we can assume
that X is a spatial diamond. Moreover, taking a simplicial resolution of Y by disjoint unions of

spatial diamonds, and using that D�(X, Ẑp) ⊂ D(Xv, Ẑp) is stable under all derived limits (as it is
stable under all products), we can also assume that Y is a spatial diamond.

We may assume A ∈ D+
� (Y, Ẑp) by a Postnikov limit, then that A = F [0] is concentrated in

degree 0, then that F is finitely presented by writing it as a filtered colimit, and finally that F is
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a constructible étale sheaf by writing it as a cofiltered limit. Now the result follows from [Sch17a,
Proposition 17.6]. �

Proposition VII.2.2. For any small v-stack X, the inclusion

D�(X,Λ) ⊂ D(Xv,Λ)

admits a left adjoint

A 7→ A� : D(Xv,Λ)→ D�(X,Λ).

The functor A 7→ A� commutes with any base change.

The kernel of A 7→ A� is a tensor ideal. In particular, there is a unique symmetric monoidal

structure −
�

⊗L
Λ− on D�(X,Λ) making A 7→ A� a symmetric monoidal functor. The functor −

�

⊗L
Λ−

commutes with all colimits (in each variable) and with all pullbacks f : Y → X.

We note that in the case of overlap with previous definitions of A 7→ A� and −
�

⊗L
Λ−, the

definitions agree, by uniqueness of the previous definitions.

Proof. Again, one can formally reduce to the case Λ = Ẑp. By descent, we can reduce to

the case that X is strictly totally disconnected. (Note that Y 7→ D�(Y, Ẑp) is a v-sheaf of ∞-

categories — this is clear for D(Yv, Ẑp), and follows for D� as being solid can be checked v-locally
by Proposition VII.1.8.) In this case, we already know existence of the left adjoint A 7→ A� by
Proposition VII.1.15.

We check that the left adjoint A 7→ A� commutes with any base change f : Y → X. We already

know that pullbacks of solid objects stay solid, so we have to see that if A ∈ D(Xv, Ẑp) satisfies
A� = 0, then also (f∗vA)� = 0. But this statement is adjoint to the statement that Rfv∗ preserves
D�, i.e. Proposition VII.2.1.

We need to see that the class of all A ∈ D(Xv, Ẑp) with A� = 0 is a ⊗-ideal. But we have seen
that for all f : Y → X, also f∗vA lies in the corresponding class for Y , and then so does fv\f

∗
vA (as

pullback preserves D�), where we write fv\ for the left adjoint of f∗v (which exists as it is a slice).

But fv\f
∗
vA = A⊗L

Ẑp
fv\Ẑp by the projection formula for slices, so this gives the desired claim. �

It turns out that for Λ = Ẑp, the functor −
�

⊗L− is actually almost exact. If one would work
with Λ = F`-coefficients, it would even be exact.

Proposition VII.2.3. Let X be a small v-stack and A,B ∈ D�(X, Ẑp) be concentrated in degree

0. Then A
�

⊗LB sits in cohomological degrees −1 and 0.

If X is a spatial diamond and F = lim←−iFi and G = lim←−j Gj are finitely presented solid Ẑp-
sheaves written as cofiltered limits of constructible étale sheaves killed by some integer prime to p,
then the natural map

F
�

⊗LG → R lim←−
i,j

Fi ⊗L Gj

is an isomorphism.
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Proof. It suffices to prove the final assertion, as the statement on A
�

⊗LB can be checked
after pullback to spatial diamonds, and then A and B can be written as filtered colimits of finitely

presented solid Ẑp-sheaves (and Fi ⊗L Gj sits in degrees −1 and 0 as Ẑp has global dimension 1).

Resolving F and G, we can reduce to the case F = j\Ẑp, G = j′\Ẑp. But their solid tensor product

is indeed given by (j ×X j′)\Ẑp. �

At this point, we have defined D�(X,Λ) ⊂ D(Xv,Λ) for any small v-stack X, and this sub-
category is preserved by pullback and pushforward, and in particular this gives such functors for

D�(X,Λ). Moreover, D�(X,Λ) has a natural symmetric monoidal structure −
�

⊗L
Λ−, commuting

with colimits in both variables, and with pullbacks. Moreover, we have a functor

RHomΛ(−,−) : D�(X,Λ)op ×D�(X,Λ)→ D�(X,Λ),

a partial right adjoint to −
�

⊗L
Λ− as usual. Again, it can be obtained from the corresponding

functor on D(Xv,Λ) via restriction. In fact, for all A ∈ D(Xv,Λ) and B ∈ D�(X,Λ), one has

RHomΛ(A,B) ∈ D�(X,Λ). This can be reduced to Λ = Ẑp and the case A = f\Ẑp for some

f : Y → X, and then it amounts to Rfv∗f
∗
vB ∈ D�(X, Ẑp), which follows from Proposition VII.2.1.

There is the following general base change result. We stress the absence of any conditions.

Proposition VII.2.4. Let

Y ′
g′ //

f ′

��

Y

f
��

X ′
g // X

be a cartesian diagram of small v-stacks. For all A ∈ D�(Y,Λ), the base change map

g∗Rf∗A→ Rf ′∗g
′∗A

in D�(X ′,Λ) is an isomorphism.

Similarly, for any map f : Y → X of small v-stacks and all A,B ∈ D�(X,Λ), the map

f∗RHom(A,B)→ RHom(f∗A, f∗B)

in D�(Y,Λ) is an isomorphism.

Proof. The base change is a direct consequence of Proposition VII.2.1, noting that in the
v-site, everything is a slice (and hence satisfies base change). The statement about RHom follows
similarly from the compatibility with the RHom as formed on the v-site, as was noted above. �

The projection formula, however, fails to hold.

Warning VII.2.5. If f : Y → X is a proper map of small v-stacks that is representable in
spatial diamonds with dim. trg f <∞, the map

A
�

⊗LRf∗B → Rf∗(f
∗A

�

⊗LB)

may fail to be an isomorphism for A ∈ D�(X, Ẑp) and B ∈ D�(Y, Ẑp). In fact, already if X = BC is
a perfectoid ball and f = j : Y = SpaC → X is the inclusion of a point (which is quasi-pro-étale),
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then this fails for A = j\Ẑp and B = Ẑp. In fact, the map becomes j\Ẑp → Rj∗Ẑp, which is far

from an isomorphism: For example, on global sections the left-hand side becomes Ẑp[−2], while the

right-hand side becomes Ẑp.

There is the following result on change of algebraically closed base field, an analogue of [Sch17a,
Theorem 19.5].

Proposition VII.2.6. Let X be a small v-stack.

(i) Assume that X lives over k, where k is a discrete algebraically closed field of characteristic p,
and k′/k is an extension of discrete algebraically closed base fields, X ′ = X×k k′. Then the pullback
functor

D�(X,Λ)→ D�(X ′,Λ)

is fully faithful.

(ii) Assume that X lives over k, where k is a discrete algebraically closed field of characteristic p.
Let C/k be an algebraically closed complete nonarchimedean field, and X ′ = X ×k Spa(C,C+) for
some open and bounded valuation subring C+ ⊂ C containing k. Then the pullback functor

D�(X,Λ)→ D�(X ′,Λ)

is fully faithful.

(iii) Assume that X lives over Spa(C,C+), where C is an algebraically closed complete nonar-
chimedean field with an open and bounded valuation subring C+ ⊂ C, C ′/C is an extension
of algebraically closed complete nonarchimedean fields, and C ′+ ⊂ C ′ an open and bounded val-
uation subring containing C+, such that Spa(C ′, C ′+) → Spa(C,C+) is surjective. Then for
X ′ = X ×Spa(C,C+) Spa(C ′, C ′+), the pullback functor

D�(X,Λ)→ D�(X ′,Λ)

is fully faithful.

Proof. We can assume Λ = Ẑp. As in [Sch17a, Theorem 19.5], it suffices to prove (iii) and
the restricted case of (ii) where C is the completed algebraic closure of k((t)) (and hence C+ = OC).

Let f : X ′ → X be the map. We have to see that for all A ∈ D�(X, Ẑp), the map

A→ Rf∗f
∗A

is an equivalence. This can be checked locally in the v-topology, so we can assume that X =
Spa(R,R+) is an affinoid perfectoid space. By Postnikov limits, we can also assume that A ∈
D+

� (X, Ẑp), and then that A is concentrated in degree 0. In case (iii), we can now conclude by

writing A as a filtered colimit of finitely presented solid Ẑp-modules, and these as cofiltered limits
of constructible étale sheaves, noting that both operations commute with Rf∗ and f∗ (as f is qcqs
in case (iii)), and hence reducing us to [Sch17a, Theorem 19.5].

It remains to handle case (ii) when C is the completed algebraic closure of k((t)). In that case X ′

lives over a punctured open unit disc D∗X over X, and fixing a pseudouniformizer $ ∈ R, this can be

written as the increasing union of quasicompact open subspaces X ′n = {|t|n ≤ |$| ≤ |t|1/n} ⊂ X ′,
with maps fn : X ′n → X. It suffices to prove that for all n, the map

A→ Rfn∗f
∗
nA
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is an isomorphism. These functors commute again with filtered colimits of sheaves, and hence the
previous reductions apply and reduce the assertion to the étale case, which was handled in the
proof of [Sch17a, Theorem 19.5]. �

As an application, let us record the following versions of Proposition IV.7.1 and Corollary IV.7.2,
where we fix an algebraically closed field k|Fq and work on Perfk.

Corollary VII.2.7. For any small v-stack X, the functor

ψ∗X : D�(X × [∗/WE ],Λ)→ D�(X ×Div1,Λ)

is fully faithful. If the natural pullback functor

D�(X,Λ)→ D�(X × Spd Ê,Λ)

is an equivalence, then ψ∗X is also an equivalence.

Proof. By descent along X → X × [∗/WE ] this reduces to Proposition VII.2.6. �

Corollary VII.2.8. For any small v-stack X and finite set I, pullback along X × (Div1)I →
X × [∗/W I

E ] induces a fully faithful functor

D�(X × [∗/W I
E ],Λ)→ D�(X × (Div1)I ,Λ).

Proof. This follows inductively from Corollary VII.2.7. �

We also need a solid analogue of Theorem IV.5.3; we only prove a restricted variant, however.
As there, work over Perfk, and let X be a spatial diamond such that X → ∗ is proper, of finite
dim. trg, and take any spatial diamond S. As before, one can introduce the doubly-indexed ind-
system {Ua,b}(a,b) ⊂ X × S, well-defined up to ind-isomorphism; and then Ua =

⋃
b<∞ Ua,b and

Ub =
⋃
a>0 Ua,b.

Definition VII.2.9. The functors

Rβ!+, Rβ!− : D�(X × S,Λ)→ D�(S,Λ)

are defined by

Rβ!+C := lim−→
a

Rβ∗(ja!C|Ua),

Rβ!−C := lim−→
b

Rβ∗(jb!C|Ub)

for C ∈ D�(X × S,Λ).

Here ja! and jb! denote the left adjoints to j∗a and j∗b . Let α : X × S → X be the projection.

Theorem VII.2.10. Assume that C = α∗A for A ∈ D�(X,Λ), and assume that either A ∈
D+

� (X,Λ), or that X → ∗ is cohomologically smooth. Then

Rβ!+C = 0 = Rβ!−C.
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Proof. We can assume Λ = Ẑp. All operations commute with any base change; we can thus
assume that S = SpaK where K is the complete algebraic closure of k((t)). We observe that if
X → ∗ is cohomologically smooth, then Rβ∗ : D�(X × S,Λ) → D�(S,Λ) has finite cohomological
dimension; this is a statement about sheaves concentrated in degree 0. Any such B can be written
as the countable limit of Rja,b,∗j

∗
a,bB for the open immersions ja,b : Ua,b ⊂ X ×S; it is thus enough

to show that pushforward along Ua,b → S has finite cohomological dimension on solid sheaves.
As Ua,b → S is qcqs, we can reduce to finitely presented sheaves; these are cofiltered limits of
constructible sheaves. For constructible sheaves, the cohomological dimension is bounded, and
each cohomology group (recall that S = SpaK is a geometric point) is finite by [Sch17a, Theorem
25.1]. Thus, the cofiltered limit stays in the same range of degrees.

It follows that we can assume that A ∈ D+
� (X, Ẑp). Arguing as in the proof of Theorem IV.5.3,

we can then reduce to the case that X = Spa(R,R+) is an affinoid perfectoid space with no nonsplit
finite étale covers, and then to X = SpaK where K is still the completed algebraic closure of k((t)).
In that case, as in the proof of Theorem IV.5.3, one can make a more precise assertion on actual
annuli; this statement is compatible with passage to filtered colimits, reducing us to the case that

A is a finitely presented solid sheaf. For A ∈ D�(SpaK, Ẑp), this means that A is a cofiltered limit
of finite abelian groups killed by integers prime to p. We can also pull this cofiltered limit through,
reducing us to Theorem IV.5.3. �

VII.3. Relative homology

A unique feature of the formalism of solid sheaves is the existence of a general left adjoint to

pullback, with excellent properties. We continue to work with coefficients in a solid Ẑp-algebra Λ.

Proposition VII.3.1. Let f : Y → X be any map of small v-stacks.

(i) The functor f∗ : D�(X,Λ)→ D�(Y,Λ) admits a left adjoint

f\ : D�(Y,Λ)→ D�(X,Λ).

The natural map

f\(A
�

⊗L
Λf
∗B)→ f\A

�

⊗L
ΛB

is an isomorphism for all A ∈ D�(Y,Λ) and B ∈ D�(X,Λ). Similarly, the map

RHom(f\A,B)→ Rf∗RHom(A, f∗B)

is an isomorphism.

(ii) The formation of f\ commutes with restriction of coefficients along a map Λ′ → Λ.

(iii) For any cartesian diagram

Y ′
g′ //

f ′

��

Y

f
��

X ′
g // X

of small v-stacks, the natural map
f ′\g
′∗A→ g∗f\A

is an isomorphism for all A ∈ D�(Y,Λ).
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Proof. As f is a slice in the v-site, it is tautological that f∗v : D(Xv,Λ) → D(Yv,Λ) admits
a left adjoint fv\ : D(Yv,Λ) → D(Xv,Λ). One can then define f\ as the solidification of fv\. By
general properties of slices, the map

fv\(A⊗L
Λ f
∗B)→ fv\A⊗L

Λ B

is an isomorphism. Passing to solidifications, using that that this is symmetric monoidal, then gives
that

f\(A
�

⊗L
Λf
∗B)→ f\A

�

⊗L
ΛB

is an isomorphism. The isomorphism

RHom(f\A,B) ∼= Rf∗RHom(A, f∗B)

then follows by adjointness.

For part (ii), we can assume Λ′ = Ẑp, and check on generators. These are given by j\Ẑp ⊗L
Ẑp

Λ

for j : Y ′ → Y . The claim then follows from the projection formula.

Part (iii) is obtained by passing to left adjoints in Proposition VII.2.4. �

Now if f is “proper and smooth”, we want to relate the left adjoint f\ (“homology”) and the
right adjoint Rf∗ (“cohomology”). Thus, assume that f : Y → X is a proper map of small v-stacks
that is representable in spatial diamonds with dim. trg f <∞, and cohomologically smooth, i.e. `-
cohomologically smooth for all ` 6= p (or just all ` relevant for Λ). In this case, we want to express
Rf∗ in terms of f\. As a first step, we show that Rf∗ has bounded cohomological dimension.

Proposition VII.3.2. Let f : Y → X be a proper map of small v-stacks that is representable
in spatial diamonds with dim. trg f < ∞, and cohomologically smooth. Then Rf∗ : D�(Y,Λ) →
D�(X,Λ) has bounded cohomological dimension and commutes with arbitrary direct sums. If X is

a spatial diamond (thus Y is) and F is a finitely presented solid Ẑp-sheaf on Y , then Rf∗F is a

bounded complex all of whose cohomology sheaves are finitely presented solid Ẑp-sheaves on X.

Proof. We can assume Λ = Ẑp. The commutation with arbitrary direct sums follows from
bounded cohomological dimension, as one can then reduce to the case of complexes concentrated
in degree 0, where Rf∗ commutes with all direct sums as f is qcqs. For the claim about bounded
cohomological dimension, we can argue v-locally, and hence assume that X is a spatial diamond.

It suffices to prove that for all solid Ẑp-sheaves F on Y , the complex Rf∗F is bounded; this

reduces to the case of finitely presented solid Ẑp-sheaves as Rf∗ commutes with filtered colimits of
sheaves. Now if F is finitely presented, it is a cofiltered limit of constructible étale sheaves killed
by some integer prime to p. As Rf∗ commutes with this limit, it is now enough to see that Rf∗
preserves constructible complexes and has bounded amplitude. But this follows from cohomological
smoothness, cf. [Sch17a, Proposition 23.12 (ii)]. �

Next, we prove a projection formula for Rf∗.

Proposition VII.3.3. Let f : Y → X be a proper map of small v-stacks that is representable
in spatial diamonds with dim. trg f < ∞, and cohomologically smooth. Then for all A ∈ D�(Y,Λ)
and B ∈ D�(X,Λ), the projection map

Rf∗A
�

⊗LB → Rf∗(A
�

⊗Lf∗B)
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is an isomorphism.

Proof. We can assume Λ = Ẑp. We note that Rf∗ and
�

⊗L both have bounded cohomological
dimension, so one easily reduces to the case that A and B are concentrated in degree 0. We can
also assume that X is a spatial diamond (thus Y is, too). Then we can write A and B as filtered

colimits of finitely presented solid Ẑp-sheaves, and reduce to the case that A and B are cofiltered
limits of constructible étale sheaves killed by some integer prime to p. In that case, it follows
from Proposition VII.2.3 and Proposition VII.3.2 that all operations commute with these cofiltered
limits, and one reduces to the case that A and B are constructible étale sheaves killed by some
integer prime to p. Now it follows from [Sch17a, Proposition 22.11]. �

Moreover, the functor Rf∗ interacts well with g\ for maps g : X ′ → X.

Proposition VII.3.4. Let

Y ′
g′ //

f ′

��

Y

f
��

X ′
g // X

be a cartesian diagram of small v-stacks, where f : Y → X is proper, representable in spatial
diamonds, with dim. trg f <∞ and cohomologically smooth. Then the natural transformation

g\Rf
′
∗A→ Rf∗g

′
\A

is an isomorphism for all A ∈ D�(Y ′,Λ).

Proof. We can assume Λ = Ẑp. By Proposition VII.3.2 both sides commute with Postnikov
limits, so we can assume A ∈ D+, and then reduce to the case that A is concentrated in degree
0. We may assume that X is a spatial diamond, and one can also reduce to the case X ′ is a

spatial diamond, by writing A as the geometric realization of h′•\h
′\
•A for some simplicial hyper-

cover h• : X ′• → X ′ by disjoint unions of spatial diamonds, and its pullback h′• : Y ′• → Y ′ (and
using Proposition VII.3.2 to commute the geometric realization with pushforward). Under these

circumstances, one can write A as a filtered colimit of finitely presented solid Ẑp-modules, and
hence reduce to the case that A is a cofiltered limit of constructible étale sheaves killed by some
integer prime to p. By Proposition VII.3.2 the complex Rf ′∗A is then bounded with all cohomology

sheaves finitely presented solid Ẑp-modules. As g\ preserves pseudocoherent objects, it follows that

the map g\Rf
′
∗A→ Rf∗g

′
\A is a map of bounded to the right complexes in D�(X, Ẑp) all of whose

cohomology sheaves are finitely presented solid Ẑp-modules. If the cone of this map is nonzero,
then by looking at its first nonzero cohomology sheaf, we find some nonzero map to a constructible
étale sheaf B on X, killed by some integer prime to p. Note that, using the usual étale Rf ! functor,
there is a natural adjunction

RHom(Rf∗g
′
\A,B) ∼= RHom(g′\A,Rf

!B) :

Indeed, it suffices to check this when g′\A is replaced by a finitely presented solid Ẑp-module, by a

Postnikov tower (and as all cohomology sheaves of g′\A are of this form). Writing this as a cofiltered
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limit of constructible étale sheaves killed by some integer prime to p, both sides turn this cofiltered
limit into a filtered colimit, so the claim reduces to the usual étale adjunction.

Applying RHom(−, B) to the map g\Rf
′
∗A→ Rf∗g

′
\A will thus produce RHom(A,−) applied

to the base change map

Rf ′!g∗B ← g′∗Rf !B,

which is an isomorphism by [Sch17a, Proposition 23.12 (iii)]. �

Now we can describe the functor Rf∗. Indeed, consider the diagram

Y
∆f // Y ×X Y

π2 //

π1

��

Y

f
��

Y
f // X.

Then, under our assumption that f : Y → X is a proper map of small v-stacks that is representable
in spatial diamonds with dim. trg f <∞ and cohomologically smooth, we have

Rf∗A ∼= Rf∗π2\∆f\A
∼= f\Rπ1∗∆f\A

∼= f\Rπ1∗∆f\∆
∗
fπ
∗
1A

∼= f\Rπ1∗(∆f\Λ
�

⊗L
Λπ
∗
1A)

∼= f\(Rπ1∗∆f\Λ
�

⊗L
ΛA).

We combine this with the following observation.

Proposition VII.3.5. Let f : Y → X be a proper map of small v-stacks that is representable
in spatial diamonds with dim. trg f <∞ and cohomologically smooth. Then

Rπ1∗∆f\Λ ∈ D�(Y,Λ)

is invertible, and its inverse is canonically isomorphic to

Rf !Λ := lim←−
n

Rf !Z/nZ⊗L
Ẑp Λ.

Thus, there is a canonical isomorphism

f\A ∼= Rf∗(A
�

⊗L
ΛRf

!Λ) : D�(Y,Λ)→ D�(X,Λ).

Thus, we get a somewhat unusual formula for the dualizing complex. We remark that the fibres

of Rπ1∗∆f\Ẑp are given by the limit of RΓc(U, Ẑp) over all étale neighborhoods U of the given
geometric point.

Remark VII.3.6. We see here that an important instance of Rf ! admits an alternative de-
scription in terms of g\ functors. We are a bit confused about exactly how expressive the present
5-functor formalism is. So far, we were always able to translate any argument in terms of a 6-
functor formalism into this 5-functor formalism, although it is often a nontrivial matter and there
seems to be no completely general recipe.
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Proof. We can assume Λ = Ẑp. By the isomorphism Rf∗ ∼= f\(Rπ1∗∆f\Ẑp
�

⊗LA), it follows

that Rf∗ : D�(Y, Ẑp)→ D�(X, Ẑp) admits a right adjoint, given by

A 7→ RHom(Rπ1∗∆f\Ẑp, f∗A).

We claim that this right adjoint maps Dét(X,Z/nZ) into Dét(Y,Z/nZ) for any n prime to p, and
thus agrees with the right adjoint Rf ! in that setting. This claim can be checked v-locally, so we

can assume that X is a spatial diamond. Then Rπ1∗∆f\Ẑp ∈ D�(Y, Ẑp) is a bounded complex
all of whose cohomology sheaves are finitely presented solid, by Proposition VII.3.2 and as ∆f

is quasi-pro-étale (so ∆f\Ẑp is finitely presented solid). This implies that RHom(Rπ1∗∆f\Ẑp,−)
preserves Dét(Y,Z/nZ).

Thus, for any A ∈ Dét(X,Z/nZ), there is a natural isomorphism

Rf !A ∼= RHom(Rπ1∗∆f\Ẑp, f∗A).

Applied with A = Z/nZ, this gives isomorphisms

Rf !Z/nZ ∼= RHom(Rπ1∗∆f\Ẑp,Z/nZ).

It remains to see that Rπ1∗∆f\Ẑp is invertible; more precisely, we already get a natural map

Rπ1∗∆f\Ẑp → (Rf !Ẑp)−1

that we want to prove is an isomorphism. This can again be checked v-locally, so we can assume

that X is a spatial diamond. Then Rπ1∗∆f\Ẑp is a bounded complex all of whose cohomology
sheaves are finitely presented solid; so as in the proof of Proposition VII.3.4, it is enough to check
that one gets isomorphisms after applying RHom(−, B) for any B ∈ Dét(Y,Z/nZ). But

RHom(Rπ1∗∆f\Ẑp, B) ∼= Rπ1∗RHom(∆f\Ẑp, Rπ!
1B)

∼= ∆∗fRπ
!
1B

∼= B ⊗L
Z/nZ Rf

!Z/nZ,

giving the result.

The final statement follows formally from the identification of Rπ1∗∆f\Λ and the discussion
leading up to the proposition. �

VII.4. Relation to Dét

Assume now that Λ is discrete. In particular, also being a Ẑp-algebra, we have nΛ = 0 for
some n prime to p. We wish to understand the relation between Dét(X,Λ) and D�(X,Λ), and the
functors defined on them.

VII.4.1. Naive embedding. For any small v-stack X, we have a fully faithful embedding

Dét(X,Λ) ↪→ D�(X,Λ)

as full subcategories of D(Xv,Λ). As usual, the adjoint functor theorem implies that this admits a
right adjoint RX ét : D�(X,Λ)→ Dét(X,Λ). The full inclusion Dét(X,Λ) ⊂ D�(X,Λ) is symmetric
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monoidal, and compatible with pullback. Moreover, by [Sch17a, Proposition 17.6], it also com-
mutes with Rf∗ if f : Y → X is qcqs and one restricts to D+; or in general f is qcqs and of finite
cohomological dimension. Moreover, one always has

RX étRf∗ ∼= Rf∗RY ét.

Similarly, passing to right adjoints in the commutation with tensor products, we also have

RX étRHomDét(X,Λ)(A,B) ∼= RHomD�(X,Λ)(A,RX étB)

if A ∈ Dét(X,Λ) and B ∈ D�(X,Λ). If A is perfect-constructible, then for all B ∈ Dét(X,Λ), one
actually has

RHomDét(X,Λ)(A,B) ∼= RHomD�(X,Λ)(A,B) :

by descent, it suffices to check this when X is spatial diamond, and then one reduces to A = j!Λ for
some quasicompact separated étale map j : U → X. In that case, it follows from Rj∗ commuting
with the embedding Dét(X,Λ)→ D�(X,Λ), as it is qcqs and has cohomological dimension 0.

VII.4.2. Dual embedding. For a small v-stack X, let D†ét(X,Λ) ⊂ Dét(X,Λ) be the full
subcategory of overconvergent objects. Recall that A ∈ Dét(X,Λ) is overconvergent if for any
strictly local Spa(C,C+)→ X, the map

RΓ(Spa(C,C+), A)→ RΓ(Spa(C,OC), A)

is an isomorphism.

Proposition VII.4.1. Assume that Λ = Z/nZ with n prime to p. For any overconvergent

A ∈ D†ét(X,Λ), let

A∨ = RHomD�(X,Λ)(A,Λ) ∈ D�(X,Λ).

Then the functor

D†ét(X,Λ)op → D�(X,Λ) : A 7→ A∨

is fully faithful, t-exact (for the standard t-structure), compatible with pullback, and the map

A→ RHomD�(X,Λ)(A
∨,Λ)

is an isomorphism.

Proof. As the formation of RHom in the solid context commutes with any base change, all
assertions can be proved by v-descent, so we can assume that X is strictly totally disconnected.

Then D†ét(X,Λ) ∼= D(π0X,Λ). The heart of the standard t-structure is then an abelian category
with compact projective generators i∗Λ for open and closed subsets i : S ⊂ π0X, and the whole
category is the Ind-category of the constructible complexes of Λ-modules on π0X (which are locally
constant with finite fibres). Passage to the naive dual is an autoequivalence on constructible
complexes (as Λ is selfinjective), and thus embeds the whole Ind-category fully faithfully into the
Pro-category of constructible complexes of Λ-modules on π0X, which sits fully faithfully inside the
category of finitely presented solid sheaves on X. This already establishes that the functor is fully
faithful and t-exact, and we already observed at the beginning that it commutes with any pullback.

It remains to prove that

A→ RHomD�(X,Λ)(A
∨,Λ)
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is an isomorphism. Again, we can assume Λ = F` so that all operations are t-exact. Again, the
statement is clear if A is constructible, and in general it follows from Breen’s resolution that the
Pro-structure on A∨ dualizes to a filtered colimit on applying RHomD�(X,Λ)(−, B). �

The functor A 7→ A∨ is also close to being symmetric monoidal. Note that it is lax-symmetric
monoidal, i.e. there is a natural functorial map

A∨
�

⊗L
ΛB
∨ → (A⊗L

Λ B)∨.

Proposition VII.4.2. Assume that A ∈ D†ét(X,Λ) has finite Tor-amplitude over Λ = Z/nZ,

i.e. for all quotients Λ → F`, the complex A ⊗L
Λ F` ∈ D†ét(X,F`) is bounded. Then for all B ∈

D†ét(X,Λ), the maps

A∨
�

⊗L
ΛB
∨ → (A⊗L

Λ B)∨ , A⊗L
Λ B → RHomD�(X,Λ)(A

∨, B)

are isomorphisms.

Proof. The second follows from the first: Using Proposition VII.4.1,

RHomD�(X,Λ)(A
∨, B) ∼= RHomD�(X,Λ)(A

∨, RHomD�(X,Λ)(B
∨,Λ)) ∼= RHomD�(X,Λ)(A

∨ �

⊗L
ΛB
∨,Λ),

which one can further rewrite to A⊗L
Λ B assuming the first isomorphism.

We can assume Λ = F`, and that A is concentrated in degree 0. Now as functors of B, all
operations are t-exact, so we can reduce to the case that also B is concentrated in degree 0. We

can assume that X is strictly totally disconnected, and then D†ét(X,F`) ∼= D(π0X,F`). Then A
and B are filtered colimits of constructible sheaves on π0X, and RHom(−,F`) is a contravariant
autoequivalence on constructible F`-sheaves on π0X. Then the result follows by observing that
A 7→ A∨ simply exchanges the Ind-category of constructible F`-sheaves on π0X with its Pro-
category. �

As noted above, the functor A 7→ A∨ is compatible with pullback. Regarding pushforward, we
have the following result.

Proposition VII.4.3. Let f : Y → X be a proper map of small v-stacks that is representable

in spatial diamonds with dim. trg f <∞. Let A ∈ D†ét(Y,Λ) with dual A∨ ∈ D�(Y,Λ). Then there
is a natural isomorphism

(Rf∗A)∨ ∼= f\A
∨.

Note that Rf∗A is again overconvergent, by proper base change.

Proof. One has

RHomD�(X,Λ)(f\A
∨,Λ) ∼= Rf∗RHomD�(Y,Λ)(A

∨,Λ) ∼= Rf∗A,

so by biduality one gets a natural map

f\A
∨ → (Rf∗A)∨;

we claim that this is an isomorphism. This can be checked v-locally on X, so we can assume that
X is w-contractible. One can assume A is bounded above (i.e. A ∈ D−) as both functors take
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very coconnective objects to very connective objects; by shifting, we can assume A ∈ D≤0. Now
using a Postnikov limit and the assumption dim. trg f <∞, we can also assume that A ∈ D+, and
hence reduce to A sitting in degree 0. Now we can choose a hypercover of Y by perfectoid spaces
Yi that are the canonical compactifications (relative to X) of w-contractible spaces. One can then
replace Y by one of the Yi, so assume that Y is the canonical compactification of a w-contractible

space. In particular, D†ét(Y,Λ) ∼= D(π0Y,Λ), and all operations can be computed on the level
of π0f : π0Y → π0X instead. Here, the result amounts again to the duality between Ind- and
Pro-objects in the category of constructible sheaves on profinite sets. �

VII.5. Dualizability

It turns out that most of the results above on Poincaré duality hold verbatim if the assumption
that f is cohomologically smooth is relaxed to the assumption that F` is f -universally locally acyclic
for all ` 6= p. In fact, even more generally, one can obtain certain results comparing twisted forms
of f\ and Rf∗ for any f -universally locally acyclic complex A.

Assume that Λ is a quotient of Ẑp of the form lim←−n Z/nZ where n now runs only over some
integers prime to p. If f : X → S is a compactifiable map of small v-stacks that is representable
in locally spatial diamonds with locally dim. trg f < ∞, we define the category DULA(X/S,Λ) of
f -universally locally acyclic complexes with coefficients Λ as the limit of the full subcategories

DULA(X/S,Z/nZ) ⊂ Dét(X,Z/nZ)

of f -universally locally acyclic objects in Dét(X,Z/nZ), for n running over the same set of integers
prime to p. Equivalently, DULA(X/S,Λ) is the category of all A ∈ D�(X,Λ) such that An =
A⊗L

Λ Z/nZ lies in Dét(X,Z/nZ) for all such n, is f -universally locally acyclic, and A is the derived
limit of the An.

Given such an A, in particular all An are overconvergent, and the functor

A 7→ A∨ = RHomD�(X,Λ)(A,Λ) = R lim←−
n

A∨n ∈ D�(X,Λ)

defines another fully faithful (contravariant) embedding

DULA(X/S,Λ)op ↪→ D�(X,Λ)

of f -universally locally acyclic complexes into D�(X,Λ). We can also precompose with Verdier
duality DX/S to obtain a covariant fully faithful embedding

DULA(X/S,Λ) ↪→ D�(X,Λ) : A 7→ DX/S(A)∨.

Example VII.5.1. Assume that S = SpaC is a geometric point, and X is the analytification
of an algebraic variety Xalg/ SpecC. Then any constructible complex on Xalg is universally locally
acyclic over S, yielding a fully faithful embedding

Db
c(X

alg,Z`) ↪→ DULA(X/S,Z`) ↪→ D�(X,Z`),
embedding the usual bounded derived category of constructible Z`-sheaves on Xalg into D�(X,Z`).
The image lands in bounded complexes with finitely presented solid cohomology sheaves; in fact,
in compact objects. Thus, this fully faithful embedding extends to a fully faithful embedding

IndDb
c(X

alg,Z`) ↪→ D�(X,Z`).
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The category on the left is the one customarily associated to Xalg. This functor takes the sheaf
i∗Z`, for a point i : SpecC → Xalg, to the solid sheaf i\Z`.

In many papers in geometric Langlands and related fields, one often finds the following con-
struction. If Y is a stack on the category of schemes over SpecC, let

D(Y,Z`) := lim←−
Xalg→Y

IndDbc(Xalg,Z`)

where Xalg runs over schemes of finite type over SpecC, and the transition functors are given by
Rf !. This, in fact, embeds naturally into D�(Y ♦,Z`) via the previous embedding, noting that it
intertwines Rf ! with the usual pullback f∗ on solid sheaves. In fact,

DX′/S(Rf !A)∨ ∼= (f∗DX/S(A))∨ ∼= f∗DX/S(A)∨

for a map f : X ′alg → Xalg of algebraic varieties over SpecC.

Now for A ∈ DULA(X/S,Λ), we analyze the functor

f\(DX/S(A)∨
�

⊗L
Λ−) : D�(X,Λ)→ D�(S,Λ).

We note that from the definition one sees that this functor commutes with all colimits, the formation
of this functor commutes with any base change, and it satisfies the projection formula. In fact, this
functor extends the functor Rf!(A⊗L

Λ −).

Proposition VII.5.2. Assume that A ∈ DULA(X/S,Λ) has bounded Tor-amplitude. Let Z/nZ
be a discrete quotient of Λ. For B ∈ Dét(X,Z/nZ), there is a natural equivalence

f\(DX/S(A)∨
�

⊗L
ΛB) ∼= Rf!(An ⊗L

Z/nZ B) ∈ Dét(S,Z/nZ).

Proof. We can assume Λ = Z/nZ. Note that for any C ∈ Dét(S,Λ), one has

RHomΛ(f\(DX/S(A)∨
�

⊗L
ΛB), C) ∼= RHomΛ(DX/S(A)∨

�

⊗L
ΛB, f

∗C)

∼= RHomΛ(B,RHomD�(X,Λ)(DX/S(A)∨, f∗C))

∼= RHomΛ(B,DX/S(A)⊗L
Λ f
∗C)

∼= RHomΛ(B,RHomDét(X,Λ)(A,Rf
!C))

∼= RHomΛ(A⊗L
Λ B,Rf

!C)

∼= RHomΛ(Rf!(A⊗L
Λ B), C).

Here, we use Proposition VII.4.1 and Proposition IV.2.19. In particular, there is a natural map

f\(DX/S(A)∨
�

⊗L
ΛB)→ Rf!(A⊗L

Λ B).

We claim that this is an isomorphism. This can be checked v-locally, so we can assume that S is
strictly totally disconnected. We can assume that X is a spatial diamond by localization. As the
functor commutes with all colimits in B, we can also assume that B = j!Λ for some quasicompact
separated étale j : V → X. Replacing X by V , we can then even assume B = Λ.

Now DX/S(A) lies in D+ and then again DX/S(A)∨ in D−. It follows that DX/S(A)∨ is a
complex that is bounded above, and finitely presented solid in each degree. Thus f\DX/S(A)∨ is
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of the same form, and so is the cone Q of f\DX/S(A)∨ → Rf!A. If Q is nonzero, we can look at

the largest i such that Hi(Q) is nonzero. This is finitely presented solid, so a cofiltered limit of
constructible étale sheaves. But RHom(Q,C) = 0 for all C ∈ Dét(S,Λ), so it follows that indeed
Q = 0. �

If f is moreover proper, one can also prove the following version of A-twisted Poincaré duality.

Proposition VII.5.3. Assume that f : X → S is a proper map of small v-stacks that is
representable in spatial diamonds with dim. trg f < ∞. Let A ∈ DULA(X/S,Λ) with bounded
Tor-amplitude. Then there is a natural equivalence

f\(DX/S(A)∨
�

⊗L
Λ−) ∼= Rf∗RHomD�(X,Λ)(A

∨,−)

of functors D�(X,Λ)→ D�(S,Λ).

Proof. First, we construct the natural transformation. Let π1, π2 : X ×S X → X be the two
projections. Giving a map

f\(DX/S(A)∨
�

⊗L
ΛB)→ Rf∗RHomD�(X,Λ)(A

∨, B)

is equivalent to giving a map

f∗f\(DX/S(A)∨
�

⊗L
ΛB)

�

⊗L
ΛA
∨ → B.

But

f∗f\(DX/S(A)∨
�

⊗L
ΛB)

�

⊗L
ΛA
∨ ∼= π1\π

∗
2(DX/S(A)∨

�

⊗L
ΛB)

�

⊗L
ΛA
∨

∼= π1\(π
∗
2DX/S(A)∨

�

⊗L
Λπ
∗
2B

�

⊗L
Λπ
∗
1A
∨).

Thus, it suffices to construct a functorial map

π∗2DX/S(A)∨
�

⊗L
Λπ
∗
1A
∨ �

⊗L
Λπ
∗
2B → π∗1B.

For this in turn it suffices to construct a natural map

π∗2DX/S(A)∨
�

⊗L
Λπ
∗
1A
∨ → ∆\Λ

where ∆ : X ↪→ X ×S X is the diagonal. Here ∆\Λ ∼= (∆∗Λ)∨ by Proposition VII.4.3 and

π∗2DX/S(A)∨
�

⊗L
Λπ
∗
1A
∨ ∼= (π∗2DX/S(A) ⊗L

Λ π
∗
1A)∨ by Proposition VII.4.2. Thus, we have to find a

map
∆∗Λ→ π∗2DX/S(A)⊗L

Λ π
∗
1A

or equivalently a section ofR∆!(π∗2DX/S(A)⊗L
Λπ
∗
1A). But π∗2DX/S(A)⊗L

Λπ
∗
1A
∼= RHom(π∗2A,Rπ

!
1A)

as A is f -universally locally acyclic, and then

R∆!(π∗2DX/S(A)⊗L
Λ π
∗
1A) ∼= R∆!RHom(π∗2A,Rπ

!
1A) ∼= RHom(A,A),

where we find the identity section.

To show that the map is an isomorphism, we can now localize on S, and in particular assume
that S is strictly totally disconnected. By the bounded assumption on A and finite cohomological
dimension of f , the functor Rf∗RHomΛ(A∨,−) commutes with all direct sums, and hence we
can assume that B is finitely presented solid (concentrated in degree 0). Then we can write B
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as a cofiltered limit of constructible étale sheaves, and the left-hand side commutes with such
limits; so we can reduce to B being a constructible étale sheaf, where the result follows from
Proposition VII.5.2 and Proposition VII.4.1. �

From the perspective of using sheaves as kernels of induced functors, we have the following
picture. We can introduce a variant of the category CS introduced above. Namely, for any small
v-stack S, let us consider the 2-category CS,� whose objects are relatively 0-truncated small v-stacks
X over S, and whose categories of morphisms

FunCS,�(X,Y ) = D�(X ×S Y,Λ)

are given by solid complexes. Again, to any X ∈ CS,�, we can associate the triangulated category
D�(X,Λ) and to any A ∈ D�(X ×S Y,Λ) the functor

p2\(A
�

⊗L
Λp
∗
1) : D�(X,Λ)→ D�(Y,Λ)

with kernel A. The composition in CS,� is defined by the convolution

D�(X ×S Y,Λ)×D�(Y ×S Z,Λ)→ D�(X ×S Z,Λ) : (A,B) 7→ A ? B = p13\(p
∗
12A

�

⊗L
Λp
∗
23B).

We wish to compare CS and CS,�. Note that the naive embedding Dét(X ×S Y,Λ) ↪→ D�(X ×S
Y,Λ) is not compatible with the convolution (as one employs Rπ13! while the other employs π13\).

On the other hand, we can restrict to the sub-2-category C†S ⊂ CS whose objects are only the proper
X/S representable in spatial diamonds of finite dim. trg, and with

FunC†S
(X,Y ) = D†ét,ftor(X ×S Y,Λ),

where the subscript ftor stands for finite Tor-dimension over Λ. Then there is a fully faithful

embedding C†S ↪→ Cco
S,� where the superscript co means that we change the direction of the arrows

within each FunCS,�(X,Y ). Indeed, for any X,Y ∈ C†S , the functor A 7→ A∨ defines a fully faithful
embedding

FunC†S
(X,Y ) = D†ét,ftor(X ×S Y,Λ) ↪→ D�(X ×S Y,Λ)op = FunCco

S,�
(X,Y ).

This is compatible with composition by Proposition VII.4.2 and Proposition VII.4.3. This discus-
sion leads to another proof of Proposition VII.5.3:

Corollary VII.5.4. Let f : X → S be a proper map of small v-stacks that is representable in
spatial diamonds with dim. trg f < ∞. Let A ∈ Dét(X,Λ) be f -universally locally acyclic and of
finite Tor-dimension over Λ. Then A∨ ∈ D�(X,Λ) = FunCS,�(X,S) is right adjoint to

DX/S(A)∨ ∈ D�(X,Λ) = FunCS,�(S,X).

In particular, the functor

f\(A
∨ �

⊗L
Λ−) : D�(X,Λ)→ D�(S,Λ)

is right adjoint to the functor

DX/S(A)∨
�

⊗L
Λf
∗− : D�(S,Λ)→ D�(X,Λ),

so

f\(A
∨ �

⊗L
Λ−) ∼= Rf∗RHomΛ(DX/S(A)∨,−) : D�(X,Λ)→ D�(S,Λ).
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Moreover, when applied to the Satake category, we get a fully faithful embedding

(SatIG)op ↪→ D�(HckIG, Ẑp) : A 7→ A∨

compatible with the monoidal structure (and functorially in I), where the right-hand side is given
by

FunCS,�([(Div1)IX/L
+
(Div1

X)I
G], [(Div1)IX/L

+
(Div1

X)I
G])

for S = [(Div1
X)I/L(Div1

X)IG]. Precomposing with Verdier duality, we get a covariant fully faithful

embedding

SatIG ↪→ D�(HckIG, Ẑp) : A 7→ DX/S(A)∨.

By Proposition VII.5.2, when one uses objects in the Satake category as kernels to define Hecke
operators, this fully faithful embedding makes it possible to extend Hecke operators from Dét to
D�.

VII.6. Lisse sheaves

The category D�(X,Λ) is huge: Already if X is a point and Λ = F`, it is the derived category
of solid F`-vector spaces, which is much larger than the category of usual discrete F`-vector spaces.
When applied to BunG, we would however really like to study smooth representations on discrete
Λ-modules.

As coefficients, we will from now on choose a discrete Z`-algebra Λ for some ` 6= p, or rather
the corresponding condensed ring Λ := Z`⊗Z`,disc

Λdisc. (For a technical reason, we have to restrict
attention to a particular prime `.)

It turns out that when X is an Artin v-stack, one can define a full subcategory Dlis(X,Λ) ⊂
D�(X,Λ) that when specialized to X = BunG has the desired properties. Here the subscript “lis”
is an abbreviation of “lisse” (french smooth), and is not meant to evoke lisse sheaves in the sense
of locally constant sheaves, but lisse-étale sheaves in the sense of Artin stacks [LMB00].

Definition VII.6.1. Let X be an Artin v-stack. The full subcategory Dlis(X,Λ) ⊂ D�(X,Λ)
is the smallest triangulated subcategory stable under all direct sums that contains f\Λ for all maps
f : Y → X that are separated, representable in locally spatial diamonds, and `-cohomologically
smooth.

In principle, one could give this definition even when X is any small v-stack, but in that case
there might be very few objects.

Proposition VII.6.2. Let X be an Artin v-stack. The full subcategory Dlis(X,Λ) ⊂ D�(X,Λ)

is stable under −
�

⊗ L
Λ−. Moreover, if f : Y → X is a map of Artin v-stacks, then f∗ maps

Dlis(X,Λ) ⊂ D�(X,Λ) into Dlis(Y,Λ) ⊂ D�(Y,Λ).

Proof. As tensor products and pullbacks commute with all direct sums, it suffices to check
the claim on the generators g\Λ for maps g : Z → X that are separated, representable in locally
spatial diamonds, and `-cohomologically smooth. Now the result follows as pullbacks and products
of such maps are of the same form. �
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Proposition VII.6.3. Let X be an Artin v-stack. The inclusion Dlis(X,Λ) ⊂ D�(X,Λ) admits
a right adjoint

A 7→ Alis : D�(X,Λ)→ Dlis(X,Λ).

The kernel of A 7→ Alis is the class of all A ∈ D�(X,Λ) such that A(Y ) = 0 for all f : Y → X that
are separated, representable in locally spatial diamonds, and `-cohomologically smooth.

Proof. The existence of the right adjoint is formal. We note that the ∞-category D�(X,Λ) is
not itself presentable, but rather is the large filtered colimit of presentable∞-categories D�(Xκ,Λ)
for uncountable strong limit cardinals κ (restricting the v-site to κ-small perfectoid spaces). Also
note that Dlis(X,Λ) is contained in D�(Xκ,Λ) for some κ: This can be checked when X is a spatial
diamond and for the generators f\Λ ∼= f\Z` ⊗L

Z` Λ when f : Y → X is in addition quasicompact,

in which case f\Z` is the limit of f\Z/`mZ all of which lie in Dét(X,Z/`mZ), so we conclude by
[Sch17a, Remark 17.4]. It follows that the right adjoints to Dlis(X,Λ) → D�(Xκ,Λ) for all large
enough κ glue to the desired right adjoint.

The description of the kernel is formal. �

Using Proposition VII.6.3, we can then also define RHomlis(A,B) ∈ Dlis(X,Λ) for A,B ∈
Dlis(X,Λ) and Rflis∗ : Dlis(Y,Λ) → Dlis(X,Λ) for a map f : Y → X of Artin v-stacks, satisfying
the usual adjunction to the tensor product and pullback.

The goal of passing to Dlis is to make sheaves “discrete” again. Recall the following result.

Proposition VII.6.4. For any condensed ring A with underlying ring A(∗), the functor M 7→
M ⊗A(∗) A induces a fully faithful functor

D(A(∗)) ↪→ D(A)

from the derived category of usual A(∗)-modules to the derived category of condensed modules over
the condensed ring A.

Proof. We need to see that for any M,N ∈ D(A(∗)), the map

RHomA(∗)(M,N)→ RHomA(M ⊗A(∗) A,N ⊗A(∗) A)

is an isomorphism. The class of all M for which this happens is triangulated and stable under all
direct sums, so it suffices to consider M = A(∗). Then it amounts to

N(∗)→ (N ⊗A(∗) A)(∗)
being an isomorphism, which follows from evaluation at ∗ being symmetric monoidal. �

In particular, we have the following result for a geometric point.

Proposition VII.6.5. Let X = SpaC for some complete algebraically closed nonarchimedean
field C. Then Dlis(X,Λ) ∼= D(Λ), the derived category of (relatively) discrete Λ-modules.

Proof. We need to see that for all separated `-cohomologically smooth maps f : Y → X of
spatial diamonds, one has f\Λ ∈ D(Λ). This reduces to Λ = Z`. In that case, f\Z` = lim←−m f\Z/`

mZ,
where by Proposition VII.5.2 each

f\Z/`mZ ∼= Rf!Rf
!Z/`mZ,
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which is a perfect complex of Z/`mZ-modules, in particular discrete. Taking the limit over m, we
get a perfect complex of Z`-modules, which is in particular (relatively) discrete over Z`. �

When working with torsion coefficients, one recovers Dét.

Proposition VII.6.6. Let X be an Artin v-stack, and assume that Λ is killed by a power of
`. Then Dlis(X,Λ) ⊂ D�(X,Λ) is contained in the image of the naive embedding Dét(X,Λ) ↪→
D�(X,Λ). If there is a separated `-cohomologically smooth surjection U → X from a locally spatial
diamond U , such that Uét has a basis with bounded `-cohomological dimension, then it induces an
equivalence Dlis(X,Λ) ∼= Dét(X,Λ).

Proof. If f : Y → X is separated, representable in locally spatial diamonds, and `-cohomologically
smooth, then f\Λ = Rf!Rf

!Λ lies in Dét(X,Λ), hence Dlis(X,Λ) ⊂ Dét(X,Λ). To check equality,
we can work on an atlas, so by the assumption we can reduce to the case that X is a locally
spatial diamond for which Xét has a basis with bounded `-cohomological dimension. In that case
Dét(X,Λ) ∼= D(Xét,Λ) by [Sch17a, Proposition 20.17] (the proof only needs a basis with bounded
cohomological dimension), which is generated by j!Λ for j : U → X quasicompact separated étale,
which is thus also contained in Dlis(X,Λ). �

The most severe problem with the general formalism of solid sheaves is that stratifications
of a space do not lead to corresponding decompositions of sheaves into pieces on the individual
strata. This problem is somewhat salvaged by Dlis(X,Λ): We expect that it holds true if X and its
stratification are sufficiently nice. Here is a simple instance that will be sufficient for our purposes.

Proposition VII.6.7. Let X be a locally spatial diamond with a closed point x ∈ X, giving a
corresponding closed subdiamond i : Z ⊂ X with complement j : U ⊂ X. Assume that Z = SpaC
is representable, with C an algebraically closed nonarchimedean field. Moreover, assume that Z
can be written as a cofiltered intersection of quasicompact open neighborhoods V ⊂ X such that
RΓ(V,F`) ∼= F`.

Then one has a semi-orthogonal decomposition of Dlis(X,Λ) into Dlis(U,Λ) and Dlis(Z,Λ) ∼=
D(Λ).

Proof. We may assume thatX is spatial. We analyze the quotient ofDlis(X,Λ) by j!Dlis(U,Λ).
This is equivalently the subcategory of all A ∈ Dlis(X,Λ) with j∗A = 0. It is generated by
the images of f\Λ for f : Y → X cohomologically smooth separated map of spatial diamonds;
under the embedding of the quotient category back into Dlis(X,Λ), this corresponds to the cone
of j!j

∗f\Λ → f\Λ. Let M = i∗f\Λ ∈ Dlis(Z,Λ) ∼= D(Λ), which in fact is a perfect complex of
Λ-modules (by the proof of Proposition VII.6.5). Then we claim that there is an isomorphism

cone(j!j
∗f\Λ→ f\Λ) ∼= cone(j!M →M).

To see this, it suffices to prove that there is some open neighborhood V of Z such that f\Λ|V ∼= M ,
the constant sheaf associated with M . We can reduce to Λ = Z`. As f\F` is constructible, we can
find some such V for which f\F`|V ∼= M/`. Picking such an isomorphism reducing to the identity
at x, and choosing V with the property RΓ(V,F`) ∼= F`, we see that in fact the isomorphism lifts
uniquely to Z/`mZ for each m, and thus by taking the limit over m to the desired isomorphism
f\Λ|V ∼= M .
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Thus, the quotient of Dlis(X,Λ) by j!Dlis(U,Λ) is generated by the constant sheaf Λ. Moreover,
the endomorphisms of Λ in the quotient category are given by the cone of

RΓ(X, j!Λ)→ RΓ(X,Λ).

This is equivalently the filtered colimit of RΓ(V,Λ) over all open neighborhoods V of Z; we can
restrict to those for which RΓ(V,F`) ∼= F`. This implies formally that RΓ(V,Z`) ∼= Z` by passing
to limits and then RΓ(V,Λ) ∼= Λ by passing to filtered colimits. Thus, we get the desired semi-
orthogonal decomposition. �

VII.7. Dlis(BunG)

Our goal now is to extend the results of Chapter V to the case of Dlis(BunG,Λ). This will
notably include the case Λ = Q`.

Thus, let again be E any nonarchimedean local field with residue field Fq and G a reduc-

tive group over E. We work with Perfk where k = Fq, and fix a complete algebraically closed
nonarchimedean field C/k.

Proposition VII.7.1. Let b ∈ B(G). The pullback functors

Dlis(BunbG,Λ)→ Dlis([∗/Gb(E)],Λ)→ Dlis([SpaC/Gb(E)],Λ),

Dlis(BunbG,Λ)→ Dlis(BunbG×SpaC,Λ)→ Dlis([SpaC/Gb(E)],Λ)

are equivalences, and all categories are naturally equivalent (as symmetric monoidal categories) to
the derived category D(Gb(E),Λ) of smooth representations of Gb(E) on discrete Λ-modules.

Proof. Recall that the map s : [∗/Gb(E)]→ BunbG is cohomologically smooth and surjective; in
fact, its fibres are successive extensions of positive Banach–Colmez spaces. This implies that s\Λ ∼=
Λ. This, in turn, implies by the projection formula for s\ that s\s

∗A ∼= A for all A ∈ D�(BunbG,Λ),
thus giving fully faithfulness. The same applies after base change to SpaC. Moreover, using
pullback under the projection BunbG → [∗/Gb(E)], we see that s∗ is also necessarily essentially
surjective.

It remains to show that the pullback Dlis([∗/Gb(E)],Λ) → Dlis([SpaC/Gb(E)],Λ) is an equiv-

alence, and identify this symmetric monoidal category with D(Gb(E),Λ). By Proposition VII.2.6,
the functor Dlis([∗/Gb(E)],Λ) → Dlis([SpaC/Gb(E)],Λ) is fully faithful. One can easily build a

functor D(Gb(E),Λ)→ Dlis([∗/Gb(E)],Λ), and it is enough to see that the composite functor

D(Gb(E),Λ)→ Dlis([∗/Gb(E)],Λ)→ Dlis([SpaC/Gb(E)],Λ)

is an equivalence. Using that D(Gb(E),Λ) is generated by c-Ind
Gb(E)
K Λ for K ⊂ Gb(E) open pro-p,

one easily sees that the functor is fully faithful, so it remains to prove essential surjectivity. Using
descent along SpaC → [SpaC/Gb(E)] and the equivalence Dlis(SpaC,Λ) ∼= D(Λ), the target maps

fully faithfully into the derived category of representations of the condensed group Gb(E) on the
full subcategory of condensed Λ-modules of the form M ⊗Z`,disc

Z` for Λ-modules M . As Gb(E)
is locally pro-p, any such action in fact comes from a smooth action on M : For K ⊂ Gb(E) pro-
p, the K-orbit of any m ∈ M lies in some compact submodule, thus in M ⊗Z`,disc

Z` for some

finitely generated Z`-submodule M ′ ⊂ M . The action of K on m then gives a continuous map
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K → GL(M ′). As the target is locally pro-`, this map has finite image, so that the action of K on
m is locally constant. �

Recall that for any b ∈ B(G), we have the cohomologically smooth chart πb :Mb → BunG near
BunbG. This comes with a projection qb : Mb → [∗/Gb(E)] which has a natural section, given by

the preimage of BunbG ⊂ BunG in Mb. Over Mb, we have the Gb(E)-torsor M̃b → Mb, and for

any complete algebraically closed field C over k = Fq, the base change

M̃b,C = M̃b ×Spd k SpaC

is representable by a locally spatial diamond, endowed with a distinguished point i : SpaC ↪→ M̃b,C .

Recall that M̃b,C is a successive extension of negative Banach–Colmez spaces. Iteratively restricting
to small quasicompact balls inside these negative Banach–Colmez spaces, we see that the closed

subset i : SpaC ↪→ M̃b,C can be written as cofiltered intersection of quasicompact open subsets V
for which RΓ(V,F`) ∼= F`.

Proposition VII.7.2. For any b ∈ B(G) with locally closed immersion ib : BunbG → BunG, the
functor

ib∗ : Dlis(BunG,Λ)→ Dlis(BunbG,Λ) ∼= Dlis([∗/Gb(E)],Λ)

admits a left adjoint, given by

πb\q
∗
b : Dlis([∗/Gb(E)],Λ)→ Dlis(BunG,Λ).

The unit of the adjunction is given by the equivalence id ∼= ib∗πb\q
∗
b arising from base change, and

the identification of the pullback of ib along πb with [∗/Gb(E)] ⊂Mb.

Proof. As D([∗/Gb(E)],Λ) ∼= D(Gb(E),Λ) is generated by c-Ind
Gb(E)
K Λ for open pro-p sub-

groups K ⊂ Gb(E), and as we already determined the unit of the adjunction, it suffices to verify

the adjunction on these objects. Let Mb,K = M̃b/K →Mb. This comes with a closed immersion
iK : [∗/K]→Mb,K . It suffices to see that for all A ∈ Dlis(Mb,K ,Λ), the map

RΓ(Mb,K , A)→ RΓ([∗/K], A)

is an isomorphism, where we continue to denote by A any of its pullbacks. Assume first that
A = j!A0 for some A0 ∈ Dlis(M◦b,K ,Λ). Then the result follows from Theorem VII.2.10. In general
we can then replace A by the cone of j!A → A in the displayed formula. For this statement,
we can even base change to SpaC for some complete algebraically closed nonarchimedean field
C|k, and allow more generally any A ∈ Dlis(Mb,K,C ,Λ). We can then assume that A = f\Z` for
some `-cohomologically smooth separated qcqs map f : Y → Mb,K,C . Then as in the proof of
Proposition VII.6.7, A is constant in a neighborhood of [SpaC/K], which implies the result (as

SpaC ⊂ M̃b,C is a cofiltered intersection of quasicompact open V ’s with trivial cohomology). �

Proposition VII.7.3. For any quasicompact open substack U ⊂ BunG, the category Dlis(U,Λ)
admits a semi-orthogonal decomposition into the categories Dlis(BunbG,Λ) ∼= D(Gb(E),Λ) for b ∈
|U | ⊂ B(G). Moreover, for any not necessarily quasicompact U , the functor Dlis(U,Λ)→ Dlis(U×Spd k

SpaC,Λ) is an equivalence.
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Proof. We argue by induction on |U |, so take some closed element b ∈ |U | ⊂ B(G) and
let i : BunbG → U and j : V → U be the closed and complementary open substacks. We know
that Dlis(U,Λ)→ Dlis(U ×Spd k SpaC,Λ) is fully faithful by Proposition VII.2.6, and by induction
Dlis(V,Λ)→ Dlis(V ×Spd k SpaC,Λ) is an equivalence.

Now by the previous proposition, ib∗ admits the left adjoint

πb\q
∗
b : Dlis([∗/Gb(E)],Λ)→ Dlis(U,Λ),

and in fact the proof of that proposition shows (using our standing induction assumption) that,
composed with the embedding into Dlis(U ×Spd k SpaC,Λ), it continues to be a left adjoint to

ib∗ : Dlis(U ×Spd k SpaC,Λ)→ D([SpaC/Gb(E)],Λ) ∼= D([∗/Gb(E)],Λ).

The unit id→ ib∗πb\q
∗
b of the adjunction is an equivalence. We see that Dlis(U ×Spd k SpaC,Λ)

has full subcategories given by j!Dlis(V,Λ) and the essential image of πb\q
∗
b (both of which lie

in Dlis(U,Λ)). To see that one has a semi-orthogonal decomposition, it suffices to see that if A ∈
Dlis(U×Spd kSpaC,Λ) with i∗A = j∗A = 0, then A = 0. This can be checked after pullback to M̃b,C ,
where it follows from Proposition VII.6.7. This also shows that Dlis(U,Λ)→ Dlis(U×Spd kSpaC,Λ)
is an equivalence. �

Now we also want to analyze the compact objects as well as the universally locally acyclic
objects, and various dualities. We start with the compact objects.

Proposition VII.7.4. The category Dlis(BunG,Λ) is compactly generated. An object A ∈
Dlis(BunG,Λ) is compact if and only if it has finite support and ib∗A ∈ Dlis(BunbG,Λ) ∼= D(Gb(E),Λ)

is compact for all b ∈ B(G), i.e. lies in the thick triangulated subcategory generated by c-Ind
Gb(E)
K Λ

for open pro-p subgroups K ⊂ Gb(E).

Moreover, for each b and K ⊂ Gb(E) pro-p, letting

fK :Mb,K → BunG

be the natural map, the object AbK = fK\Λ ∈ Dlis(BunG,Λ) is compact, and these generate
Dlis(BunG,Λ).

Proof. By Proposition VII.7.3, the left adjoints πb\q
∗
b to ib∗ generate Dlis(BunG,Λ); as ib∗

commutes with colimits, these left adjoints also preserve compact objects. As each D(Gb(E),Λ) is
compactly generated, it follows that Dlis(BunG,Λ) is compactly generated, with compact generators
AbK .

To see that the given property characterizes compact objects, we argue by induction over
quasicompact open substacks U ⊂ BunG. Pick any closed b ∈ |U | ⊂ B(G), and assume the result
for the complementary open j : V ⊂ U . We first show that all of the given compact generators
(coming from b′ ∈ |U | ⊂ B(G)) have the property that all of their stalks are compact. This
is clear by induction if b′ ∈ |V |, so we can assume b′ = b. Then we need to see that j∗πb\q

∗
b

preserves compact objects. But this follows from Lemma VII.7.5 below. Using the semi-orthogonal
decomposition structure, it now follows that conversely, all A with compact stalks are compact. �

Lemma VII.7.5. For K ⊂ Gb(E) an open pro-p subgroup, the functor

RΓ(M◦b,K ,−) : D�(M◦b,K ,Λ)→ D(Λ)
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has finite cohomological dimension and commutes with all direct sums.

Proof. AsM◦b,K = M̃◦b/K where M̃◦b is a spatial diamond, it suffices to prove that the functor

has finite cohomological dimension. It suffices to prove this for M̃◦b (as taking K-invariants is exact).

One can formally reduce to Λ = Z` and then to finitely presented solid Z`-sheaves F on M̃◦b . Now

these can be written as cofiltered inverse limits of constructible Fi. The RΓ(M̃◦b ,Fi) are uniformly
bounded; to see that their derived limit is also bounded, it is then sufficient to see that each

Hj(M̃◦b ,Fi) is finite. By Theorem IV.5.3, this is isomorphic to Hj+1
c (M̃◦b ,Fi). But RΓc(M̃◦b ,−)

preserves compact objects as its right adjoint commutes with all colimits (as M̃◦b is cohomologically
smooth over Spd k, being open in a successive extension of negative Banach–Colmez spaces). �

Next, we study Bernstein–Zelevinsky duality. Denoting π : BunG → ∗ the projection, the
pullback π∗ has a left adjoint

π\ : Dlis(BunG,Λ)→ Dlis(∗,Λ) ∼= D(Λ).

This induces a pairing

Dlis(BunG,Λ)×Dlis(BunG,Λ)→ D(Λ) : (A,B) 7→ π\(A
�

⊗L
ΛB).

Proposition VII.7.6. For any compact object A ∈ Dlis(BunG,Λ), there is a unique compact
object DBZ(A) ∈ Dlis(BunG,Λ) with a functorial identification

RHom(DBZ(A), B) ∼= π\(A
�

⊗L
ΛB)

for B ∈ Dlis(BunG,Λ). Moreover, the functor DBZ is a contravariant autoequivalence of Dlis(BunG,Λ)ω,
and D2

BZ is naturally isomorphic to the identity.

If U ⊂ BunG is an open substack and A is concentrated on U , then so is DBZ(A). In particular,
DBZ restricts to an autoequivalence of the compact objects in Dlis(BunbG,Λ) ∼= D(Gb(E),Λ) for
b ∈ B(G) basic, and in that setting it is the usual Bernstein–Zelevinsky involution.

Proof. The existence of DBZ follows as in Theorem V.5.1, using the left adjoint given by
Proposition VII.7.2; this construction also shows that DBZ preserves Dlis(U,Λ), and for basic b it
recovers the usual Bernstein–Zelevinsky involution by the same argument as in Theorem V.5.1.

We also formally get a morphism D2
BZ(A)→ A by adjunctions. We need to see that this is an

isomorphism. It suffices to check on generators. The Bernstein–Zelevinsky dual of ib! c-Ind
Gb(E)
K Λ is

AbK = fK\Λ, for fK :Mb,K → BunG the natural map. Its restriction to BunbG is again ib! c-Ind
Gb(E)
K Λ,

so one easily checks that the map D2
BZ(A) → A is an isomorphism over BunbG. To see that it is

an isomorphism everywhere, one needs to see that if B = Rj∗B
′, B′ ∈ Dlis(U,Λ) for some open

substack j : U ⊂ BunG not containing BunbG, then

π\(A
b
K

�

⊗L
ΛB) = 0.

Twisting a few things away and using the definition of AbK = fK\Λ, this follows from the assertion
that for all A′ ∈ Dlis(M◦b,K ,Λ), with jK :M◦b,K ↪→Mb,K the open immersion, one has

RΓc(Mb,K , RjK∗A
′) = 0.
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Using the trace map for M̃b →Mb,K , this follows from Theorem VII.2.10. �

As in Theorem V.6.1, this has the following consequence for Verdier duality.

Proposition VII.7.7. Let j : V ↪→ U be an open immersion of open substacks of BunG. For
any A ∈ Dlis(V,Λ), the natural map

j!RHomlis(A,Λ)→ RHomlis(Rjlis∗A,Λ)

is an isomorphism in Dlis(U,Λ).

Proof. The proof is identical to the proof of Theorem V.6.1. �

Using this, one can characterize the reflexive objects as in Theorem V.6.2; we omit it here.

Finally, one can also characterize the universally locally acyclic A ∈ Dlis(BunG,Λ). Note that we
have not defined a notion of universal local acyclicity for lisse sheaves, but in our present situation we
can simply import the characterization from Proposition IV.2.32 and make the following definition.

Definition VII.7.8. A complex A ∈ Dlis(BunG,Λ) is universally locally acyclic (with respect
to BunG → ∗) if the natural map

p∗1RHomlis(A,Λ)
�

⊗L
Λp
∗
2A→ RHomlis(p

∗
1A, p

∗
2A)

is an isomorphism, where p1, p2 : BunG×BunG → BunG are the two projections.

We get the following version of Theorem V.7.1.

Proposition VII.7.9. Let A ∈ Dlis(BunG,Λ). Then A is universally locally acyclic if and only
if for all b ∈ B(G), the pullback ib∗A to ib : BunbG ↪→ BunG corresponds under Dlis(BunbG,Λ) ∼=
D(Gb(E),Λ) to a complex Mb of smooth Gb(E)-representations for which MK is a perfect complex
of Λ-modules for all open pro-p subgroups K ⊂ Gb(E).

The proof is identical to the proof of Theorem V.7.1, and proceeds by proving first the following
proposition.

Proposition VII.7.10. Let G1 and G2 be two reductive groups over E, and let G = G1 ×G2.
Consider the exterior tensor product

−�− : Dlis(BunG1 ,Λ)×Dlis(BunG2 ,Λ)→ Dlis(BunG,Λ).

For all compact objects Ai ∈ Dlis(BunGi ,Λ), i = 1, 2, the exterior tensor product A1 � A2 ∈
Dét(BunG,Λ) is compact, these objects form a class of compact generators, and for all further
objects Bi ∈ Dlis(BunGi ,Λ), i = 1, 2, the natural map

RHom(A1, B1)⊗L
Λ RHom(A2, B2)→ RHom(A1 �A2, B1 �B2)

is an isomorphism.

Proof. The proof is identical to the proof of Proposition V.7.2. �





CHAPTER VIII

L-parameter

It is time to understand the other side of the correspondence: In this chapter, we define, and
study basic properties of, the stack of L-parameters. These results have recently been obtained
by Dat–Helm–Kurinczuk–Moss [DHKM20], and also Zhu [Zhu20]; previous work in a related
direction includes [Hel16], [HH20], [BG19], [BP19], [LTX+19, Appendix E].

In this chapter, we fix again a nonarchimedean local field E with residue field Fq of characteristic

p, and a reductive group G over E, as well as a prime ` 6= p. We get the dual group Ĝ/Z`, which we
endow with its usual “algebraic” action by WE ; the action thus factors over a finite quotient Q of
WE , and we fix such a quotient Q of WE . (The difference to the cyclotomically twisted WE-action
disappears after base change to Z`[

√
q], and we could thus obtain analogues of all results below for

this other action by a simple descent along Z`[
√
q]/Z`.) We define a scheme whose Λ-valued points,

for a Z`-algebra Λ, are the condensed 1-cocycles

ϕ : WE → Ĝ(Λ),

where Λ = Λdisc ⊗Z`,disc
Z` is regarded as a relatively discrete condensed Z`-module.

Theorem VIII.0.1 (Theorem VIII.1.3). There is a scheme Z1(WE , Ĝ) over Z` whose Λ-valued
points, for a Z`-algebra Λ, are the condensed 1-cocycles

ϕ : WE → Ĝ(Λ).

The scheme Z1(WE , Ĝ) is a union of open and closed affine subschemes Z1(WE/P, Ĝ) as P runs

through open subgroups of the wild inertia subgroup of WE, and each Z1(WE/P, Ĝ) is a flat local
complete intersection over Z` of dimension dimG.

To prove the theorem, following [DHKM20] and [Zhu20] we define discrete dense subgroups

W ⊂ WE/P by discretizing the tame inertia, and the restriction Z1(WE/P, Ĝ) → Z1(W, Ĝ) is an
isomorphism, where the latter is clearly an affine scheme.

We can also prove further results about the Ĝ-action on Z1(WE , Ĝ), or more precisely each

Z1(WE/P, Ĝ). For this result, we need to exclude some small primes, but if G = GLn, all primes
` are allowed; for classical groups, all ` 6= 2 are allowed. More precisely, we say that ` is very good

for Ĝ if the following conditions are satisfied.

(i) The (algebraic) action of WE on Ĝ factors over a finite quotient Q of order prime to `.

(ii) The order of the fundamental group of the derived group of Ĝ is prime to ` (equivalently, π0Z(G)
is of order prime to `).
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(iii) If G has factors of type B, C, or D, then ` 6= 2; if it has factors of type E, F , or G, then
` 6= 2, 3; and if it has factors of type E8, then ` 6= 2, 3, 5.

Theorem VIII.0.2 (Theorem VIII.5.1). Assume that ` is a very good prime for Ĝ. Then

H i(Ĝ,O(Z1(WE/P, Ĝ))) = 0 for i > 0 and the formation of the invariants O(Z1(WE/P, Ĝ))Ĝ

commutes with any base change. The algebra O(Z1(WE/P, Ĝ))Ĝ admits an explicit presentation in
terms of excursion operators,

O(Z1(WE/P, Ĝ))Ĝ = colim(n,Fn→W )O(Z1(Fn, Ĝ))Ĝ

where the colimit runs over all maps from a free group Fn to W ⊂ WE/P , and Z1(Fn, Ĝ) ∼= Ĝn

with the simultaneous twisted Ĝ-conjugation.

Moreover, the ∞-category Perf(Z1(WE/P, Ĝ)/Ĝ) is generated under cones and retracts by the

image of Rep(Ĝ) → Perf(Z1(WE/P, Ĝ)/Ĝ), and Ind Perf(Z1(WE/P, Ĝ)) is equivalent to the ∞-

category of modules over O(Z1(WE/P, Ĝ)) in Ind Perf(BĜ).

All of these results also hold with Q`-coefficients, without any assumption on `.

With Q`-coefficients, these results are simple, as the representation theory of Ĝ is semisimple.
However, with Z`-coefficients, these results are quite subtle, and we need to dive into modular
representation theory of reductive groups. Very roughly, the proof of the theorem proceeds by

analyzing the closed Ĝ-orbits in the stack of L-parameters first, and then use a deformation to the

normal cone to understand the behaviour near any Ĝ-orbit. We make critical use of some results

of Touzé–van der Kallen [TvdK10]. Let us make some further remarks about the closed Ĝ-orbits.

First, the closed Ĝ-orbits in Z1(WE/P, Ĝ)L, for any algebraically closed field L over Z`, corre-

spond to the semisimple L-parameter ϕ : WE → Ĝ(L), and also biject to the geometric points of

SpecO(Z1(WE/P, Ĝ))Ĝ. Here, an L-parameter is semisimple if, whenever it factors over a para-

bolic P̂ ⊂ Ĝ, it also factors over a Levi M̂ ⊂ P̂ . Any semisimple parameter is in fact continuous
for the discrete topology on L, i.e. trivial on an open subgroup of IE . If L = F` and Q is of order
prime to `, then ϕ is semisimple if and only if it factors over a finite quotient of order prime to `.

Its orbit in Z1(WE/P, Ĝ)L is then given by Ĝ/Sϕ where Sϕ ⊂ Ĝ is the centralizer of ϕ, which is

in that case the fixed points under the action of a finite solvable group F of automorphisms of Ĝ,
where the order of F is prime to `. We need the following result.

Theorem VIII.0.3 (Theorem VIII.5.14). Let H be a reductive group over an algebraically closed
field L of characteristic `. Let F be a finite group of order prime to ` acting on H. Then HF is
a smooth linear algebraic group whose connected component is reductive, and with π0H

F of order
prime to `. If F is solvable, the image of Perf(BH) → Perf(BHF ) generates the whole category
under cones and retracts.

The last part of this theorem is proved by a very explicit (and exhausting) analysis of all
possible cases. It would be desirable to have a more enlightening argument, possibly also removing
the assumption that F is solvable. In fact, we would expect similar results to hold true in the
case where W is replaced by the fundamental group of a Riemann surface. Our arguments are not
general enough to handle that case.
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Remark VIII.0.4. While the hypotheses imposed on ` are surely not optimal, we are quite

sure that some hypothesis on ` is required in Theorem I.8.2. For example, if Ĝ = PGL2 and ` = 2,

we expect problems to arise. For example, one can show that for X = Ĝ with the conjugation

action by Ĝ, the ∞-category Perf(X/Ĝ) is not generated under cones and retracts by the image

of Rep(Ĝ). Our guess would be that the condition that ` does not divide the order of π1(Ĝder) is
essential.

On the other hand, we expect that, for example by the use of z-embeddings [Kal14, Section 5],
one can reduce all relevant questions (like the general construction of maps on Bernstein centers
discussed below, or the construction of the spectral action) to the case where ` does not divide the

order of π1(Ĝder). We are not taking this up here.

VIII.1. The stack of L-parameters

VIII.1.1. Definition and representability. Recall that for a reductive group G over a

nonarchimedean local field E, we have the dual group Ĝ over Z`, equipped with an action of the
Weil group WE . In this chapter, we use the standard action.

Now let Λ be any Z`-algebra. As in the last chapter, we regard it as a condensed Z`-algebra, as
Λdisc⊗Z`,disc

Z`. Its value on a profinite set S is the ring of maps S → Λ that take values in a sub-Z`-
module of finite type and are continuous. For example, if Λ = Q` then Λ(S) = lim−→L⊂Q`

Cont(S,L)

with L|Q` finite.

Definition VIII.1.1. An L-parameter for G, with coefficients in Λ, is a section

ϕ : WE → Ĝ(Λ) oWE

of the natural map of condensed groups

Ĝ(Λ) oWE →WE .

Equivalently, an L-parameter for G with coefficients in Λ is a (condensed) 1-cocycle

ϕ : WE → Ĝ(Λ)

for the given WE-action on Ĝ.

More concretely, an L-parameter with values in Λ is a 1-cocycle ϕ : WE → Ĝ(Λ) such that if

Ĝ ↪→ GLN , the associated map WE → GLN (Λ) is continuous. The preceding means the matrix
coefficients of its restriction to IE are maps IE → Λ that take values in finite type Z`-modules and
are continuous.

Remark VIII.1.2. The standard action of WE factors over a finite quotient Q. This means

that L-parameters are also equivalent to maps WE → Ĝ(Λ) oQ lifting WE → Q.

The first main result is the following.

Theorem VIII.1.3. There is a scheme Z1(WE , Ĝ) over Z` parametrizing L-parameters for G,
which is a disjoint union of affine schemes of finite type over Z`. It is flat and a relative complete

intersection of dimension dimG = dim Ĝ.
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Proof. Any condensed 1-cocycle ϕ : WE → Ĝ(Λ) is trivial on an open subgroup of the wild

inertia subgroup PE ; note also that PE acts on Ĝ through a finite quotient. Moreover, for any

γ ∈ PE acting trivially on Ĝ, the locus where ϕ(γ) = 1 is open and closed: Taking a closed

embedding Ĝ ↪→ GLN , this follows from A = 1 being a connected component of the locus of all
A ∈ GLN such that Ap

r
= 1, as can be checked by observing that the tangent space at A = 1 is

trivial. It follows that the moduli space of L-parameters decomposes as a disjoint union of open
and closed subspaces according to the kernel of ϕ on PE .

Thus, fix now some quotient WE →W ′E by an open subgroup of PE such that the action of WE

on Ĝ factors over W ′E . We are interested in the moduli space of condensed 1-cocycles W ′E → Ĝ(Λ).
Inside W ′E , we look at the discrete dense subgroup W ⊂W ′E generated by the image of PE , a choice
of generator of the tame inertia τ , and a choice of Frobenius σ. Thus, W sits in an exact sequence

0→ I →W → σZ → 0

where I in turn sits in an exact sequence

0→ P → I → τ
Z[

1
p ] → 0

where P is a finite p-group. Moreover, in W/P , the elements τ and σ satisfy the commutation
σ−1τσ = τ q.

Now observe that any condensed 1-cocycle W ′E → Ĝ(Λ) is already determined by its restriction

to the discrete group W , as Ĝ(Λ) is quasiseparated and W ⊂ W ′E is dense. Conversely, we claim

that any 1-cocycle W → Ĝ(Λ) extends uniquely to a condensed 1-cocycle W ′E → Ĝ(Λ). To check
this, we may replace E by a finite extension; we can thus pass to a setting where the action of W ′E
on Ĝ is trivial, and where P = 1. Taking a closed immersion Ĝ ↪→ GLN , it then suffices to see that

any representation of τ
Z[

1
p ] o σZ on a finite free Λ-module extends uniquely to a representation of

the condensed group Ẑp o σZ. For this, in turn, it suffices to see that for any A ∈ GLN (Λ) such
that A is conjugate to Aq, the map

Z→ GLN (Λ) : n 7→ An

extends uniquely to Ẑp. The assumption on A implies that all eigenvalues of A at all geometric
points of Spec Λ are roots of unity of order prime to p; replacing A by a prime-to-p-power (as we
may) we can thus reduce to the case that A is unipotent, i.e. A− 1 is nilpotent. But then n 7→ Xn

extends to a continuous map

n 7→ Xn = (1 + (X − 1))n =
∑
i≥0

(
n

i

)
(X − 1)i,

defining a map Z` → GLN (Λ) (and hence Ẑp → Z` → GLN (Λ)).

Thus, we need to see that the space X = Z1(W, Ĝ) of all 1-cocycles ϕ : W → Ĝ(Λ) is an affine

scheme of finite type over Z` that is flat and a relative complete intersection of dimension dim Ĝ.
It is clear that it is an affine scheme of finite type over Z` as W is discrete and finitely generated.

To prove the geometric properties, we find it slightly more convenient to argue with the Artin

stack [X/Ĝ], which we aim to prove is flat and a relative complete intersection of dimension 0 over
Z`.
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We can understand the deformation theory of [X/Ĝ]: If Λ is a field, then the obstruction group

is H2(W, ĝ⊗Z` Λ) (where ĝ is the Lie algebra of Ĝ), the tangent space is H1(W, ĝ⊗Z` Λ), and the
infinitesimal automorphisms are H0(W, ĝ⊗Z`Λ), where in all cases the action of W is twisted by the
local 1-cocycle ϕ. Now note that by direct computation the prime-to-p cohomological dimension of
W is 2, and the Euler characteristic of any representation is equal to 0. Thus, this analysis shows

that we only have to prove that all fibres of [X/Ĝ]→ SpecZ` are of dimension at most 0.

Note that X is actually naturally defined over Z[1
p ] (as Ĝ is, and the discretization W of W ′E is

independent of `). It follows that it suffices to bound the dimension of the fibre over F` (as if we
can do this for all closed points of SpecZ[1

p ], it follows over the generic fibre by constructibility of

the dimension of fibers). To do this, we switch back to the picture of condensed 1-cocycles on WE .
From now on, we work over F`.

The stack [Z1(WE , Ĝ)F`/Ĝ] maps to the similar stack parametrizing 1-cocycles ϕI
`

: I` → Ĝ(Λ)

of the prime-to-` inertia subgroup I`, up to conjugation. By deformation theory, that stack is

smooth and each connected component is a quotient of SpecF` by the centralizer group C
ϕI`
⊂ ĜF` ,

which is a smooth group, whose identity component is reductive by [PY02, Theorem 2.1]. We may

thus fix ϕI
`

: I` → Ĝ(F`) and consider the open and closed subscheme X
ϕI`
⊂ Z1(WE , Ĝ)F` of all

1-cocycles ϕ : WE → Ĝ(Λ) whose restriction to I` is equal to ϕI
`
. Our goal is to show that X

ϕI`

is of dimension at most dimC
ϕI`

.

Consider the centralizer C̃ of ϕI
`

inside ĜF` o Q. Then X
ϕI`

maps with finite fibres to the

space of maps

f : WE/I
` ∼= Z` o σZ −→ C̃/ϕI

`
(I`).

Note that, by representability of X
ϕI`

, the universal map f factors over a quotient of the form

Z/`mZ o σZ. Finally, we have reduced to Lemma VIII.1.4 below. �

Lemma VIII.1.4. Let H be a smooth group scheme over F` whose identity component is reduc-
tive. Then the affine scheme parametrizing maps of groups

Z/`mZ o σZ → H,

where σ acts on Z/`mZ via multiplication by q, is of dimension at most dimH.

Proof. The image of the generator of Z/`mZ is a unipotent element of H. By finiteness of
the number of unipotent conjugacy classes, cf. [Lus76], [FG12, Corollary 2.6], we can stratify the
scheme according to the conjugacy class of the image of τ . But for each fixed conjugacy class,
one has to choose the image of σ so as to conjugate τ into τ q: This bounds the dimension of each
stratum by the dimension of the conjugacy class of τ (giving the choices for τ) plus the codimension
of the conjugacy class of τ (giving the choices for σ, for any given τ), which is the dimension of
H. �

We observe the following corollary of the proof.

Proposition VIII.1.5. Assume that WE acts on Ĝ via a finite quotient Q of order prime to

`. Let L = F`. Let ϕ : WE → Ĝ(L) be any L-parameter. Then the Ĝ-orbit of ϕ in Z1(WE , Ĝ)L is
closed if and only if the map ϕ factors over a finite quotient of WE of order prime to `.
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Proof. In the notation of the proof, the group C
ϕI`

has connected components of order prime

to `, see Proposition VIII.5.11 below, so one will apply Lemma VIII.1.4 to a group H with π0H
of order prime to `. This implies that the unipotent element is actually an element of H◦, and its
orbit is closed only if it is trivial. Moreover, the image of the Frobenius σ defines a closed orbit if
and only if it is semisimple, i.e. of order prime to `, giving the claim. �

VIII.2. The singularities of the moduli space

The following proposition was already implicitly noted in the proof of Theorem VIII.1.3.

Proposition VIII.2.1. For any parameter ϕ : WE → Ĝ(Λ)oQ corresponding to x : Spec(Λ)→
LocSys

Ĝ
,

x∗L∨
Z1(WE ,Ĝ)/Ĝ

= RΓ(WE , (ĝ⊗Z` Λ)ϕ)[1]

where (ĝ⊗Z` Λ)ϕ is ĝ⊗Z` Λ equipped with the twisted action of WE deduced from ϕ.

Proof. This would be clear if we defined the moduli problem on all animated Z`-algebras,
by deformation theory. Then the cohomological dimension of WE would imply that this moduli
problem is a derived local complete intersection, of expected dimension 0. However, we proved that

Z1(WE , Ĝ)/Ĝ is a local complete intersection Artin stack of dimension 0, hence it represents the
correct moduli problem even on all animated Z`-algebras, thus giving the result. �

Proposition VIII.2.2. Let M be a free Λ-module of finite rank equipped with a condensed action
of WE. Then RΓ(WE ,M) is a perfect complex of Λ-modules and there is a canonical isomorphism

RΓ(WE ,M)∗ ∼= RΓ(WE ,M
∗(1))[2].

Proof. This follows from Poincaré duality applied to Div1 → ∗, using Proposition VII.3.5 and
the discussion before. It can also be proved by hand, by comparing the WE-cohomology with the
W -cohomology, for a discretization W of WE/P as before. �

Corollary VIII.2.3. For any parameter ϕ : WE → Ĝ(Λ)oWE corresponding to x : Spec(Λ)→
LocSys

Ĝ
,

x∗LLocSys
Ĝ/Z`

= RΓ(WE , (ĝ
∗ ⊗Z` Λ)ϕ(1))[1]

where (ĝ∗ ⊗Z` Λ)ϕ is ĝ∗ ⊗Z` Λ equipped with the twisted action of WE deduced from ϕ.

VIII.2.1. The characteristic zero case. Fix an isomorphism IE/PE ∼= Ẑp. There is a

ĜQ`-equivariant “unipotent monodromy” morphism

M : Z1(WE , Ĝ)Q` −→ NĜQ`

where N
ĜQ`

is the nilpotent cone inside ĝ⊗Q`.

In fact, one can lift the inclusion Z` ↪→ Ẑp ∼= IE/PE to a morphism Z` → IE . Now, if

ϕ : WE → Ĝ(Λ), with Λ a Q`-algebra, is a parameter, then ϕ|Z` : Z` → Ĝ(Λ) is such that for
n� 0, ϕ|`nZ` is a morphism of condensed groups satisfying

ϕ(σm)ϕ|`nZ`ϕ(σm)−1 = ϕq
m

|`nZ`
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for m � 0. One deduces, using an embedding of Ĝ in GLN , that there is a unique N ∈ N
Ĝ

(Λ)
such that for n� 0 and x ∈ `nZ`,

ϕ(x) = exp(xN).

Using these observations, we get a comparison to Weil–Deligne L-parameters.

Definition VIII.2.4. For Λ a Q`-algebra one defines ParWD
Ĝ

(Λ) to be the set of pairs (ϕ0, N)

where

(i) ϕ0 : WE → Ĝ(Λdisc) is a condensed 1-cocycle,

(ii) N ∈ N
Ĝ
⊗Q` satisfies Ad(ϕ0(σ)).σN = q|σ|N for all σ ∈WE.

Then we have the following result, which is essentially Grothendieck’s quasi-unipotence theorem.

Proposition VIII.2.5 ([Zhu20, Lemma 3.1.8]). There is a Ĝ-equivariant isomorphism

Z1(WE , Ĝ)⊗Q`
∼−→ ParWD

Ĝ
.

However, we warn the reader that this isomorphism depends on some auxiliary choices, such as
that of a Frobenius element.

VIII.2.2. The singular support.

VIII.2.2.1. General construction. Recall the following construction, see for example [AG15].
Let A→ B be a flat map of commutative rings. One has the Hochschild cohomology

HH•(B/A) = Ext•B⊗AB(B,B).

Note that any M ∈ D(B ⊗A B) induces a functor D(B) → D(B), via N 7→ M ⊗L
B N (with the

“left” B-module structure). Here, M = B ∈ D(B ⊗A B), via the multiplication B ⊗A B → B,
induces the identity functor. It follows that there is a natural map

HH i(B/A) = ExtiB⊗AB(B,B)→ ExtiB(N,N)

for any N ∈ D(B). Moreover, Hochschild cohomology is naturally a graded algebra, and this map
is a map of algebras

HH•(B/A)→ Ext•B(N,N).

There is an identification ([ML95, Theorem X.3.1])

HH2(B/A) = Ext1
B(LB/A, B)

which itself is nothing else than ExalcomA(B,B) ([Gro64, Chap.0, Sec. 18.4]). We thus have an
identification

HH2(B/A) = H1(L∨B/A).

Suppose now that A→ B is syntomic, i.e. flat and a local complete intersection. Let X = SpecB →
S = SpecA be the associated map of affine schemes.

Definition VIII.2.6. The scheme

SingX/S −→ X

represents the functor T/X 7→ H−1(LX/S ⊗L
OX OT ).
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In fact, locally on X, LX/S is isomorphic to a complex of vector bundles [E−1 → E0] and then

SingX/S is the kernel of V(E−1)→ V(E0). Explicitly, SingX/S is the affine scheme with

O(SingX/S) = Sym•BH
1(L∨B/A).

This is an X-group scheme equipped with an action of Gm. The image of SingX/S \ {0} → X is
the closed subset complementary of the smooth locus of X → S.

Consider now any
N ∈ Db

coh(X),

and the graded B-algebra Ext•B(N,N). Using the map

H1(L∨B/A) = HH2(B/A)→ Ext2
B(N,N),

this is in fact naturally a (graded) O(SingX/S)-algebra. This defines a Gm-equivariant quasi-
coherent sheaf

µEnd(N)

on SingX/S .

Suppose now moreover that S is regular.

Theorem VIII.2.7 ([Gul74, Theorem 3.1],[AG15, Appendix D]). For N ∈ Db
coh(X), the

quasi-coherent sheaf µEnd(N) on SingX/S is coherent.

Definition VIII.2.8. The singular support of N , SingSupp(N), is the support of µEnd(F) as
a closed conical subset of SingX/S.

Of course, the image of SingSupp(N)→ X is contained in Supp(N).

Theorem VIII.2.9 ([AG15, Theorem 4.2.6]). The following are equivalent:

(i) N is a perfect complex,

(ii) SingSupp(N) is contained in the zero section of SingX/S.

Proof. We have to prove that if ExtiB(N,N) = 0 for i� 0 then N is a perfect complex. This
is for example a consequence of [Jor08]. Since S is regular X is Gorenstein. According to [Jor08],
if N is a B-module of finite type that satisfies ExtiB(N,N) = 0 for i > n, then pdBN ≤ n. In
general, up to taking a shift of N , we can find a map N → N ′, where N ′ is a finitely generated
B-module concentrated in degree 0, such that the cone C of N → N ′ is perfect. Suppose that
ExtiB(N,N) = 0 for i� 0. In the long exact sequence

· · · −→ ExtiB(C,N) −→ ExtiB(N ′, N) −→ ExtiB(N,N) −→ · · ·
one has ExtiB(C,N) = 0 for i� 0 since C is perfect and ExtiB(N,N) = 0 for i� 0 by hypothesis.
We deduce that ExtiB(N ′, N) = 0 for i� 0. In the long exact sequence

· · · −→ ExtiB(N ′, N) −→ ExtiB(N ′, N ′) −→ ExtiB(N ′, C) −→ · · ·
we have ExtiB(N ′, C) = 0 for i � 0 since C is perfect and A has finite injective dimension over

itself since it is Gorenstein. Thus, for i� 0, ExtiB(N ′, N ′)
∼−→ ExtiB(N ′, N) and this vanishes. We

can thus apply Jorgensen’s theorem to N ′ to conclude that N ′, and hence N , is perfect. �
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Let us note the following corollary.

Corollary VIII.2.10. The image of SingSupp(N) \ {0} → X is the complementary of the
biggest open subset of X on which N is a perfect complex.

VIII.2.2.2. The case of Z1(WE , Ĝ). Now we apply the preceding theory in the case A = Z` and

X = Z1(WE , Ĝ) (which is only a union of affine schemes, but this is not a problem). We can also

pass to the quotient stack Z1(WE , Ĝ)/Ĝ. According to Corollary VIII.2.3, there is an embedding

Sing
[Z1(WE ,Ĝ)/Ĝ]/Z`

[ĝ∗/Ĝ]×
BĜ

[Z1(WE , Ĝ)/Ĝ]

[Z1(WE , Ĝ)/Ĝ]

where ĝ = Lie Ĝ and [ĝ∗/Ĝ] is seen here as a vector bundle on BĜ = [SpecZ`/Ĝ]. Let N ∗
Ĝ
⊂ ĝ∗

be the nilpotent cone; by this we mean the closed subset of all Ĝ-orbits whose closure contains

the origin. (If there is a Ĝ-equivariant isomorphism between ĝ∗ and ĝ, this would identify with
the usual nilpotent cone.) Since this is stable under the adjoint action this defines a Zariski closed
substack

[N ∗
Ĝ
/Ĝ]×

BĜ
[Z1(WE , Ĝ)/Ĝ] [ĝ∗/Ĝ]×

BĜ
[Z1(WE , Ĝ)/Ĝ]

[Z1(WE , Ĝ)/Ĝ].

Proposition VIII.2.11. For a Z`-field L and a point x : Spec(L)→ LocSys
Ĝ

we have

x∗Sing
[Z1(WE ,Ĝ)/Ĝ]/Z`

⊂ N ∗
Ĝ
⊗Z` L

in the following two cases:

(i) L|Q`,

(ii) ` does not divide the order of the fundamental group of the adjoint form of G, and if n = fE′/E
with WE′ = ker(WE → Out(Ĝ)), ` 6 |qen − 1 for any exponent e of Ĝ.

Proof. If x corresponds to the parameter ϕ then x∗Sing
[Z1(WE ,Ĝ)/Ĝ]/Z`

= H0(WE , ĝ
∗⊗Z`L(1))

where the WE action on ĝ∗ ⊗Z` L(1) is twisted by ϕ. For an element v ∈ ĝ ∼= ĝ∗ in this subspace

we thus have that σ.v and qv are in the same orbits under the adjoint action of Ĝ(L) (here σ.v is
given by the action of WE on ĝ∗ defining the L-group). We thus obtain that v is conjugated under
the adjoint action to qnv. There is a morphism

ĝ −→ ĝ � Ĝ = t̂ �W ∼= AmZ`
given by m homogeneous polynomials of degrees the exponents of the root system. This implies
that the image of v in Am(L) is zero and thus v lies in the nilpotent cone. �
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The supremum of the exponents of Ĝ is the Coxeter number h of G. The preceding condition
is satisfied if for example ` > qhn−1. We refer to [DHKM20, Section 5.3] for finer definitions and

results about Ĝ-banal primes; we have not tried to optimize the condition above, and it is likely
that with their results one can obtain a much better condition on `.

Remark VIII.2.12. In the non-banal case things become more complicated and the Arinkin–
Gaitsgory condition of nilpotent singular support becomes important. This is also the case when in-
teresting congruences modulo ` between smooth irreducible representations ofG(E) occur, cf. [DHKM20,
Section 1.5].

VIII.3. The coarse moduli space

Let us now describe the corresponding coarse moduli space, i.e. we consider the quotient

Z1(WE , Ĝ) � Ĝ

taken in the category of schemes. Concretely, for every connected component SpecA ⊂ Z1(WE , Ĝ),

we get a corresponding connected component SpecAĜ ⊂ Z1(WE , Ĝ) � Ĝ.

VIII.3.1. Geometric points. For any algebraically closed field L over Z`, the L-valued points

of Z1(WE , Ĝ)L � Ĝ are in bijection with the closed Ĝ-orbits in Z1(WE , Ĝ)L.

We want to describe L-valued points with closed Ĝ-orbit as the “semisimple” parameters. For

this, recall (cf. [Bor79]) that parabolic subgroups of ĜLoWE surjecting onto WE are up to Ĝ(L)-

conjugation given by P̂L oWE for a standard parabolic P ⊂ G∗ of the quasisplit inner form G∗ of

G. A Levi subgroup is given by M̂L oWE where M ⊂ P is the standard Levi. We now call them

the parabolic subgroups of ĜoWE i.e. we always suppose they surject to WE. If ∆̂ are the simple

roots of Ĝ then the standard parabolic subgroups are in bijection with the finite WE-stable subsets

of ∆̂.

Definition VIII.3.1. Let L be an algebraically closed field over Z`. An L-parameter ϕ : WE →
Ĝ(L)oWE is semisimple if whenever the image of ϕ is contained in a parabolic subgroup of ĜoWE

then it is contained in a Levi subgroup of this parabolic subgroup.

In terms of the standard parabolic subgroups this means that if some Ĝ(L)-conjugate ϕ′ of ϕ

factorizes through P̂ (L) oWE , then there exists g ∈ P̂ (L) such that gϕ′g−1 = prLM ◦ ϕ′, where

prLM : P̂ (L) oWE → M̂(L) oWE is the projection onto the standard Levi subgroup.

Proposition VIII.3.2 ([DHKM20, Proposition 4.13]). Let L be an algebraically closed field

over Z` and ϕ : WE → Ĝ(L) oWE a parameter. The following are equivalent:

(i) The Ĝ-orbit of ϕ in Z1(WE , Ĝ)L is closed.

(ii) For any conjugate ϕ′ of ϕ such that ϕ′ : WE → P̂ (L) oWE factors over a standard parabolic

subgroup, ϕ is Ĝ(L)-conjugate to prLM ◦ ϕ′.
(iii) ϕ is semi-simple.
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Proof. We use the Hilbert–Mumford–Kempf theorem, cf. [Kem78, Corollary 3.5]. Let λ :

Gm → ĜL. Up to conjugation we can assume λ ∈ X∗(T̂ )+. For each τ ∈ WE there is a morphism

evτ : Z1(WE , Ĝ)L → Ĝ given by evaluating a parameter on τ . Thus, if limt→0 λ(t) · ϕ exists, i.e.

the associated morphism Gm,L → Z1(WE , Ĝ)L extends to A1
L, for each τ ∈WE one has λτ = λ and

ϕ(τ) ∈ Qλ(L)o τ , cf. Lemma VIII.3.3. One thus has Qλ = P̂ for P a standard parabolic subgroup

of G∗, and ϕ : WE → P̂ oWE .

For g ∈ P̂ , limt→0 λ(t)gλ(t)−1 is the projection onto the standard Levi subgroup M̂ . Thus,
using the evaluation morphism evτ for each τ we deduce that limt→0 λ(t) ·ϕ, if it exists, is given by

the composite WE
ϕ−→ P̂ (L)oWE

proj−−→ M̂(L)oWE . Reciprocally, since the morphism Gm×P̂ → P̂ ,

given by (t, g) 7→ λ(t)gλ(t)−1 extends to A1 × P̂ with fiber over 0 ∈ A1 given by the projection to

M̂ , for any ϕ : WE → P̂ oWE , limt→0 λ(t) · ϕ exists.

From this analysis we deduce the equivalence between (1) and (2). It is clear that (3) implies
(2). For the proof of (2) implies (3) we use the results of [BMR05] and [Ric88]. For this we see

parameters as morphisms W → Ĝ(Λ) o Q where W is discrete finitely generated as in the proof

of Theorem VIII.1.3, and Q is a finite quotient of W . Let ϕ : W → Ĝ(L) o Q satisfying (2). Let

H ⊂ ĜL oQ be the Zariski closure of the image of ϕ. Then if (x1, . . . , xn) ∈ (Ĝ(L)×Q)n are the
images of a set of generators of W , applying the Hilbert–Mumford–Kempf criterion we see that

the ĜL-orbit of (x1, . . . , xn) via the diagonal action is closed, cf. the proof of [BMR05, Lemma
2.17]. We can then apply [Ric88], cf. [BMR05, Proposition 2.16], to deduce that H is strongly

reductive in ĜL oQ and thus ĜL-completely reducible. Strictly speaking, since we are working in
a non-connected situation, we use in fact [BMR05, Section 6]. �

Lemma VIII.3.3. For λ : Gm → ĜL and goτ ∈ Ĝ(L)oWE, the limit limt→0 λ(t)gλ(t)−τ exists
if and only if g ∈ Qλ(L), the parabolic subgroup attached to λ, and λτ = λ.

Proof. Up to conjugation we can suppose λ ∈ X∗(T )+. Then, Qλ and Qλτ are standard

parabolic subgroups of Ĝ. Let us write g = g′
.
wg′′ with g′ ∈ Qλ(L), g′′ ∈ Qλτ (L) and w ∈ Ŵ .

Then, writing
λ(t)gλ(t)−τ = (λ(t)g′λ(t)−1)(λ(t)

.
wλ(t)−τ )(λ(t)τg′′λ(t)−τ ),

one deduces that limt→0 λ(t)
.
wλ(t)−τ exists. Thus, limt→0(λ(λ−τ )w)(t) exists and thus λ = (λτ )w.

Since λτ ∈ X∗(T̂ )+ we deduce λ = λτ and λw = λ. �

The proof shows that up to replacing Ĝ(L) oWE by Ĝ(L) o Q for some finite quotient Q of
WE (as we can), semisimplicity of ϕ is equivalent to the Zariski closure of the image of ϕ being
completely reducible in the terminology of [BMR05, Section 6].

VIII.3.2. A presentation of O(Z1(WE , Ĝ)). It will be useful to have a presentation of the

algebra O(Z1(WE , Ĝ)), or rather of the finite type Z`-algebras O(Z1(WE/P, Ĝ)) for open subgroups

P of the wild inertia (with the property that the action of WE on Ĝ factors over WE/P ). Pick a

discrete dense subgroup W ⊂ WE/P as above, so that Z1(WE/P, Ĝ) = Z1(W, Ĝ). For any n ≥ 0

with a map Fn →W , we get a Ĝ-equivariant map

O(Z1(Fn, Ĝ))→ O(Z1(W, Ĝ)),
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where the source is isomorphic to O(Ĝn) with appropriately twisted diagonal Ĝ-conjugation. Con-
sider the category {(n, Fn →W )} consisting of maps from finite free groups to W , with maps given
by commutative diagrams Fn → Fm →W ; this is a sifted index category (as it admits coproducts).
The map

colim(n,Fn→W )O(Z1(Fn, Ĝ))→ O(Z1(W, Ĝ))

is an isomorphism of algebras with Ĝ-action (as 1-cocycles from W to Ĝ are uniquely specified by

compatible collections of 1-cocycles Fn → Ĝ for all Fn →W ). By Haboush’s theorem on geometric
reductivity [Hab75] it follows that the map

colim(n,Fn→W )O(Z1(Fn, Ĝ))Ĝ → O(Z1(W, Ĝ))Ĝ

on Ĝ-invariants is a universal homeomorphism of finite type Z`-algebras, and an isomorphism after
inverting `.

Definition VIII.3.4. The algebra of excursion operators (for Z1(W, Ĝ)) is

Exc(W, Ĝ) = colim(n,Fn→W )O(Z1(Fn, Ĝ))Ĝ.

We see in particular that the geometric points of Exc(W, Ĝ) and Z1(W, Ĝ) agree.

Actually, the following higher-categorical variant is true.

Proposition VIII.3.5. Working in the derived ∞-category D(Z`), the map

colim(n,Fn→W )O(Z1(Fn, Ĝ))→ O(Z1(W, Ĝ))

is an isomorphism.

Proof. The left-hand side defines an animated Z`-algebra, in fact the universal animated Z`-
algebra A with a condensed 1-cocycle W → Ĝ(A), and the right-hand side is given by π0A. Now
the deformation-theoretic arguments from the proof of Theorem VIII.1.3 show that A is a derived
complete intersection, but as π0A has the correct dimension, we get A = π0A. �

We will later prove an even finer version, incorporating the Ĝ-action; we defer the proof to
Section VIII.5.

Theorem VIII.3.6. Assume that ` is a very good prime for Ĝ. Then the map

colim(n,Fn→W )O(Z1(Fn, Ĝ))→ O(Z1(W, Ĝ))

is an isomorphism in the presentable stable ∞-category Ind Perf(BĜ).

In particular, the map

Exc(W, Ĝ) = colim(n,Fn→W )O(Z1(Fn, Ĝ))Ĝ → O(Z1(W, Ĝ))Ĝ

is an isomorphism.

In particular, we see that the algebra of excursion operators plays a central role. In the next
subsection, we analyze it more explicitly.
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VIII.3.3. The algebra of excursion operators. Fix a finite quotient Q of WE over which

the WE-action on Ĝ factors. Let (Ĝ o Q)n � Ĝ be the quotient of (Ĝ o Q)n under simultaneous

conjugation by Ĝ.

Proposition VIII.3.7. The algebra of excursion operators Exc(W, Ĝ) is the universal Z`-
algebra A equipped with maps

Θn : O((ĜoQ)n � Ĝ)→ Map(Wn, A)

for n ≥ 1, linear over O(Qn)→ Map(Wn, A), subject to the following relations. If g : {1, . . . ,m} →
{1, . . . , n} is any map, the induced diagram

O((ĜoQ)m � Ĝ) //

��

Map(Wm, A)

��
O((ĜoQ)n � Ĝ) // Map(Wn, A)

commutes, where both vertical maps are the natural pullback maps. On the other hand, g also

induces a map (Ĝ o Q)m → (Ĝ o Q)n, multiplying in every fibre over i = 1, . . . , n the terms in
g−1(i) (ordered by virtue of their ordering as a subset of {1, . . . ,m}). This map is equivariant

under diagonal Ĝ-conjugation, and hence descends to the quotient. Similarly, g induces a map
Wm →Wn. Then also the induced diagram

O((ĜoQ)n � Ĝ) //

��

Map(Wn, A)

��
O((ĜoQ)m � Ĝ) // Map(Wm, A)

commutes.

The `-torsion free quotient of Exc(W, Ĝ) is also the universal flat Z`-algebra A′ equipped with
maps

Θ′n : O((ĜoQ)n � Ĝ)→ Map((WE/P )n, A′)

for n ≥ 1, linear over O(Qn) → Map((WE/P )n, A′), satisfying the same relations as in Propo-
sition VIII.3.7, where the right-hand side Map((WE/P )n, A′) denotes the maps of condensed sets
(where as usual A′ is considered as relatively discrete over Z`). In particular, the `-torsion free

quotient of Exc(W, Ĝ) is independent of the discretization W of WE/P .

We do not know whether it is necessary to pass to the `-torsion free quotient for the final

assertion. Note that if ` is very good for Ĝ, then Exc(W, Ĝ) ∼= O(Z1(WE/P, Ĝ))Ĝ is flat over Z`.
Moreover note that the `-torsion in Exc(W, Ĝ) is always nilpotent, so passing to this quotient is a
universal homeomorphism.

Proof. The datum of the Θn is equivalent the datum of a map of algebras

O(Z1(Fn, Ĝ))Ĝ → A

for each map Fn → W . The relations encode the relations arising in the diagram category
(n, Fn →W ) corresponding to maps Fm → Fn (over W ) either sending generators to generators, or
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multiplying subsets of generators. If one would also allow the inversion of elements, then this would
generate all required relations. We leave it as an exercise to see that this relation, corresponding
to Fn → Fn which is the identity on the first n − 1 generators and inverts the n-th generator, is
in fact enforced by the others. (Hint: Look at the part of Θn+1 corresponding to (γ1, . . . , γn, γ

−1
n )

and use that under multiplication of the last two variables, this maps to (γ1, . . . , γn−1, 1), which
arises from (γ1, . . . , γn−1).)

The second description is a priori stronger as Map((WE/P )n, A′) injects into Map(Wn, A′) as

W ⊂ WE/P is dense. The `-torsion free quotient of Exc(W, Ĝ) injects into O(Z1(WE/P, Ĝ))Ĝ (as

we have an isomorphism after inverting `), and it is clear that the elements of Map(Wn,Exc(W, Ĝ))

map to elements of Map((WE/P )n,O(Z1(WE/P, Ĝ))Ĝ). Thus, this already happens on the `-

torsion free quotient of Exc(W, Ĝ), which thus has the desired universal property. �

Regarding the passage to WE in place of WE/P , where there is no natural (finite type) algebra
anymore, we still have the following result.

Proposition VIII.3.8. Let L be an algebraically closed field over Z`. Then the following are
in canonical bijection.

(i) Semisimple L-parameters ϕ : WE → Ĝ(L) oWE, up to Ĝ(L)-conjugation.

(ii)L-valued points of Z1(WE , Ĝ) � Ĝ.

(iii)) Collections of maps of Z`-algebras

Θn : O((ĜoQ)n � Ĝ)→ Map(Wn
E , L)

for n ≥ 1, linear over O(Qn) → Map(Wn
E , L), such that for any map g : {1, . . . ,m} → {1, . . . , n},

the diagrams

O((ĜoQ)m � Ĝ)
Θm //

��

Map(Wm
E , L)

��
O((ĜoQ)n � Ĝ)

Θn // Map(Wn
E , L)

induced by pullback, and

O((ĜoQ)n � Ĝ)
Θn //

��

Map(Wn
E , L)

��
O((ĜoQ)m � Ĝ)

Θm // Map(Wm
E , L)

induced by multiplication, commute.

Proof. We already know that (i) and (ii) are in natural bijection. The recipe above gives a
canonical map from (ii) to (iii). Now take data as in (iii). Forgetting the continuity of all maps,

we see that data as in (iii) gives rise to a semisimple 1-cocycles ϕ : WE → Ĝ(L) (of discrete
groups), up to conjugation. We need to see that if the data in (iii) are maps of condensed sets,
then ϕ is also a map of condensed sets (this condition does not depend on the representative of its

conjugacy class). Consider the corresponding map ϕ′ : WE → Ĝ(L) o Q and let Z ⊂ ĜL o Q be
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the Zariski closure of its image; by semisimplicity, Z is completely reductive. We can find finitely
many elements γ1, . . . , γn ∈ WE such that Z is also the normalizer of the ϕ′(γi). By a theorem
of Richardson [Ric88], see [BMR05, Corollary 3.7] in the positive characteristic case, it follows

that the orbit of (ϕ′(γ1), . . . , ϕ′(γn)) under simultaneous Ĝ-conjugation is closed. Moreover, for

any further element γ, the Ĝ-orbit of (ϕ′(γ1), . . . , ϕ′(γn), ϕ′(γ)) maps isomorphically to the Ĝ-orbit

of (ϕ′(γ1), . . . , ϕ′(γn)) as both are given by Ĝ/Z. It follows that ϕ′(γ) ∈ Ĝ(L) o Q is determined

uniquely by the condition that (ϕ′(γ1), . . . , ϕ′(γn), ϕ′(γ)) lies in the correct Ĝ-orbit (which is closed).
This is determined by the map

O((ĜoQ)n+1 � Ĝ)→ Map(Wn+1
E , L)

when evaluated at (γ1, . . . , γn, γ). As we required this to be a map of condensed sets, the result
follows. �

VIII.4. Excursion operators

One can use Proposition VIII.3.8 to construct L-parameters in the following general categorical
situation. In order to avoid topological problems, we work in the setting of the discrete subgroup
W ⊂ WE/P ; in fact, we can take here any discrete group W . Let Λ be a discrete Z`-algebra and
let C be a Z`-linear category. Assume that functorially in finite sets I, we are given a monoidal
RepZ`(Q

I)-linear functor

RepZ`(ĜoQ)I → End(C)BW I
: V 7→ TV

where End(C) is the category of endomorphisms of C, and End(C)BW I
E is the category of F ∈ End(C)

equipped with a map of groups W I → Aut(F ).

The goal of this section is to prove the following theorem; this is essentially due to V. Lafforgue
[Laf18].

Theorem VIII.4.1. Given the above categorical data, there is a natural map of algebras

Exc(W, Ĝ) = colim(n,Fn→W )O(Z1(Fn, Ĝ))Ĝ → End(idC)

to the Bernstein center of C (i.e., the algebra of endomorphisms of the identity of C).

To prove Theorem VIII.4.1, we construct explicit “excursion operators”. These are associated
to the following data.

Definition VIII.4.2. An excursion datum is a tuple D = (I, V, α, β, (γi)i∈I) consisting of a

finite set I, an object V ∈ RepZ`((ĜoQ)I) with maps α : 1→ V |
RepZ`

(Ĝ)
, β : V |

RepZ`
(Ĝ)
→ 1 and

elements γi ∈W , i ∈ I.

Here, the restriction RepZ`((Ĝ o Q)I) → RepZ`(Ĝ) is the restriction to the diagonal copy of

Ĝ ⊂ ĜI ⊂ (ĜoQ)I .

Now consider excursion data D = (I, V, α, β, (γi)i∈I). These give rise to an endomorphism of
the identity functor of C, as follows.

SD : id = T1
Tα−→ TV

(γi)i∈I−−−−→ TV
Tβ−→ T1 = id.
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Varying the γi, this gives a map of groups

W I → Aut(idC)

to the automorphisms of the identity functor on C.
We note that if we have two excursion dataD = (I, V, α, β, (γi)i∈I) andD′ = (I, V ′, α′, β′, (γi)i∈I)

with same finite set I and elements γi ∈W , and a map g : V → V ′ taking α to α′ and β′ to β (by
post- and pre-composition), then SD = SD′ . Indeed, the diagram

T1
Tα // TV

(γi)i∈I //

Tg
��

TV
Tβ //

Tg
��

T1

T1
Tα′ // TV ′

(γi)i∈I// TV ′
Tβ′ // T1

commutes. Now note that (V, α, β) give rise to an element

f = f(V, α, β) ∈ O(Ĝ\(ĜoQ)I/Ĝ),

the quotient under diagonal left and right multiplication. Indeed, given any gi ∈ ĜoQ, i ∈ I, one
can form the composite

1
α−→ V

(gi)i∈I−−−−→ V
β−→ 1,

giving an element of the base ring; as α and β are equivariant for the diagonal Ĝ-action, this indeed
gives an element

f = f(V, α, β) ∈ O(Ĝ\(ĜoQ)I/Ĝ).

Conversely, given f we can look at the (ĜoQ)I -representation V = Vf ⊂ O((ĜoQ)I/Ĝ) generated
by f . This comes with a map αf : 1 → Vf |RepZ`

(Ĝ)
induced by the element f , and a map βf :

Vf |RepZ`
(Ĝ)
→ 1 given by evaluation at 1 ∈ (Ĝ o Q)I . If we replace V by the subrepresentation

generated by α, then there is a natural map V → Vf taking α to αf and βf to β. The above
commutative diagrams then imply that SD depends on (V, α, β) only through f , and we get a map
(a priori, of Z`-modules)

ΘI : O(Ĝ\(ĜoQ)I/Ĝ)→ Map(W I ,End(idC)).

Restricted to O(QI), this is given by the natural map O(QI)→ Map(W I ,Λ) (and Λ→ End(idC)).
Also, it follows from the definitions that for any map g : I → J , the diagram

O(Ĝ\(ĜoQ)I/Ĝ)
ΘI //

��

Map(W I ,End(idC))

��
O(Ĝ\(ĜoQ)J/Ĝ)

ΘJ // Map(W J ,End(idC)),

induced by pullback along g, is cartesian.

We want to check that ΘI is a map of algebras. For this, we use a version of “convolution

product = fusion product” in this situation. Namely, given f1, f2 ∈ O(Ĝ\(Ĝ o Q)I/Ĝ), we can

build their exterior product f1 � f2 ∈ O(Ĝ\(ĜoQ)ItI/Ĝ). Then one easily checks

ΘItI(f1 � f2)((γi, γ
′
i)i∈I) = ΘI(f1)((γi)i∈I)Θ

I(f2)((γ′i)i∈I).
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Applying now functoriality for pullback under I t I → I, it follows that indeed ΘI(f1f2) =
ΘI(f1)ΘI(f2).

For any n ≥ 0, we can identify

O(Ĝ\(ĜoQ){0,...,n}/Ĝ)⊗O(Q{0,...,n}) O(Q{1,...,n}) ∼= O((ĜoQ)n � Ĝ)

via pullback under (g1, . . . , gn) 7→ (1, g1, . . . , gn). This translates Θ{0,...,n} into maps of Z`-algebras

Θn : O((ĜoQ)n � Ĝ)→ Map(Wn,End(idC))

overO(Qn)→ Map(Wn,Λ), still satisfying compatibility with pullback under maps g : {1, . . . ,m} →
{1, . . . , n}.

Arguing also as in [Laf18, Lemma 10.1, equation (10.5)] and the resulting [Laf18, Proposition
10.8 (iii), Definition-Proposition 11.3 (d)], one sees that the maps Θn are also compatible with the
multiplication maps induced by such maps g, thus finishing the proof of Theorem VIII.4.1.

In particular, using the description of geometric points, Theorem VIII.4.1 implies the following
proposition.

Corollary VIII.4.3. Assume that Λ = L is an algebraically closed field and X ∈ C is an object

with End(X) = L. Then there is, up to Ĝ(L)-conjugation, a unique semisimple L-parameter

ϕX : W → Ĝ(L) oW

such that for all excursion data D = (I, V, α, β, (γi)i∈I), the endomorphism SD(X) ∈ End(X) = L,

X = T1(X)
α−→ TV (X)

(γi)i∈I−−−−→ TV (X)
β−→ T1(X) = X,

is given by the composite

L
α−→ V

(ϕX(γi))i∈I−−−−−−−→ V
β−→ L.

VIII.5. Modular representation theory

The goal of this section is to give a proof of Theorem VIII.3.6. In fact, we prove a slight
refinement of it, concerning perfect complexes, that will be useful in the construction of the spectral
action.

Theorem VIII.5.1. Assume that ` is a very good prime for Ĝ. Then the map

colim(n,Fn→W )O(Z1(Fn, Ĝ))→ O(Z1(W, Ĝ))

is an isomorphism in the presentable stable ∞-category Ind Perf(BĜ). Moreover, the ∞-category

Perf(Z1(W, Ĝ)/Ĝ) is generated under cones and retracts by Perf(BĜ), and Ind Perf(Z1(W, Ĝ)/Ĝ)

identifies with the ∞-category of modules over O(Z1(W, Ĝ)) in Ind Perf(BĜ).

The difficulties in this theorem all arise on the special fibre. Indeed, we will show below that
we can reduce to the following version in characteristic `.
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Theorem VIII.5.2. Assume that ` is a very good prime for Ĝ, and let L = F`. Then the map

colim(n,Fn→W )O(Z1(Fn, Ĝ)L)→ O(Z1(W, Ĝ)L)

is an isomorphism in the presentable stable ∞-category Ind Perf(BĜ). Moreover, the ∞-category

Perf(Z1(W, Ĝ)L/Ĝ) is generated under cones and retracts by Perf(BĜ).

Then we have the following reduction:

Theorem VIII.5.2 implies Theorem VIII.5.1. For the colimit claim, we need to see that

for all representations V of Ĝ, the map

colim(n,Fn→W )RΓ(Ĝ,O(Z1(Fn, Ĝ))⊗ V )→ RΓ(Ĝ,O(Z1(W, Ĝ))⊗ V )

is an isomorphism. It is an isomorphism after inverting `, as then the representation theory of Ĝ
is semisimple, and it is true on underlying complexes by Proposition VIII.3.5. Thus, it suffices to
show that it is an isomorphism after inverting `, or even after base change to L, which follows from
Theorem VIII.5.2.

For the other half, note first that if Perf(BĜ) generates Perf(Z1(W, Ĝ)/Ĝ), then it follows

by Barr–Beck–Lurie [Lur16, Theorem 4.7.4.5] that Ind Perf(Z1(W, Ĝ)/Ĝ) is the ∞-category of

modules over O(Z1(W, Ĝ)) in Ind Perf(BĜ). Now take any V ∈ Perf(Z1(W, Ĝ)/Ĝ). As its lowest
cohomology group is finitely generated, we can find some surjection from an induced vector bundle

onto it, and by passing to cones reduce the perfect amplitude until V is a Ĝ-equivariant vector

bundle on Z1(W, Ĝ). We may then again find a representation W of Ĝ and a surjection W ⊗
O(Z1(W, Ĝ)) → V . This map splits after inverting `, showing that V is a retract of an induced
vector bundle up to a power of `. Thus, it suffices to show that V/` lies in this subcategory, and
this follows from Theorem VIII.5.2. �

Thus, we concentrate now on Theorem VIII.5.2, which takes place over an algebraically closed
base field L of characteristic `. For the proof, we need many preparations on the modular represen-

tation theory of reductive groups, for Ĝ and many of its subgroups. As everything here happens on
the dual side but we do not want to clutter notation, we will change notation, only for this section,
and write G for reductive groups over L.

VIII.5.1. Good filtrations. First, we need to recall the notion of good filtrations. Let G
be a reductive group over L; as disconnected groups will appear frequently below, we stress that
reductive groups are always connected for us, so in particular G is assumed to be connected here.
Let T ⊂ B ⊂ G be a torus and Borel for G. For any dominant cocharacter λ of T , we have the
induced representation

∇λ = H0(G/B,O(λ)).

A representation V of G has a good filtration if it admits an exhaustive filtration

0 = V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ V

such that each Vi/Vi−1 is isomorphic to a direct sum of ∇λ’s. If one picks a total ordering 0 =
λ0, λ1, . . . of the dominant cocharacters, compatible with their dominance order, one can choose
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Vi ⊂ V to be the maximal subrepresentation admitting only weights λj with j ≤ i. In that case,
Vi/Vi−1 is generated by its weight space Wi of weight λi, and by adjunction there is a map

Vi/Vi−1 →Wi ⊗∇λi ;

then V admits a good filtration if and only if all of these maps are isomorphisms. For this, it is
in fact enough that Vi → Wi ⊗∇λi is surjective: The kernel is necessarily given by Vi−1, as it has
only smaller weights.

A key result is that if V and W admit good G-filtrations, then so does V ⊗W ; this is a theorem
of Donkin [Don85] and Mathieu [Mat90] in general. Moreover, if V admits a good filtration, then
H i(G,V ) = 0 for i > 0: This clearly reduces to the case of V = ∇λ, in which case it follows from
Kempf’s vanishing theorem [Kem76]. These results imply the following standard characterization
of modules admitting a good filtration.

Proposition VIII.5.3 ([Don81]). A G-representation V admits a good filtration if and only
if for all λ, one has

H i(G,V ⊗∇λ) = 0

for i > 0.

Using this, one can define a well-behaved notion of a “good filtration dimension” of V , referring
to the minimal i such that Hj(G,V ⊗ ∇λ) = 0 for all λ and j > i. Equivalently, there is a
resolution of length i by representations with a good filtration. We will use the following deep
result of Touzé–van der Kallen [TvdK10, Corollary 1.5].

Theorem VIII.5.4. Let A be a finitely generated L-algebra with an action of G. Let M be a
G-equivariant finitely generated A-module. Then H i(G,M) is a finitely generated AG-module for
all i ≥ 0. Moreover, if A has a good filtration, then M has finite good filtration dimension.

Another key result we need is the following.

Theorem VIII.5.5 ([Kop84], [Don88]). The G × G-representation O(G) (via left and right
multiplication) admits a good filtration.

In particular, we have the following corollary. For any n ≥ 0, let Fn be the free group on n
letters.

Corollary VIII.5.6. For any map Fn → Aut(G), the G-representation O(Z1(Fn, G)) admits
a good filtration.

Proof. Note that Z1(Fn, G) = Gn, where the G-action is that of simultaenous twisted conju-
gation (by the n given automorphisms of G). But O(Gn) admits a good filtration as representation
of G2n, and restricting to G ⊂ G2n it remains good by stability under tensor products (and as the
induced representations of G2n are tensor products of induced representations of each factor). �

Another property of relevance to us is the following.

Theorem VIII.5.7 ([AJ84, 4.4]). Assume that ` is very good for G. Then all symmetric powers
Symng∗ have a good filtration.
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VIII.5.2. Reductions. To prove Theorem VIII.5.2, we will use the following criterion.

Theorem VIII.5.8. Let X be an affine scheme of finite type over L equipped with an action of
a reductive group G. Assume the following conditions.

(i) The scheme X is a local complete intersection.

(ii) For any closed G-orbit Z ∼= G/H ⊂ X, the algebra O(G/H) has a good G-filtration, and the
image of Perf(BG)→ Perf(BH) generates under cones and retracts.

(iii) With Z as in (ii), the G-equivariant LZ/X [−1] ∈ D[−1,0](O(Z)) has the property that all

Symn
O(Z)(LZ/X [−1]) ∈ D[−n,0](O(Z)) have good filtration dimension 0; i.e., for all induced rep-

resentations V , one has

H i(G, Symn
O(Z)(LZ/X [−1])⊗ V ) = 0

for i ≥ 1.

Then O(X) has a good G-filtration, and Perf(X/G) is generated (under cones and retracts) by
Perf(BG).

Proof. To see that A = O(X) has a good filtration, we need to show that for every G-
representation V with a good filtration, H i(G,V ⊗O(X)) = 0 for i > 0. Note that this cohomology
group is a finitely generated AG-module by Theorem VIII.5.4. If it is not zero, pick some closed
point of SpecAG in its support, and let Z ⊂ X be the corresponding closed G-orbit. There is
a (derived) filtration I• ⊂ A such that I0 = A, I1 is the ideal of Z, and in general In/LIn+1 ∼=
Symn

O(Z)(LZ/X [−1]). Indeed, if X was smooth, we could simply take the filtration by powers of

the ideal I. In general, we may pick a G-equivariant simplicial resolution of A by smooth algebras,
and totalize the corresponding filtrations. Consider the G-equivariant animated A-algebra

Ã =
⊕
n∈Z

In

where by definition In = A for n ≤ 0. (Again, this can be defined by passage to G-equivariant

smooth resolutions.) Let t ∈ Ã be the generator in degree −1. Then

Ã/Lt =
⊕
n≥0

In/LIn+1 =
⊕
n≥0

Symn
O(Z)(LZ/X [−1])

has good filtration dimension ≤ 0. We also note that it is concentrated in a bounded range of
degrees, bounded by the number of generators for the ideal defining the (local) complete intersection

A. This implies that for any V with a good G-filtration, H i(G,V ⊗ Ã) are coherent H0(G, Ã)-

modules whose reduction modulo t vanishes for i > 0. Moreover, after inverting t, one has Ã[t−1] =

A[t±1]. Thus, the support of H i(G,V ⊗ Ã) in SpecH0(G, Ã) contains SpecO(Z)[t±1]. As it is
closed, it contains the spectrum of

⊕
n≤0(A/I)G = O(Z)[t], and thus meets the locus t = 0, in

contradiction to its vanishing modulo t. We note that it follows now that also Ã has good filtration

dimension ≤ 0, as all H i(G,V ⊗ Ã) vanish after inverting t and after reduction modulo t.

Now we prove that Perf(X/G) is generated by Perf(BG). Given N ∈ Perf(SpecA/G), let
i ∈ Z be maximal such that Hi(N) 6= 0. We may pick a G-representation V with a map V [−i]→
N |Perf(BG) so that A ⊗Z` V [−i] → N has the property that the induced map on Hi is surjective.
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Passing to the fibre, we may then induct on the perfect amplitude of N to reduce to the case that
N = M [0] is a vector bundle.

Now we use the theorem of Touzé–van der Kallen, Theorem VIII.5.4, which ensures that M
has finite good filtration dimension, i.e. there is some integer i such that for all λ and all j > i
one has Hj(G,M ⊗∇λ) = 0 for j > i. By Proposition VIII.5.9, when we choose V above, we can
assume that V ∗ admits a good filtration. Choosing such a V for N = M∗[0], we can thus find a
strict injection M → A ⊗ V ∗ of vector bundles such that V ∗ admits a good filtration. Passing to
the cokernel then decrases the good filtration dimension of M , and we can reduce to the case that
M has a good filtration.

We have a G-equivariant resolution

. . .→ A⊗A⊗M → A⊗M →M

of G-equivariant A-modules, which is canonically split in Ind Perf(BG). The class of all M for
which this is a resolution in Ind Perf(X/G) is exactly the class of all M generated under cones
and retracts by Perf(BG) – in one direction, it is a resolution in Ind Perf(X/G) when M arises via
pullback from BG (as it can then be split), and thus for all M generated by Perf(BG). In the other
direction, if it is a resolution in Ind Perf(X/G), then it follows that M is generated by Perf(BG)
as all other terms arise via pullback from BG. Now note that this is a resolution in Ind Perf(X/G)
if and only if for all N ∈ Perf(X/G), which we may again assume to be a G-equivariant finite
projective A-module with a good G-filtration, the complex

. . .→ (N ⊗A⊗M)G → (N ⊗M)G → (N ⊗AM)G → 0

is exact, and H i(G,N⊗AM) = 0 for i > 0. (Note that all terms N⊗M , N⊗A⊗M etc. have a good
G-filtration, hence there is no higher G-cohomology.) In particular, these observations show that
if M has a good filtration and lies in the full subcategory of Perf(X/G) generated by Perf(BG),
then for all G-equivariant finite projective A-modules N with a good filtration, also M ⊗A N has
a good G-filtration.

We note that the previous arguments also apply in case A = O(Z) for an orbit Z as in (ii),
in which case the assumption of (ii) implies that for two G-equivariant O(Z)-perfect complexes
M1,M2 ∈ Perf(SpecO(Z)/G) with G-good filtration dimension ≤ 0, also their tensor product is of
G-good filtration dimension ≤ 0.

Coming back to a general G-equivariant finite projective A-module M , we can now find some
large enough V ⊂ M with a good filtration inducing a surjection A ⊗ V → M . Moreover, as
(M ⊗ L[G/U ])G is finitely generated over (A⊗ L[G/U ])G (for example, by Theorem VIII.5.4), we
can even ensure that the map stays surjective after tensoring with L[G/U ] =

⊕
λ∇λ and taking

G-invariants. This implies that the kernel M ′ of A⊗ V →M still has a good filtration.

In other words, we can find an infinite resolution

. . .→ A⊗ V1 → A⊗ V0 →M → 0

such that all Vi are G-representations with a good filtration, and the kernel Mi of A⊗Vi → A⊗Vi−1

is always a G-equivariant finite projective A-module that admits a good filtration. In particular, it
is a resolution Ind Perf(BG). It suffices to see that this is in fact a resolution in Ind Perf(X/G). To
see this, we need to see that for any N ∈ Perf(X/G), which we may assume to be a G-equivariant
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vector bundle admitting a good G-filtration, also the complex

. . .→ N ⊗ V1 → N ⊗ V0 → N ⊗AM → 0

is a resolution in Ind Perf(BG). We note that this is automatic if N ⊗AMi has a good G-filtration
for all i.

Now assume that for any closed point x of SpecAG, with localization (AG)x at x, that M ⊗AG
AGx ∈ Perf(Spec(A⊗AG AGx )/G) is generated by Perf(BG). Then in particular, also Mi ⊗AG AGx is
generated by Perf(BG), and hence N ⊗A Mi ⊗AG AGx has a good G-filtration. This then implies
that the AG-module H>0(G,N ⊗AMi ⊗ V ) vanishes locally on SpecAG for any representation V
with good G-filtration, and hence vanishes, thus showing that N ⊗A Mi has a good G-filtration.
By the above, this then implies that M is also globally generated by Perf(BG).

We can thus work locally on SpecAG, and we fix a closed point, corresponding to a closed
G-orbit Z ⊂ X. With

Ã =
⊕
n∈Z

In

as above, which we endow with an action of G̃ = G × Gm (where Gm acts via the grading), we

consider G̃-equivariant finite projective Ã-module M̃ = M ⊗A Ã. By Theorem VIII.5.4, the O(Z)-
module M ⊗A A/I has finite good filtration dimension, and as all In/LIn+1 have good filtration

dimension ≤ 0, it follows that M̃/t =
⊕

n≥0(M ⊗A A/I) ⊗A/I In/LIn+1 has finite good filtration

dimension. By finite generation arguments on cohomology groups, this then also implies that M̃
has finite good filtration dimension. Arguing as for the A-module M , we can then first arrange

that M̃ has good filtration dimension ≤ 0, and then find V0, V1, . . . ∈ Perf [−1,0](BG) with good
filtration dimension ≤ 0 such that

. . .→ Ã⊗ V1 → Ã⊗ V0 → M̃ → 0

is a resolution in Ind Perf(BG̃), with the limit M̃i of [Ã ⊗ Vi → Ã ⊗ Vi−1 → . . . → M̃ ] being a

G̃-equivariant finite projective Ã-module with good filtration dimension ≤ 0. Reducing modulo t,
the sequence

. . .→ Ã/t⊗ V1 → Ã/t⊗ V0 → M̃/t→ 0

is a resolution in Ind Perf(Spec(Ã/t)/G), as in fact M̃/t = (M⊗AA/I)⊗A/I Ã/t lies in the subcate-
gory generated by Perf(BG), as this is true for M⊗AA/I ∈ Perf(Z/G) = Perf(BH) by assumption
(ii). Indeed, reversing some arguments above, this implies that for all G-equivariant finite projective

Ã/t-modules N with good filtration dimension ≤ 0, also N ⊗
Ã/t

M̃i/t has good filtration dimension

≤ 0, which gives that the displayed resolution is indeed a resolution in Ind Perf(Spec(Ã/t)/G).

Now consider any Ñ ∈ Perf(Spec Ã/G̃). We are interested to what extent

. . .→ (Ñ ⊗ V1)G → (Ñ ⊗ V0)G → (Ñ ⊗
Ã
M̃)G → 0

is a resolution. All the cohomology groups are finitely generated H0(G, Ã)-modules, and their

reduction modulo t vanishes. This implies, as above, that their support is disjoint from the G̃-orbit

SpecO(Z)[t±1]→ Spec Ã (as the closure of this orbit meets the fibre t = 0).
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We can apply this in particular to Ñ = N ⊗A Ã for some G-equivariant finite projective A-
module with good filtration. Inverting t in the above sequence, we get the complex

. . .→ (N ⊗ V1)G[t±1]→ (N ⊗ V0)G[t±1]→ (N ⊗AM)G[t±1]→ 0

such that the support of its cohomology groups is disjoint from SpecO(Z)[t±1]. In other words, we
get that

. . .→ (N ⊗ V1)G ⊗AG AGx → (N ⊗ V0)G ⊗AG AGx → (N ⊗AM)G ⊗AG AGx → 0

is exact, which implies that

. . .→ A⊗AG AGx ⊗ V1 → A⊗AG AGx ⊗ V0 →M ⊗AG AGx → 0

is a resolution in Ind Perf(Spec(A ⊗AG AGx )/G). (Note that we can repeat the arguments after
replacing AG by some localization of it, and N there.) In particular, M⊗AGAGx ∈ Perf(Spec(A⊗AG
AGx )/G) is generated by Perf(BG). As we discussed above, this result for all closed points x ∈
SpecAG gives the claim. �

Proposition VIII.5.9. Let V be a representation of G. Then there is a surjection W → V
such that W ∗ admits a good filtration.

Proof. We can look at the subcategory of Rep(G) where all weights are within some finite
set (closed under the dominance order). It is well-known that this category admits a projective
generator P , and the projective generator has the property that its dual P ∗ has a good filtration;
this follows for example from H1(G,P ∗ ⊗Z` ∇λ) = Ext1(P,∇λ) = 0 for all relevant ∇, and the
characterization of Proposition VIII.5.3. This implies the proposition. �

To produce examples of algebras satisfying Theorem VIII.5.8, we will use the following propo-
sition.

Proposition VIII.5.10. Let A• → A be a G-equivariant simplicial resolution of algebras of fi-
nite type over L equipped with an action of G, such that A and all A• are local complete intersections.
Assume that Ai has a good G-filtration for all i, and that for all closed orbits Z ∼= G/H ⊂ SpecA,
O(Z) admits a good G-filtration and the image of Perf(BG) → Perf(BH) generates under cones
and retracts. Moreover, assume that for all i ≥ 0 and n ≥ 0,

Symn(LZ/SpecAi [−1]) ∈ Perf(O(Z)/G)

has good filtration dimension ≤ 0, and that for varying i, LZ/SpecAi ∈ Perf(O(Z)/G) = Perf(BH)
involves only finitely many irreducible representations of H. Then the map

colimA• → A

is an isomorphism in Ind Perf(BG), and for all n ≥ 0 the map

colim Symn(LZ/SpecA• [−1])→ Symn(LZ/SpecA[−1]) ∈ Perf(O(Z)/G)

is an isomorphism, so the right-hand side has good filtration dimension ≤ 0.

Proof. First, note that the map

colimLZ/SpecA• → LZ/SpecA,
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which is necessarily an isomorphism in D(L), is also an isomorphism in Ind Perf(O(Z)/G) =
Ind Perf(BH) as it involves only finitely many irreducible representations of H. Similarly,

colim Symn(LZ/SpecA• [−1])→ Symn(LZ/SpecA[−1])

is an isomorphism in Ind Perf(O(Z)/G), and in particular in Ind Perf(BG). As all terms on the left
have good filtration dimension ≤ 0, this implies that also Symn(LZ/SpecA[−1]) has good filtration
dimension ≤ 0.

In particular, Theorem VIII.5.8 implies that A has a good G-filtration. It remains to see that

colimA• → A

is an isomorphism in Ind Perf(BG). Equivalently, for any representation V of G with a good
filtration, the map

colim(A• ⊗ V )G → (A⊗ V )G

is an isomorphism.

Assume first that V = L is trivial. Then AG• is a simplicial finite type L-algebra, and thus its
colimit B is an animated L-algebra that is almost of finite type; in other words, π0B is a finite
type L-algebra, and πiB is a finitely generated π0B-module for i > 0. Moreover, it follows from
Haboush’s theorem that the map π0B → AG is a universal homeomorphism. Thus, if the map
B → AG is not an isomorphism, the homotopy groups of its cone are finitely generated π0B-
algebras, and we can take some closed point of Specπ0B ∼= SpecAG in its support, corresponding

to some closed G-orbit Z ∼= G/H ⊂ SpecA. We can then form Ã and Ã• as in the proof of
Theorem VIII.5.8, and look at the map

colim ÃG• → ÃG.

Again, the homotopy groups of the cone are finitely generated, and so as in the proof of Theo-
rem VIII.5.8 it suffices to show that it is an isomorphism after reduction modulo t. But modulo t,

we get Ãi/t =
⊕

n≥0 Symn(LZ/SpecAi [−1]) and similarly for Ã/t, and the claim follows from the
first paragraph of the proof.

To see that for all V with a good filtration, the map

colim(A• ⊗ V )G → (A⊗ V )G

is an isomorphism, we note that now both sides are in D≤0(AG) with finitely generated cohomology
groups. We can then pick Z as before, and reduce to showing that

colim(Ã• ⊗ V )G → (Ã⊗ V )G

is an isomorphism after reduction modulo t, where it follows again from the direct sum decompo-

sition of Ã•/t and Ã/t. �

VIII.5.3. Fixed point groups. We will need to know some properties of the fixed points
H = GF of reductive groups G under a (finite) group F of automorphisms of G. These will in
general not stay connected, so to facilitate inductive arguments, we will also not assume that G is
connected here. We will, however, usually make the assumption that π0G is of order prime to the
characteristic ` of the base field, and we will also assume that F is of order prime to `.

First, we have the following structural result.
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Proposition VIII.5.11. Let L be an algebraically closed field of characteristic ` > 0, and let
G be a smooth linear algebraic group over L such that G◦ is reductive and π0G is of order prime
to `. Assume that F is a finite group of order prime to ` acting on G and let H = GF be the fixed
points. Then H is a smooth linear algebraic group, H◦ is reductive, and π0H is of order prime to
`.

We note that our proof of the last part of this proposition probably uses unnecessarily heavy
machinery. Under the assumption that F is solvable, we will later give a completely explicit proof.

Proof. It is a standard fact that the fixed points of a smooth affine scheme under a finite
group of order prime to the characteristic is still affine and smooth. Moreover, by [PY02, Theorem
2.1], H◦ is reductive.

For the final statement, we can first assume that G is connected (as π0G is of order prime
to `), and thus reductive. We consider the action of G on

∏
F G, where it acts on the factor

enumerated by Θ ∈ F through Θ-twisted conjugation. Note that O(
∏
F G) has a good G-filtration.

By Theorem VIII.5.4, for any G-equivariant finitely generated O(
∏
F G)-module M , the good

filtration dimension of M is finite, and in particular H i(G,M) = 0 for all large enough i.

Now G/H is a closed orbit of G acting on
∏
F G (the orbit of the identity element). Moreover,

if π0H has an element of order `, then we get a subgroup H ′ ⊂ H with π0H
′ ∼= Z/`Z. In that case,

RΓ(G,O(G/H ′)) ∼= RΓ(H ′, L) ∼= RΓ(Z/`Z, L)

has cohomology in all positive degrees, while O(G/H ′) correponds to a G-equivariant coherent
sheaf on

∏
F G (equipped with its Θ-conjugation), so this contradicts the previous paragraph. �

We will also need the following result.

Proposition VIII.5.12. In the situation of Proposition VIII.5.11, assume that the simply con-
nected cover G′ of G◦der has the property that all Symng′∗ have a good G′-filtration. Then O(G/H)
has a good G-filtration.

We recall that the assumption on symmetric powers of g′∗ is satisfied for all ` in type A, for
all ` 6= 2 in classical types, for all ` 6= 2, 3 in exceptional types except for E8, where one needs
` 6= 2, 3, 5.

Remark VIII.5.13. The result reduces easily to the case that G is connected, semisimple
and simply connected. In that case, the result is related, but apparently somewhat weaker, than
the assertion that H◦ ⊂ G is a Donkin subgroup, meaning that for any representation V of G
with a good G-filtration, its restriction to H◦ has a good H◦-filtration; here we only prove that
H i(H◦, V ) = 0 for i > 0. This stronger statement that H◦ ⊂ G is a Donkin subgroup is actually
known in most cases, at least when F is solvable so that one can reduce to automorphisms of
prime order. In particular, involutions are handled completely in [Bru98, Section 2], [vdK01],
and the (few) remaining cases are mostly done in [HM13, Theorem 4.3.3]. In particular, assuming
F solvable, one can show this way that the conclusion of the proposition is true for all ` in classical
types or G2. The missing cases are the centralizers of semisimple elements of order 3 in F4, E6 and
E7, and of order 3 and 5 in E8. These cases are not handled for small ` in [HM13, Theorem 4.3.3].
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Proof. We need to see that for all G-representations V with a good filtration, one has
H i(G,O(G/H) ⊗ V ) = 0 for i > 0. This translates into H i(H,V |H) = 0 for i > 0. The lat-
ter can be checked after replacing H by H◦der (as π0H is of order prime to `), or even a finite cover
of it. From these remarks, one sees that one can assume that G is connected, semisimple and simply
connected.

As in the proof of Proposition VIII.5.11, we can embed G/H into
∏
F G. Moreover, F acts in

the following way on
∏
F G: It takes a tuple (gf )f∈F to (gff ′f(gf ′)

−1)f . This action commutes with
the simultaneous twisted G-conjugation. Moreover, the fixed points of F are exactly the 1-cocycles
Z1(F,G) ⊂

∏
F G, with their G-conjugation. The map G/H ↪→ Z1(F,G) is the inclusion of a

connected component. Note that

L∏
F G
|Z1(F,G) → LZ1(F,G)

is a map of G-equivariant vector bundles on Z1(F,G), and it moreover carries a commuting F -
action, where the target is the F -orbits of the source. As F is of order prime to `, it follows that
the map splits. In particular, restricting to G/H, we see that

L∏
F G
|G/H → LG/H

splits G-equivariantly. Using the transitivity triangle, it follows that if I ⊂ O(
∏
F G) is the ideal

sheaf of G/H, then I/I2 is a G-equivariant direct summand of L∏
F G
|G/H . Note that G-equivariant

vector bundles on G/H are equivalent to representations of H, and L∏
F G
|G/H corresponds to the

representation
⊕

F g∗|H . Taking symmetric powers, it follows that for all n, In/LIn+1 is a G-
equivariant direct summand of the G-equivariant vector bundle on G/H corresponding to a direct
sum of copies of Symng∗|H .

Now let A = O(
∏
F G) with its G-action and F -action and G- and F -stable ideal I ⊂ A. We

consider the complex

. . .→ A⊗F
2 → A⊗F → A→ O(Z1(F,G))→ 0

computing the F -orbits on A, in the sense of animated L-algebras. This still computes O(Z1(F,G)),
as F is of order prime to ` and A is smooth. Let A• = A⊗F

•
be the corresponding simplicial L-

algebra, with ideal I• ⊂ A• of G/H. Let

Ã• =
⊕
n∈Z

Ĩn• ,

where Ĩn• = A• for n ≤ 0. This defines a simplicial L[t]-algebra, where t is the natural degenerator

in degree −1. Then Ã•[t
−1] = A•[t

±1] and Ã•/t is the symmetric algebra on Ĩ•/Ĩ
2
• over O(G/H).

In particular, this is a resolution of O(G/H), and in fact Ã• is a resolution of O(G/H)[t].

Note that the good filtration dimension of each Ãn is bounded by the good filtration dimension

of O(G/H) plus 1. To see this, note that Ãn[t−1] = An[t±1] has a good filtration, so it is enough

to show that the good filtration dimension of Ãn/t is bounded by the good filtration dimension of

O(G/H). This is because all symmetric powers of Ĩn/Ĩ
2
n are direct summands of direct sums of

copies of symmetric powers of g∗ restricted to H. We checked this for n = 0, but for n > 0 one
simply gets more copies of g∗ (or applies the reasoning with F replaced by Fn+1).
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We claim that for all G-representations V , the map

colimRΓ(G, Ã• ⊗ V )→ RΓ(G,O(G/H)[t]⊗ V )

is an isomorphism. Consider the simplicial L-algebra ÃG• , and its colimit B, an animated L-
algebra (with π0B finitely generated, and all πiB finitely generated π0B-modules). Then for all

i, H i(G, Ã• ⊗ V ) defines a degree-wise finitely generated ÃG• -module (by Theorem VIII.5.4), and
hence its colimit defines an animated B-module whose πj is finitely generated over π0B, for all j.
By the good filtration bounds, we also know that these cohomology groups vanish for i sufficiently
large. This implies that each cohomology group of the left-hand side is finitely generated over π0B.
Moreover, by Haboush’s theorem, the map π0B → O(G/H)[t] is a universal homeomorphism, and
hence also the right-hand side is finitely generated over π0B. In particular, the cohomology groups
of the cone have support which is a closed G-invariant subset of Specπ0B ∼= SpecO(G/H)[t]. All
in all, it follows that it suffices to prove that the map is an isomorphism modulo t. But modulo t,
we consider

colimRΓ(G, Ã•/t⊗ V )→ RΓ(G,O(G/H)⊗ V )

and all Ã•/t are given by the symmetric algebras on Ĩ•/Ĩ
2
• over O(G/H), and hence everything

decomposes into a direct sum over n of the degree n parts. In degree 0, it is the constant simplicial
object given by O(G/H). In degree 1, the corresponding simplicial G-equivariant O(G/H)-module

Ĩ•/Ĩ
2
•

is contractible, as it comes from some computation of F -homology, and F is of order prime to
`. Passing to symmetric powers, the simplicial objects stay contractible, and stay so after taking
G-cohomology.

Inverting t, we find that

colimRΓ(G,A• ⊗ V )[t±1]→ RΓ(G,O(G/H)⊗ V )[t±1]

is an isomorphism; we can then omit the variable t. Applying this to V with a good filtration,
we note that all A• have a good G-filtration, hence so does A• ⊗ V , and the left-hand side sits in
cohomological degrees ≤ 0. Thus, the same is true for the right-hand side, showing that O(G/H)
has a good G-filtration. �

We will need to know that in the situation of Proposition VIII.5.11, the image of Perf(BG)→
Perf(BH) generates (under cones and retracts), at least if F is solvable. It is very likely that this
assumption is superfluous.

Theorem VIII.5.14. Let L be an algebraically closed field of characteristic ` > 0, and let G be
a smooth linear algebraic group over L such that G◦ is reductive, and π0G is of order prime to `.
Assume that F is a finite group of order prime to ` acting on G and let H = GF be the fixed points.
Then H is a smooth linear algebraic group such that H◦ is reductive, π0H is of order prime to `,
and the image of Perf(BG)→ Perf(BH) generates under cones and retracts.

Remark VIII.5.15. The following example shows that the hypothesis that F is of order prime
to ` is important, and cannot even be weakened to for example “quasi-semisimple” automorphisms
(preserving a Borel and a torus); also, the example shows that the precise form of the center is
critical in the theorem. If G = (SL2 × SL2)/µ2 with the automorphism switching the two factors,
then H = PGL2 × (µ2 × µ2)/µ2. If we had ` = 2 – this is excluded by the hypotheses – then
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one can show that for all objects A ∈ Perf(BH) in the image of Perf(BG), the summand A1

of A with nontrivial central character has the property that the (homotopy) invariants of the
Z/2Z ⊂ PGL2-action on A1 are a perfect complex. This implies that the nontrivial character of H
is not generated by Perf(BG) under cones and retracts. On the other hand, the conclusion of the
theorem is (trivially) true for the simply connected and adjoint form of G, as then the inclusion
H ⊂ G admits a retraction.

Before starting the proof of Theorem VIII.5.14, let us recall the following lemma.

Lemma VIII.5.16. Let C be an idempotent-complete stable ∞-category, and let D ⊂ C be a
full idempotent-complete stable ∞-subcategory, with idempotent-completed Verdier quotient E. Let
S ⊂ C be a collection of objects of C. Then S generates C under cones, shifts, and retracts if and
only if the image of S in E generates E under cones, shifts, and retracts, and all of objects of D
are in the full ∞-subcategory of C generated by S under cones, shifts, and retracts.

Proof. Let C′ ⊂ C be the full idempotent-complete stable ∞-category generated by S; this is,
equivalently, the full ∞-subcategory generated by S under cones, shifts, and retracts. We want to
see that C′ = C. Passing to Ind-categories, we have a Verdier quotient sequence

Ind(D)→ Ind(C)→ Ind(E)

and the quotient Ind(C)→ Ind(E) has a right adjoint R : Ind(E)→ Ind(C); see, for example [NS18,
Theorem I.3.3, Proposition I.3.5]. In particular, for any X ∈ Ind(C), with image X ∈ Ind(E), the
cone of X → R(X) lies in Ind(D) ⊂ Ind(C).

To see that C′ → C is essentially surjective, we need to see that for all X ∈ Ind(C) with
Hom(X ′, X) = 0 for all X ′ ∈ C′, one has X = 0. Now by assumption all objects of D lie in C′, so
in particular Hom(Y,X) = 0 for all Y ∈ D. As Hom(Y,R(X)) = Hom(Y ,X) = 0 for all such Y (as
Y = 0 ∈ E), we see that Hom(Y, cone(X → R(X))) = 0 for all Y ∈ D. As the cone lies in Ind(D),
this implies that the cone is equal to 0, so X = R(X). But then Hom(X ′, R(X)) = Hom(X ′, X) = 0
for all X ′ ∈ S, which implies that X = 0 by the assumption that S generates E under cones, shifts,
and retracts. �

An application of this is the following result.

Lemma VIII.5.17. Let G be a connected reductive group and H ⊂ G be a connected reductive
subgroup of the same rank. Then the image of Perf(BG) → Perf(BH) generates under cones and
retracts.

Proof. Let T ⊂ H be a maximal torus. Then it is also a maximal torus of G. For any
subset W ⊂ X∗(T ) stable under the Weyl group of G and the dominance order, we have the
subcategory PerfW (BG) consisting of those representations whose weights lie in T , and similarly
the subcategory PerfW (BH); obviously, restriction gives a functor PerfW (BG)→ PerfW (BH). We
claim by induction on W that the image generates under cones and retracts. We may always write
W = W ′ ∪W ′′ where W ′′ is a single Weyl group orbit, and W ′ is still stable under the dominance
order. Then PerfW (BG)/PerfW ′(BG) is isomorphic to Perf(L), and is generated by the highest
weight representation V of weight given by W ′′. Note that that all the weight spaces of V with
weights in W ′′ have multiplicity exactly 1. The quotient PerfW (BH)/PerfW ′(BH) is isomorphic
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to a product of copies of Perf(L), enumerated by all the orbits of W ′′ under the Weyl group WH

of H. The induced map on quotients Perf(L) →
∏
W ′′/WH

Perf(L) is the diagonal embedding,

by the multiplicity 1 observation. Thus, its image generates under retracts, and we conclude by
induction. �

A variation of Lemma VIII.5.16 is the following.

Lemma VIII.5.18. Let G be a linear algebraic group over L and let G′ ⊂ G be a normal subgroup,
with quotient G = G/G′, and assume that the map L → O(G) splits as G-representations. Let
C ⊂ Perf(BG) be an idempotent-complete stable ∞-subcategory such that for all X,Y ∈ C also
X ⊗ Y ∈ C. Assume that C contains Perf(BG) and the image of C in Perf(BG′) generates under
cones and retracts. Then C = Perf(BG).

Proof. The functor Ind Perf(BG)→ Ind Perf(BG′) admits a right adjointR : Ind Perf(BG′)→
Ind Perf(BG), given by pushforward along f : BG′ → BG. Note that these functors preserve the
coconnective part of these ∞-categories, and Ind Perf≥0(BG) ∼= D≥0(BG). In particular, this in-
duces a monad on Ind Perf(BG), given by Rf∗f

∗. By the projection formula, this monad is given
by V 7→ V ⊗O(G). By the assumption that L→ O(G) splits as G-representations, it follows that
for all V ∈ Ind Perf(BG), V is a direct summand of V ⊗O(G).

Now take any V ∈ Ind Perf(BG); we want to see that it lies in Ind(C). Let V ′ ∈ Ind Perf(BG′)
be the image of V . The functor Ind(C) → Ind Perf(BG′) is surjective, so we can write V ′ as the
image of some X ∈ Ind(C) ⊂ Ind Perf(BG). Then V is a direct summand of R(V ′) = X ⊗ O(G).
As O(G) ∈ Ind Perf(BG) lies in Ind(C) by assumption, and tensor products preserve Ind(C), we
get the result. �

Proof of Theorem VIII.5.14. By induction, we can assume that F is cyclic of prime order
p 6= `. The following argument actually proves simultaneously that π0H is of order prime to `, and
H◦ is reductive, but this is already part of Proposition VIII.5.11.

For the statement that Perf(BG)→ Perf(BH) generates, we first reduce to the case that G is
connected and semisimple. Indeed, we have an exact sequence

1→ G◦der → G→ D → 1

where D◦ is a torus and π0D is of order prime to `; in particular D has semisimple representation
theory and L → O(D) splits as D-representations. Intersecting with H, we get a similar exact
sequence, and then Lemma VIII.5.18 reduces us to the case of G◦der.

Now we claim that we can reduce to the case that Θ permutes the almost simple factors of G
transitively. Let G1 → G be the simply connected cover, to which Θ lifts, and let H1 = GΘ

1 be the
corresponding fixed points.

Lemma VIII.5.19. Let G be a connected semisimple group, and let Θ : G→ G be an automor-
phism of order p 6= `; it also induces an automorphism Θ : G1 → G1 of the simply connected cover.
Let H = GΘ ⊂ G be the fixed points, and similarly H1 = GΘ

1 . Then H1 is connected, and π0H is
an elementary abelian p-group which injects naturally into the coinvariants ker(Z(G1)→ Z(G))Θ.

Proof. For the claim that H1 is connected, see [Ste68, Theorem 8.1]. We define a map

ψ : H → ker(Z(G1)→ Z(G))Θ. Given h ∈ H, lift to h̃ ∈ G1. Then h̃Θ(h̃)−1 must lie in the kernel
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of G1 → G, i.e. in the kernel of Z(G1)→ Z(G). Taking a different choice of h̃ multiplies h̃Θ(h̃)−1

by zΘ(z)−1, so the image in the coinvariants is well-defined. Moreover, it is clear that the image
is 0 when h ∈ H lifts to H1. Conversely, if the image in the coinvariants is 0, then we can find a

choice of h̃ so that h̃ = Θ(h̃), i.e. we can lift h to h̃ ∈ H1. This shows that π0H = H/im(H1 → H)
injects into ker(Z(G1) → Z(G))Θ. It is also easy to check that it is a group homomorphism, so
π0H is an abelian group.

Moreover, all elements of π0H are of order p. Indeed, consider h̃Θ(h̃)−1 above. Its image in the

coinvariants agrees with Θi(h̃)Θi+1(h̃)−1 for all i = 0, . . . , p− 1, so its p-th power is h̃Θp(h̃)−1 = 1,
as Θ is of order p. �

Now assume that the theorem holds when Θ permutes the almost simple factors of G
transitively. This implies that it holds for all simply connected groups: Indeed, we can decompose
these into factors. Now for general G, we induct on the order of ker(Z(G1)→ Z(G)). Assume that
there is some normal Θ-stable connected semisimple subgroup G′ ⊂ G such that G = G/G′ has
almost simple factors permuted transitively by Θ, and ker(Z(G1) → Z(G))Θ 6= 0. In that case,

let G
′ → G be the cover with ker(Z(G

′
) → Z(G)) = ker(Z(G1) → Z(G))Θ, and let G′ → G be

its pullback. Then Θ also acts on G′, and the action on W = ker(Z(G′) → Z(G)) is trivial. In
particular, if H ′ = (G′)Θ, then H ′ contains W = ker(Z(G′)→ Z(G)). By induction, we can assume
that Perf(BG′) → Perf(BH ′) generates under cones and retracts. Both categories decompose
into direct sums over the characters of W , so it follows that also Perf(BG) → Perf(B(H ′/W ))
generates under cones and retracts. Now H ′/W ⊂ H is a union of connected components, so by

Lemma VIII.5.18, it suffices to shows thatO(H/H ′) is generated by Perf(BG). But asG′ = G×GG
′
,

we also similarly have H ′ = H ×H H
′
, and hence H/H ′ = H/H

′
, and hence this part follows from

O(H/H
′
) being generated by Perf(BG).

Thus, we can assume that for all such quotients G, one has ker(Z(G1) → Z(G))Θ = 0. This
actually implies that ker(Z(G1) → Z(G)) is of order prime to p. If this happens for all such
quotients G, then in fact ker(Z(G1) → Z(G)) is of order prime to p. By Lemma VIII.5.19, it
is then the case that H is connected. If ker(Z(G1) → Z(G))Θ 6= 0, then we can pass to the
corresponding cover G′ → G and the previous arguments reduce us to G′. Thus, we can further
assume that ker(Z(G1)→ Z(G))Θ = 0. In that case also the Θ-invariants are trivial (as the group
is prime to p), and the map H1 → H is an isomorphism. Moreover, we can find a maximal quotient
G → G′ such that ker(Z(G1) → Z(G′)) is prime to p and ker(Z(G1) → Z(G′))Θ = 0, and this
decomposes into factors. This finishes the reduction to the case when Θ permutes the
almost simple factors of G transitively.

Assume that there is more than one simple factor. Then Θ permutes them cyclically,
with Θp acting as the identity, so G1 =

∏
Z/pZH1. There is nothing to do in the simply connected

types E8, F4 and G2. Consider next the types B, C, D and E7 where the fundamental
group is a 2-group. Assume first that also p > 2. Then as in the previous paragraph, we can
assume thatG1 → G is the maximal Θ-stable quotient such thatH1 = H = GΘ; then Z(H)→ Z(G)
is an isomorphism. Let V be any representation of H. Then V splits off V ⊗V ∗⊗V , and inductively
it splits off V ⊗m⊗V ∗⊗(m−1) for any m ≥ 1. In type B, C, Dn with n even and E7, take n = p: Then
V ⊗(n−1) is a representation of the adjoint form, hence generated by Perf(BG), and V ⊗p lifts to a
representation of G, whence lies in the subcategory of Perf(BH) generated by Perf(BG), showing
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that also V lies in there. In type Dn with n odd, the same argument works if p ≡ 1 mod 4; if
p ≡ 3 mod 4, take m = p+ 1: Then V ⊗m is a representation of the adjoint group, and V ∗⊗(m−1)

extends to G. Now consider the case p = 2 in type B, C, D and E7, so necessarily ` 6= 2.
In type B, C and E7, one has Z(G1) = (Z/2Z)2, and besides the simply connected and adjoint
form where the claim is clear, there is only one Θ-stable subgroup. In that case G = (H1×H1)/µ2,
with µ2 diagonally embedded, and the fixed points are given by H = H1/µ2 × (µ2 × µ2)/µ2. By
Lemma VIII.5.18, it suffices to generate the nontrivial character of (µ2 × µ2)/µ2. In type B, the
exterior tensor product of two copies of the spinor representation defines a representation W of G
of dimension a power of 2 whose restriction to H has nontrivial central character, and admits a
character as a summand, thus generating the nontrivial character of µ2 × µ2/µ2. In type C, one
can argue similarly with two copies of the i-th exterior power of the standard representation of
Sp2n, with 0 < i < 2n odd such that

(
2n
i

)
is not divisible by ` – for example, take for i the exact

power of ` dividing n. In type E7, there is an embedding into Sp56, reducing to type C. In type
D, we make a case distinction according to the size of π1(G), whose size is a power of 2 between 1
and 16, where the extreme cases are clear. If it is of size 2, then G = (Spin2n × Spin2n)/µ2 where
the µ2 is diagonally embedded, and in each copy is the kernel of Spin2n → SO2n. In that case
H = SO2n × (µ2 × µ2)/µ2, which can be handled similarly to type B. If π1(G) is of size 8, then
G = (SO2n × SO2n)/µ2 and H = PSO2n × (µ2 × µ2)/µ2. This case can be handled like the case
of type C. There remains the case that π1(G) is of size 4, where either G = SO2n × SO2n where
the claim is clear, or else G ∼= (Spin2n × Spin2n)/Z where Z is the center of Spin2n, embedded
either diagonally, or twisted via the outer automorphism of Spin2n in one copy. In this case we
also need to distinguish between even and odd n. Assume first that n is odd and Z is embedded
diagonally. Then H = PSO2n× (µ2×µ2)/µ2. This case can be reduced to the case that π1(G) is of
order 2 by passing to a cover. If n is odd and Z is embedded twisted via the outer automorphism,
then H ∼= (SO2n × µ4)/µ2, so H◦ ∼= SO2n and π0H ∼= Z/2Z. The set of connected components
actually maps isomorphically to the components in the case where π1(G) is of order 8, so O(π0H)
is generated by Perf(BG) via reduction to that case. Moreover, taking an exterior tensor product
of two copies of a spinor representation gives a representation of G whose restriction to H◦ = SO2n

generates the part with nontrivial central character. Now assume that n is even, and Z is embedded
diagonally. Then H = PSO2n× (Z×Z)/Z, and again one can generate the characters of (Z×Z)/Z
via restrictions of exterior tensor products of spinor representations. Finally, if n is even and Z is
embedded twisted via the outer automorphism, then H = SO2n. Taking an exterior tensor product
of the two distinct spinor representations defines a representation of G whose restriction to H
generates the part of Perf(BH) with nontrivial central character. This finishes types B, C, D
and E7. Consider next type E6, where the fundamental group is Z/3Z. Assume first
p 6= 3. As before, one can reduce to the case G1 → G is the maximal Θ-stable quotient such that
H1 = H = GΘ is the simply connected form of E6. In that case, we use again that any V can be
split off from V ⊗m ⊗ V ∗⊗(m−1). If p ≡ 1 mod 3, we can take m = p, otherwise m = p+ 1: In the
first case V ⊗m extends to G and V ∗⊗(m−1) is a representation of the adjoint group, in the second
case it is the other way around. Now consider p = 3, so necessarily ` 6= 3. Then G1 = E3

6 and
Z(G1) = (Z/3Z)3. The order of π1(G) is then a power of 3 between 1 and 27, with the extreme
cases being trivial, and in both other cases there is exactly one possibility. For π1(G) of order 3,
we get H = E6,ad × Z where Z ∼= µ3 is a central subgroup, given as the kernel of the sum map
µ3

3 → µ3 quotient by the diagonal copy of µ3. Consider the 27-dimensional representation V of E6.
Then W = V ⊗V ∗⊗1 defines a representation of G on which Z acts via a nontrivial character, and
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the restriction of W to H splits off this character (as the dimension of W is a power of 3, hence
invertible modulo `). If π1(G) is of order 9, then H = E6,ad × Z ′, where Z ′ ∼= µ3 is the quotient of
µ3

3 by the kernel of the sum map. In this case, V ⊗ V ⊗ V defines a representation of G on which
Z ′ acts via a nontrivial character, and the same argument applies.

It remains to handle type A. Thus, G = (
∏

Z/pZ SLn)/Z. Let n′ be the maximal divisor

of n that is prime to p. We can decompose Z = Zp × Zp where Zp is of order a power of p, and
Zp is prime to p. We can assume that Zp ⊂ µpn′ is the set of all elements with product 1 (which
is the maximal Θ-invariant complement to the diagonal copy of µn′). On the other hand, letting
pa be the exact power of p dividing n, Zp is a subgroup of µppa

∼= (Z/paZ)p that is stable under the

the Θ-action. One can then show that π0H ∼= H1(Θ, Zp). We will now inductively reduce to the
case that Zp is trivial, by replacing Zp by a (certain) subgroup Z ′p ⊂ Zp of index p and arguing
that the result for G′ = (

∏
Z/pZ SLn)/Z ′pZ

p implies the result for G. First note that Z ′p/Zp ⊂ G′

is necessarily contained in H ′ = (G′)Θ, so if Perf(BG′) → Perf(BH ′) generates under cones and
retracts, the same is true for Perf(BG)→ Perf(B(im(H ′ → H))). By Lemma VIII.5.18, it remains
to generate O(H/H ′). This is given by H1(Θ, Zp)/H

1(Θ, Z ′p), which injects into H1(Θ, Zp/Z
′
p)
∼=

Z/pZ. Moreover, if a′ is chosen maximal so that Zp ⊂ (pa
′Z/paZ)p, we can assume that Z ′p contains

(pa
′+1Z/paZ)p∩Zp. With this choice, we can assume that (pa

′+1Z/paZ)p ⊂ Z ′p ⊂ Zp ⊂ (pa
′Z/paZ)p,

which then determines Z ′p uniquely (given Zp), as Fpp has a unique Θ-stable filtration. Now choose

i, 0 < i < n, with i not divisible by p, such that
(
n
i

)
is not divisible by ` – for example, take

for i the exact power of ` dividing n, which works as long as n is not itself a power of `, but
then Zp = 0 anyway. Then consider the n′pa−a

′−1-th tensor power V of the i-th exterior tensor
power of the standard representation; this V is of dimension prime to `, and a representation of
SLn /µn′pa−a′−1 whose central character on µpa−a′/µpa−a′−1 is nontrivial. Taking tensor products

of V , one can then define a representation of G whose central character factors over a nontrivial
character of Zp/Z

′
p, from which one gets the desired result. Thus, in type A, we can assume that

Zp = 0. Then G = (
∏

Z/pZ SLn)/Zp and H = SLn. We show that the standard representation V

of H is a retract of a representation of G; this implies the same for its exterior powers, and these
generated Perf(BH). We can split off V from any V ⊗m ⊗ V ∗⊗(m−1). Choose a positive integer
q such that pq ≡ 1 mod n′ and let m = pq. Then V ⊗m = (V ⊗q)⊗p extends to a representation

of G, while V ∗⊗(m−1) is a representation of PGLn, which also extends to G. This finishes the
reduction to the case that G is almost simple.

Thus, from now on assume that G is almost simple. Assume first that Θ is an
inner automorphism. If G is simply connected, then H ⊂ G is the centralizer of a semisimple
element, and thus connected and of the same rank as G, so the claim follows from Lemma VIII.5.17.
Moreover, for inner automorphisms Lemma VIII.5.19 shows that the connected components of H
always inject into the ones for the adjoint form, and moreover the center of G is always contained
in H. So for inner automorphisms, it remains to handle the case of adjoint G. Moreover,
by Lemma VIII.5.18, it suffices to show that O(π0H) is in the subcategory of Perf(BH) generated
under cones and retracts by the image of Perf(BG) → Perf(BH). As a general observation, we
note that the adjoint representation g is a representation of G, and it restricts to a representation of
H×Z/pZ. We may decompose according to the (semisimple) action of Θ ∈ Z/pZ, and in particular
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the fixed points h = gΘ are a retract of g|H . This implies that also all
∧i h ∈ Perf(BH) are retracts

of
∧i g|H .

Now we go through the list of types. Note that by Lemma VIII.5.19, π0H is an elementary
abelian p-group injecting into Z(Gsc). In particular, for p > 3, only G = PGLpn is relevant.
Moreover, the only relevant H is given by GLpn /GmoZ/pZ, which occurs for the centralizer of the
semisimple element that is the image of the diagonal element of GLpn with n occurences of each p-th
root of unity. Changing the center, we can also look at restriction from GLpn to GLpnoZ/pZ. For

any i, consider the representation
∧i(std) of GLpn. Its restriction to GLpn decomposes as a direct

sum (as the standard representation decomposes, and a wedge power of a direct sum decomposes

into various pieces), in particular a canonical direct summand
⊕p

j=1

∧i(stdj) where stdj is the
standard representation of the j-th factor of GLpn. In particular, as a representation of H, the

restriction of
∧i(std) contains

⊕p
j=1

∧i(stdj), which is naturally a representation of H. If we take

i = n, then each
∧i(stdj) is just the determinant of the standard representation. Thus, we get a

representation W of Gp
m o Z/pZ. This group has semisimple representation theory, and W ⊗W ∗

admits O(Z/pZ) as a direct summand, so the claim follows. This handles the case of type A, in
fact for all p ≥ 2.

Let us next do the remaining case for p = 3, which is E6. In that case, H◦ is of the form SL3
3/µ

2
3

(for some embedding of µ2
3 into the center µ3

3), and π0H = Z/3Z permutes the three factors. In
particular, h|H◦ decomposes into the direct sum of the adjoint representations of the three factors

(each of which is of dimension 8), permuted cyclically by π0H. Taking
∧8 h, it contains a direct

summand that restricted to H◦ is the direct sum of
∧8 sl3 ∼= L for each factor, permuted cyclically

by π0H; in other words, the regular representation of π0H.

The remaining types are now B, C, D and E7, all for p = 2 (in particular, ` 6= 2). In type
B, G = SO2n+1, and we are looking at the centralizer of a diagonal element with entries 1 and
−1. This is of the form S(Om × O2n+1−m) for some m = 1, . . . , n. This maps naturally to Om,
identifying connected components. The natural representation decomposes into the sum of the
natural representations of Om and O2n+1−m. As before, it follows that all exterior powers of the
natural representation of Om lie in the relevant subcategory of Perf(BH), but its determinant
defines a representation of Om that restricts to the nontrivial character of π0H.

In type C, G = PSp2n, and we are looking at the centralizer of an element of GSp2n that has
diagonal entries 1 and −1. There are two cases where π0H is nontrivial. On the one hand, if
n = 2m, one can get H◦ = Sp2

2m/µ2 with π0H = Z/2Z; this case can be handled like the case

of E6, taking
∧d h for d the dimension of Sp2m. In the other case, we get H = GLn/µ2 o Z/2Z,

where the action is given by A 7→ tA−1. In that case, we again enlarge the center as in type A,

so consider H̃ = (GLn × Gm) o Z/2Z ⊂ G̃ = GSp2n, where (A, λ) ∈ GLn × Gm embeds GSp2n

via the block diagonal matrix with entries A and λtA−1, and Z/2Z maps to the block matrix(
0 In
In 0

)
. Restricting the natural representation of GSp2n to H̃, its restriction to H̃◦ is a sum

of two n-dimensional representations, permuted by π0H̃. Passing to the n-th exterior power, we

get as a direct summand a 2-dimensional representation W of the torus quotient G2
moZ/2Z of H̃,

and W ⊗W ∗ contains O(Z/2Z) as a direct summand.
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In typeD, G = PSO2n, and we are looking at the centralizer of a diagonal element of G̃ = GSO2n

with entries ±1. In the following, we describe the preimage of H ⊂ G in G̃. Unless the number of
1’s and −1’s agrees, this is of the form GSO2n ∩ (GLm×GL2n−m) for some even m, 0 < m < n.
In that case, H has two connected components, and these two connected components are still
seen when taking the centralizer S(Om × O2n−m) in SO2n, so we may replace the adjoint group
by SO2n in this example. Then the same argument as for type B works. There remains the
case that the number of 1’s and −1’s agree, in which case there are two conjugacy classes. In

one case, one gets H̃ = GSO2n ∩ (GLn×GLnoZ/2Z). If n is odd, then this intersection agrees

with GSO2n ∩ (GLn×GLn), and the previous argument applies. If n is even, then π0H̃ agrees

with Z(Gsc) = (Z/2Z)2. Restricting
∧n of the standard representation of GSO2n to H̃ admits a

2-dimensional summand W which on H̃◦ factors over the torus quotient Gm. Let us identify this
W : We can also first restrict from GL2n to GL2

noZ/2Z, in which case we get a representation
of G2

m o Z/2Z that on G2
m is the direct sum of the two characters given by the two projections.

In particular, W ⊗W ∗ already admits O(Z/2Z) as a direct summand for GL2
noZ/2Z, and hence

continues to do so after restriction to H̃. We may then apply Lemma VIII.5.18 to reduce to the
intersection of GSO2n with GL2

n, where we can as before reduce to the cover SO2n of G = PSO2n,

and the argument of type B applies. Finally, there is an inner involution for which H̃◦ = GLn×Gm

with π0H̃ = Z/2Z. This can be handled like the similar case in type C.

For inner automorphisms, it remains to handle the case of E7. In that case, there is an em-

bedding E7 → G̃ = Sp56 mapping the center to the center. In particular, any semisimple element

of E7,ad maps to a semisimple element of PSp56, and we get an inclusion H ⊂ H̃ of centralizers.

Lemma VIII.5.19 implies that π0H → π0H̃ is injective, so this case reduces to type C.

Now we consider the case Θ is an outer automorphism. Let us first treat the
case of triality, so p = 3 (and ` 6= 3). Then G is of type D4 and either simply connected or
adjoint. By Lemma VIII.5.19, the fixed points H are always connected. Moreover, H is unchanged
by taking G adjoint, so we can assume G adjoint. There are two conjugacy of order 3 outer
automorphisms of Spin8 (see e.g. [Tit59]): The diagram automorphism with fixed points G2, and
an automorphism whose fixed points agree with the fixed points of the order 3 semisimple element
of G2 with centralizer PGL3 ⊂ G2. The second case thus follows from the first. For the first, note
first that any highest weight for G2 lifts to a highest weight for Spin8, so it follows easily from
highest weight theory that Perf(BSpin8) → Perf(BG2) generates under cones and retracts. Now
for the adjoint form, there is the problem that there is a fundamental weight for G2 that does not
lift to a highest weight for PSpin8; rather, if would lift to either of the three fundamental weights
for Spin8 giving the two spinor representations V1, V2 and the standard representation V3 (which
are permuted under triality). But then V = V1 ⊗ V2 ⊗ V3 has trivial central character, and upon
restriction to G2 all three of these are isomorphic and selfdual. Thus V1|G2 splits off V |G2 (as in
general W splits off W ⊗W ∗ ⊗W ), giving the desired result.

It remains to handle the case of outer involutions, so p = 2 (and ` 6= 2). In con-
tinuing the tradition of handling exceptional cases first for outer involutions, consider E6. By
Lemma VIII.5.19, the fixed points are necessarily connected, and moreover are unchanged when
going to the adjoint form of E6. We can thus assume that the group is adjoint. There are two
conjugacy classes of outer automorphisms of E6: The diagram automorphism, with fixed points
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F4, and one automorphism with fixed points PSp8. Consider first the diagram automorphism. If
G is simply connected, any highest weight of F4 or PSp8 lifts to a highest weight for E6, and the
claim is easy. Otherwise, if G is adjoint, let W be an irreducible representation of the simply
connected form of E6 with nontrivial central character. Then W |F4 is selfdual, so W |F4 splits off
(W ⊗W ⊗W )|F4 , and W ⊗W ⊗W is always a representation of the adjoint form G.

In type A, if the simply connected cover is SLn with n odd, there is just one conjugacy class
of outer involutions, with fixed points SOn (independently of the center of G). The worst case is
thus G = PGLn. But for any irreducible representation V of SLn, the restriction of V to SOn is
selfdual, and hence V |SOn splits off V ⊗n|SOn (noting that n is odd), where V ⊗n is a representation
of the adjoint form G. This reduces us back to the simply connected case, where the claim follows
easily from highest weights. If the simply connected cover is SL2n, there are two conjugacy classes
of outer involutions, with fixed points Sp2n resp. SO2n (for the simply connected form). Arguing as
for SLn with n odd, we can assume that the fundamental group of G is a 2-group (but the 2-part of
π1(G) changes the structure of H), and so G = SL2n/µ2a for some a ≤ 0 such that 2a divides 2N .
In the simply connected form, a = 0, both cases follow from consideration of highest weights. In
general, we reduce to the simply connected case by induction on a. Unless a is the exact power of
2 dividing 2n (and assuming a > 0), one has H = H◦×µ2a+1/µ2a where H◦ is PSp2n resp. PSO2n.
Moreover, H ′ → H factors over a µ2-cover H ′ → H◦, so by Lemma VIII.5.18, it suffices to generate
the nontrivial character of µ2a+1/µ2a . For this, take V the i-th exterior power of the standard
representation where i is the exact power of ` dividing n, so that V is of dimension prime to `.
Consider V ⊗2a . This is a representation of G such that the central character of µ2a+1/µ2a ⊂ G is
nontrivial. The restriction of V to H will then split off the nontrivial character of µ2a+1/µ2a , noting
that the restriction of V ⊗2a to PSp2n resp. PSO2n splits off the trivial representation (as a > 0
and V becomes selfdual). It remains to consider the case that a is the exact power of 2 dividing
2n. In the symplectic case, H is connected, and the reduction to H ′ works immediately. In the
orthogonal case, H is given by PO2n, and we need to construct the nontrivial character of π0H.
Here, we observe as above that the subcategory of Perf(BH) generated by Perf(BG) under cones
and retracts contains all wedge powers of h = so2n. Taking the determinant of h, we observe that
it gives the nontrivial character of π0H, giving the claim.

In type D, we consider first type Dn with n odd. In the simply connected form H ⊂ Spin2n, the
centralizer is the diagonal µ2-cover H → SOm×SO2n−m for some odd m. This case is again handled
by highest weights. For the intermediate form G = SO2n, the centralizer is S(Om × O2n−m) =
SOm × SO2n−m × µ4/µ2. In that case, let V be a spinor representation of Spin2n, and consider
V ⊗2. Then V becomes selfdual upon restriction to Spinm × Spin2n−m (as there is only one spinor
representation in type B), and hence V ⊗2 splits off the trivial representation as a representation
of SOm × SO2n−m. On the other hand, the central character is the nontrivial character of µ4/µ2,
so V ⊗2 restricted to H splits off the nontrivial character of µ4/µ2 and hence Lemma VIII.5.18
handles this case again. Finally, if G = PSO2n is adjoint, then the centralizer is SOm × SO2n−m
and connected as long as m 6= n, when the reduction to the previous case is immediate. If on
the other hand m = n, then the centralizer H has H◦ = SOn × SOn and π0H = Z/2Z, switching
the two factors. Here we use again that the adjoint representation h lies in the subcategory of
Perf(BH) generated by Perf(BH) under cones and retracts. This is given by son×son, where π0H
switches the two factors. Passing to the d-th exterior power, where d is the dimension of son, we
get a two-dimensional summand given by the sum of two copies of the determinants of son, with
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π0H acting by switching. This generates the regular representation of π0H, as desired. Finally,
consider the case of Dn with n even. In that case, the discussion works in exactly the same way
(except that µ4 is replaced by µ2 × µ2, which however causes no difference), except that as m is
still odd the case m = n cannot occur, so the most difficult case does not arise. �

VIII.5.4. End of proof. Finally, we can prove Theorem VIII.5.2. We switch back to the
notation employed there.

Note that W can be written (inside animated groups) as a geometric realization of a simplicial
group which is finite free in each degree. In particular, the sifted colimit

colim(n,Fn→W )O(Z1(Fn, Ĝ)L)

can be understood to be a geometric realization of a simplicial diagram.

We want to use Proposition VIII.5.10 to show that

colim(n,Fn→W )O(Z1(Fn, Ĝ)L)→ O(Z1(W, Ĝ)L)

is an isomorphism in Ind Perf(BĜ), and that Z1(W, Ĝ)L satisfies the hypotheses of Theorem VIII.5.8.

To do so, it suffices to see that for all closed Ĝ-orbits Z ∼= Ĝ/H ⊂ Z1(W, Ĝ)L, the Ĝ-representation

O(Z) has a good filtration, the image of Perf(BĜ)→ Perf(BH) generates under cones and retracts,
and for any closed immersion

Z ∼= Z1(W, Ĝ) ⊂ Z1(Fn, Ĝ) ∼= Ĝn,

the conormal sheaf I/I2 defines a representation of H that is a direct summand of a direct sum of
copies of ĝ∗|H .

Note that by Proposition VIII.1.5, any such closed orbit Z has the property that ϕ : WE → Ĝ(L)

factors over a finite quotient F of order prime to `. Then H = Cent
Ĝ

(ϕ) ⊂ Ĝ is the centralizer of

a group of automorphisms of Ĝ of order prime to `. By Proposition VIII.5.12, O(Ĝ/H) has a good

Ĝ-filtration, and by Theorem VIII.5.14, the map Perf(BĜ) → Perf(BH) generates under cones
and retracts. Finally, the claim about the conormal sheaf for the closed immersion

Z ⊂ Z1(Fn, Ĝ) ∼= Ĝn

can be reduced to the case that Fn →WE has the property that the images of the generators give
a set of representatives for the quotient WE → F in WE , where it follows from the argument in the
proof of Proposition VIII.5.12.



CHAPTER IX

The Hecke action

The time has come to put everything together. As before, let E be any nonarchimedean local
field with residue field Fq of residue characteristic p, and let G be a reductive group over E. For any

Z`-algebra Λ, we have defined Dlis(BunG,Λ), we have the geometric Satake equivalence relating Ĝ
to perverse sheaves on the Hecke stack, and we have studied the stack of L-parameters.

Our first task is to use the geometric Satake equivalence to define the Hecke operators on
Dlis(BunG,Λ). As in the last chapter, we work over a Z`[

√
q]-algebra Λ in order to trivialize the

cyclotomic twist in the geometric Satake equivalence; let Q be a finite quotient of WE over which

the action on Ĝ factors. If Λ is killed by a power of `, then we can define Hecke operators in the

following standard way. For any finite set I and V ∈ RepΛ(ĜoQ)I , we get a perverse sheaf SV on
HckIG, which we can pull back to the global Hecke stack HckIG; we denote its pullback still by SV .
Using the correspondence

HckIG
p1

{{

p2

&&
BunG BunG×(Div1)I

we get the Hecke operator

TV : Dét(BunG,Λ)→ Dét(BunG×(Div1)I ,Λ) : A 7→ Rp2∗(p
∗
1A⊗L

Λ SV ).

By Corollary IV.7.2, the target has Dét(BunG×[∗/W I
E ],Λ) as a full subcategory, and we will see

below that TV will factor over this subcategory. Working ∞-categorically in order to have descent,
and using a little bit of condensed formalism in order to deal with W I

E not being discrete, we can
in fact rewrite

Dét(BunG×[∗/W I
E ],Λ) ∼= Dét(BunG,Λ)BW

I
E

as the W I
E-equivariant objects of the condensed ∞-category Dét(BunG,Λ); we will discuss the

condensed structure below.

The following theorem summarizes the properties of the Hecke operators. In particular, it
asserts that these functors are defined even when Λ is not torsion.

Theorem IX.0.1 (Theorem IX.2.2; Corollary IX.2.4, Proposition IX.5.1). For any Z`[
√
q]-

algebra Λ, any finite set I, and any V ∈ RepΛ(ĜoQ)I , there is a natural Hecke operator

TV : Dlis(BunG,Λ)→ Dlis(BunG,Λ)BW
I
E .

307
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(i) Forgetting the W I
E-action, i.e. as an endofunctor of Dlis(BunG,Λ), the functor TV is functorial

in V ∈ RepΛ Ĝ
I . Moreover, TV commutes with all limits and colimits, and preserves compact

objects and universally locally acyclic objects. Letting sw∗ : RepΛ Ĝ
I → RepΛ Ĝ

I be the involution
of Proposition VI.12.1, there are natural isomorphisms

DBZ(TV (A)) ∼= Tsw∗V ∨(DBZ(A)) , RHomlis(TV (A),Λ) ∼= Tsw∗V ∨RHomlis(A,Λ).

(ii) As a functor of V , it induces an exact RepΛ(QI)-linear monoidal functor

RepΛ(ĜoQ)I → EndΛ(Dlis(BunG,Λ)ω)BW
I
E .

Moreover, for any compact object X ∈ Dlis(BunG,Λ)ω, there is some open subgroup P of the wild
inertia subgroup of WE such that for all I and V , the P I-action on TV (X) is trivial. In particular,
one can write Dlis(BunG,Λ)ω as an increasing union of full stable ∞-subcategories DPlis(BunG,Λ)ω

such that the Hecke action defines functors

RepΛ(ĜoQ)I → EndΛ(DPlis(BunG,Λ)ω)B(WE/P )I .

(iii) Varying also I, the functors of (ii) are functorial in I.

In particular, the categories DP
lis(BunG,Λ)ω fit the bill of the discussion of Section VIII.4, so

Theorem VIII.4.1 gives a construction of excursion operators. To state the outcome, we make the
following definitions as in the introduction.

Definition IX.0.2.

(i) The Bernstein center of G(E) is

Z(G(E),Λ) = π0End(idD(G(E),Λ)) = lim←−
K⊂G(E)

Z(Λ[K\G(E)/K])

where K runs over open pro-p subgroups of G(E), and Λ[K\G(E)/K] = EndG(E)(c-Ind
G(E)
K Λ) is

the Hecke algebra of level K.

(ii) The geometric Bernstein center of G is

Zgeom(G,Λ) = π0End(idDlis(BunG,Λ)).

Inside Zgeom(G,Λ), we let Zgeom
Hecke(G,Λ) be the subring of all endomorphisms f : id→ id commuting

with Hecke operators, in the sense that for all V ∈ Rep(ĜI) and A ∈ Dlis(BunG,Λ), one has
TV (f(A)) = f(TV (A)) ∈ End(TV (A)).

(iii) The spectral Bernstein center of G is

Zspec(G,Λ) = O(Z1(WE , Ĝ)Λ)Ĝ,

the ring of global functions on Z1(WE , Ĝ)Λ � Ĝ.

The inclusionD(G(E),Λ) ↪→ Dlis(BunG,Λ) induces a map of algebra Zgeom(G,Λ)→ Z(G(E),Λ).

Corollary IX.0.3. Assume that ` is invertible in Λ, or ` is a very good prime for Ĝ. Then
there is a canonical map

Zspec(G,Λ)→ Zgeom
Hecke(G,Λ) ⊂ Zgeom(G,Λ),
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and in particular a map

ΨG : Zspec(G,Λ)→ Z(G(E),Λ).

In general, there is such a map, up to replacing Z1(WE , Ĝ)Λ � Ĝ by a universally homeomorphic
scheme.

In particular, if Λ = L is an algebraically closed field over Z`[
√
q], we get the following con-

struction of L-parameters.

Definition IX.0.4. Let L be an algebraically closed field over Z`[
√
q], and let A ∈ Dlis(BunG, L)

be a Schur-irreducible object, i.e. End(A) = L as condensed algebras. Then there is a unique
semisimple L-parameter

ϕA : WE → Ĝ(L) oQ

such that for all excursion data (I, V, α, β, (γi)i∈I) consisting of a finite set I, V ∈ Rep((ĜoQ)I),
α : 1→ V |

Ĝ
, β : V |

Ĝ
→ 1 and γi ∈WE for i ∈ I, the endomorphism

A = T1(A)
α−→ TV (A)

(γi)i∈I−−−−→ TV (A)
β−→ T1(A) = A

is given by the scalar

L
α−→ V

(ϕA(γi))i∈I−−−−−−−→ V
β−→ L.

We can apply this in particular in the case of irreducible smooth representations π of G(E).
Concerning the L-parameters we construct, we can prove the following basic results. (In fact, we
prove slightly finer results on the level of Bernstein centers.)

Theorem IX.0.5 (Sections IX.6, IX.7).

(i) If G = T is a torus, then π 7→ ϕπ is the usual Langlands correspondence.

(ii) The correspondence π 7→ ϕπ is compatible with twisting.

(iii) The correspondence π 7→ ϕπ is compatible with central characters.

(iv) The correspondence π 7→ ϕπ is compatible with passage to congradients.

(v) If G′ → G is a map of reductive groups inducing an isomorphism of adjoint groups, π is an
irreducible smooth representation of G(E) and π′ is an irreducible constitutent of π|G′(E), then ϕπ′

is the image of ϕπ under the induced map Ĝ→ Ĝ′.

(vi) If G = G1 × G2 is a product of two groups and π is an irreducible smooth representation of
G(E), then π = π1 � π2 for irreducible smooth representations πi of Gi(E), and ϕπ = ϕπ1 × ϕπ2

under Ĝ = Ĝ1 × Ĝ2.

(vii) If G = ResE′|EG
′ is the Weil restriction of scalars of a reductive group G′ over some finite sep-

arable extension E′|E, so that G(E) = G′(E′), then L-parameters for G|E agree with L-parameters
for G′|E′.
(viii) The correspondence π 7→ ϕπ is compatible with parabolic induction.

(ix) For G = GLn and supercuspidal π, the correspondence π 7→ ϕπ agrees with the usual local
Langlands correspondence [LRS93], [HT01], [Hen00].
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IX.1. Condensed ∞-categories

In order to meaningfully talk about W I
E-equivariant objects in Dlis(BunG,Λ), we need to give

Dlis(BunG,Λ) the structure of a condensed∞-category. This is in fact easy to do: We can associate
to any extremally disconnected profinite set S the ∞-category Dlis(BunG×S,Λ). This is a full
condensed ∞-subcategory of the condensed ∞-category D�(BunG,Λ), taking any profinite S to
D�(BunG×S,Λ). The latter defines a hypersheaf in S, by v-hyperdescent of D�(X,Λ) (as follows
from the case of D(Xv,Λ)). With this definition, it becomes a direct consequence of descent that

D�(BunG×[∗/W I
E ],Λ) ∼= D�(BunG,Λ)BW

I
E ,

where the latter is the evaluation of the condensed ∞-category D�(BunG,Λ) on the condensed an-
ima BW I

E . More concretely, this is the∞-category of objects A ∈ D�(BunG,Λ) together with a map

of condensed animated groups W I
E → Aut(A). We see in particular that to define D�(BunG,Λ)BW

I
E ,

we do not need to know the full structure as a condensed ∞-category. Rather, we only need the
structure as an ∞-category enriched in condensed anima. This structure on D�(BunG,Λ) induces
a similar structure on Dlis(BunG,Λ).

For the discussion of Hecke operators, we observe in particular the following result, that follows
directly from the discussion above.

Proposition IX.1.1. Pullback under BunG×(Div1)I → BunG×[∗/W I
E ] induces a fully faithful

functor

Dlis(BunG,Λ)BW
I
E ↪→ D�(BunG,Λ)BW

I
E ∼= D�(BunG×[∗/W I

E ],Λ) ↪→ D�(BunG×(Div1)I ,Λ).

The essential image consists of all objects A ∈ D�(BunG×[∗/W I
E ],Λ) whose pullback to BunG lies

in Dlis(BunG,Λ). �

In fact, this structure of Dlis(BunG,Λ) as an ∞-category enriched in condensed anima, in fact
condensed animated Λ-modules, can be obtained in the following way from its structure as a Λ-
linear stable ∞-category.

Proposition IX.1.2. For A ∈ Dlis(BunG,Λ)ω and B ∈ Dlis(BunG,Λ), the condensed animated
Λ-module HomDlis(BunG,Λ)(A,B) is relatively discrete over Z`.

In other words, the condensed structure on Dlis(BunG,Λ) can also be defined as the relatively
discrete condensed structure when restricted to compact objects, and in general induced from this.
In particular, when restricting attention to the compact objects Dlis(BunG,Λ)ω, it is simply the
relatively discrete condensed structure.

Proof. Take some b ∈ B(G) and K ⊂ Gb(E) an open pro-p-subgroup, and let fK : M̃b/K →
BunG be the local chart. We can assume A = fK\Z`, as these form a family of generators. By ad-

junction, it is enough to show that for any B′ ∈ Dlis(M̃b/K,Λ), the global sections RΓ(M̃b/K,B′)
have the relatively discrete condensed Z`-module structure. We claim that the restriction map

RΓ(M̃b/K,B′′) → RΓ([∗/K], B′) is an isomorphism, where [∗/K] ⊂ M̃b/K is the base point.
Without the condensed structure, this was proved in the proof of Proposition VII.7.2, but actu-
ally the proof applies with condensed structure (as Theorem VII.2.10 remembers the condensed
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structure). But RΓ([∗/K], B′) is a direct summand of the stalk of B′ at ∗, which has the relatively
discrete condensed Z`-module structure (as this is true for all objects of Dlis(∗,Λ)). �

IX.2. Hecke operators

The geometric Satake equivalence gives exact RepZ`[
√
q](Q

I)-linear monoidal functors

RepZ`[
√
q](ĜoQ)I → PervULA(HckIG,Z`[

√
q]) : V 7→ SV .

Moreover, this association is functorial in I. We can compose with the functor A 7→ D(A)∨ (where
the Verdier duality is relative to the projectionHckIG → [(Div1)I/L+G]) to get exact RepZ`[

√
q](Q

I)-

linear monoidal functors

RepZ`[
√
q](ĜoQ)I → D�(HckIG,Z`[

√
q]),

functorially in I. Here, the functor A 7→ D(A)∨ is monoidal with respect to the usual convolution
on perverse sheaves, and the convolution of Section VII.5 on the right. We note that as the
convolution on D� makes use only of pullback, tensor product, and π\-functors, all of which are
defined naturally on ∞-categories, this monoidal structure is actually a monoidal structure on
the ∞-category D�(HckIG,Z`[

√
q]). (We would have to work harder to obtain this structure when

employing lower-!-functors, as we have not defined them in a sufficiently structured way.) Also,

the functor from RepZ`[
√
q](ĜoQ)I is monoidal in this setting, as on perverse sheaves there are no

higher coherences to take care of.

This extends by linearity uniquely to an exact RepΛ(QI)-linear monoidal functor

RepΛ(ĜoQ)I → D�(HckIG,Λ) : V 7→ S ′V ;

here, we implicitly use highest weight theory to show

Perf(B(ĜoQ)IZ`[
√
q])⊗Perf(BQIZ`[

√
q]

) Perf(BQIΛ) ∼= Perf(B(ĜoQ)IΛ),

and that the free stable∞-category with an exact functor from RepΛ(ĜoQ)I is Perf(B(ĜoQ)IΛ).

Pulling back to the global Hecke stack, we get exact RepΛ(QI)-linear monoidal functors

RepΛ(ĜoQ)I → D�(HckIG,Λ).

On the other hand, there is a natural exact RepΛ(QI)-linear monoidal functor

D�(HckIG,Λ)→ EndD�((Div1)I ,Λ)(D�(BunG×(Div1)I ,Λ)),

where the right-hand side denotes the D�((Div1)I ,Λ)-linear endofunctors. In particular, any V ∈
RepΛ(ĜoQ)I gives rise to a functor

TV : Dlis(BunG,Λ)→ D�(BunG×(Div1)I ,Λ)

via

TV (A) = p2\(p
∗
1A

�

⊗L
ΛS ′V )
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where we consider the usual diagram

HckIG
p1

{{

p2

''
BunG BunG×(Div1)I .

Note that we have thus essentially used the translation of Proposition VII.5.2 to extend the Hecke
operators from the case of torsion rings Λ to all Λ.

We note that if we pull back to the diagonal geometric point SpdC → (Div1)I , where C = Ê,
then this functor depends only on the composite

RepΛ(ĜoQ)I → D�(HckIG,Λ)→ D�(HckIG×(Div1)I SpdC,Λ),

and this composite factors naturally over RepΛ(ĜI).

Proposition IX.2.1. For any V ∈ RepΛ(ĜI), the functor

TV : D�(BunG×SpdC,Λ)→ D�(BunG×SpdC,Λ)

restricts to a functor

TV : Dlis(BunG,Λ)→ Dlis(BunG,Λ).

Proof. By highest weight theory, one can reduce to the case that V is an exterior tensor

product of representations of Ĝ, and then by using that V 7→ TV is monoidal, we can reduce to the
tensor factors, which reduces us to the case I = {∗}. Consider the Hecke diagram

BunG,C
h1←− HckG,C

h2−→ BunG,C

where HckG,C parametrizes over S ∈ PerfC pairs of G-torsors E1, E2 on XS together with an isomor-

phism overXS\S] meromorphic along S]. It suffices to see that for allB ∈ DULA(HckG,SpdC/Div1
X
,Z`),

the object

h2\(h
∗
1A

�

⊗Lq∗B∨) ∈ Dlis(BunG,C ,Λ).

Now the category of such B is generated (under colimits) by the objects Rfẇ∗Z` for

fẇ : L+I\Demẇ → HckG,SpdC/Div1
X

a Demazure resolution (modulo action of Iwahori) of some Schubert variety in the affine flag variety.
Using Proposition VII.4.3, it thus suffices to see that for the corresponding push-pull correspondence
on BunG,C with kernel given by the Demazure resolution, one has preservation of Dlis(BunG,C ,Λ).
But this is a proper and cohomologically smooth correspondence. �

Theorem IX.2.2. For any V ∈ RepΛ(ĜI), the action of TV on Dlis(BunG,Λ) preserves all
limits and colimits, and the full subcategories of compact objects, and of universally locally acyclic

objects. Moreover, for the automorphism sw∗ of RepΛ(ĜI) given by Proposition VI.12.1, there are
natural isomorphisms

DBZ(TV (A)) ∼= Tsw∗V ∨(DBZ(A)) , RHomlis(TV (A),Λ) ∼= Tsw∗V ∨RHomlis(A,Λ).
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Proof. The functor V 7→ TV is monoidal. As V is dualizable in the Satake category, with
dual V ∨, it follows that TV has a left and a right adjoint, given by TV ∨ , and hence it fol-
lows formally that it preserves all limits and colimits, and compact objects. Now recall that
A ∈ Dlis(BunG,Λ) is universally locally acyclic if and only if for all compact B ∈ Dlis(BunG,Λ),
the object RHomΛ(B,A) ∈ D(Λ) is perfect, by Proposition VII.7.9. Thus, the preservation of
universally locally acyclic objects follows by adjointness from the preservation of compact objects.

For the duality statements, we note that, for π : BunG → ∗ the projection, there are natural
isomorphisms

π\(TV (A)
�

⊗L
ΛB) ∼= π\(A

�

⊗L
ΛTsw∗V (B)),

as follows from the definition of the Hecke operator, and Proposition VI.12.1: Both sides identify

with the homology of HckIG×(Div1)I SpdC with coefficients in h∗1A
�

⊗L
Λh
∗
2B

�

⊗L
ΛS ′V . The displayed

equation implies the statement for Bernstein–Zelevinsky duals by also using that Tsw∗V ∨ is right
adjoint to Tsw∗V , and the statement for naive duals by using that Tsw∗V ∨ is left adjoint to Tsw∗V . �

Composing Hecke operators, we get the following corollary.

Corollary IX.2.3. For any V ∈ RepΛ(ĜoQ)I , the functor

TV : Dlis(BunG,Λ)→ D�(BunG×(Div1
X)I ,Λ)

takes image in the full subcategory D�(BunG×[∗/W I
E ],Λ); moreover, all objects in the image have

the property that their pullback to D�(BunG,Λ) lies in Dlis(BunG,Λ), so by Proposition IX.1.1 the
functor TV induces a functor

Dlis(BunG,Λ)→ Dlis(BunG,Λ)BW
I
E .

Proof. We only need to see that the image lands in D�(BunG×[∗/W I
E ],Λ); the rest follows

from Proposition IX.2.1. One can reduce to the case that V is an exterior tensor product of |I|
representations Vi ∈ RepΛ(Ĝ o Q) — one can always find a, possibly infinite, resolution by such

exterior tensor products that involves only finitely many weights of ĜI , and thus induces a resolution
in D�(HckIG,Λ) — and thus reduce to I = {∗}. By Corollary VII.2.7, it suffices to see that the
pullback to D�(BunG×SpdC,Λ) lies in D�(BunG,Λ). But by Proposition IX.2.1, we know that
it lies in Dlis(BunG×SpdC,Λ), and Dlis(BunG,Λ) → Dlis(BunG×SpdC,Λ) is an equivalence by
Proposition VII.7.3. �

Finally, we get the following Hecke action.

Corollary IX.2.4. Endowing the stable Z`-linear ∞-category Dlis(BunG,Λ)ω with the rela-
tively discrete condensed structure, the Hecke action defines exact RepΛ(QI)-linear monoidal func-
tors

RepΛ(ĜoQ)I → EndΛ(Dlis(BunG,Λ)ω)BW
I
E ,

functorially in I.
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IX.3. Cohomology of local Shimura varieties

Theorem IX.2.2 encodes strong finiteness properties for the cohomology of local Shimura vari-
eties, giving unconditional proofs, and refinements, of the results of [RV14, Section 6]. For this, we
first specialize to E = Qp as this is the standard setting of local Shimura varieties. Consider any
local Shimura datum, consisting of a reductive group G over Qp, a conjugacy class of minuscule
cocharacters µ : Gm → GQp

with field of definition E|Qp and some element b ∈ B(G,µ) ⊂ B(G).

(Beware that we are making a small sin here in changing the meaning of the letter E, using it now
in its usual meaning as a reflex field.) In [SW20, Lecture 24], we construct a tower of partially
proper smooth rigid-analytic spaces

(M(G,b,µ),K)K⊂G(Qp)

over Ĕ, equipped with a Weil descent datum. Each object in the tower carries an action of Gb(Qp),
and the tower carries an action of G(Qp). Following Huber [Hub98], one defines

RΓc(M(G,b,µ),K,C ,Z`) = lim−→
U

RΓc(U,Z`)

where U ⊂ M(G,b,µ),K,C runs through quasicompact open subsets, and one defines RΓc(U,Z`) =
lim←−mRΓc(U,Z/`mZ). This carries an action of Gb(Qp) as well as an action of the Weil group WE .

Theorem IX.3.1. The complex RΓc(M(G,b,µ),K,C ,Z`) is naturally a complex of smooth Gb(Qp)-
representations, and, if K is pro-p, a compact object in D(Gb(Qp),Z`). Moreover, the action of
WE is continuous.

In particular, each H i
c(M(G,b,µ),K,C ,Z`) is a finitely generated smooth Gb(Qp)-representation.

By descent, this is true even for all K (not necessarily pro-p).

Proof. Let fK : M(G,b,µ),K,C → SpaC be the projection. Up to shift, we can replace Z` by

the dualizing complex Rf !
KZ`. Now by Proposition VII.5.2, one has

RfK!Rf
!
KZ`|U ∼= fK\Z`|U

for any quasicompact U ⊂ M(G,b,µ),K,C . As the left-hand side is perfect, it is given by its limit

over reductions modulo `m. We see that H i
c(M(G,b,µ),K,C ,Z`) can be identified with H i(fK\Z`) up

to shift.

Now µ gives rise to a Hecke operator Tµ = TVµ where Vµ is the highest weight representation
of weight µ. It corresponds to the Hecke correspondence on BunG,C parametrizing modifications
of type µ; this Hecke correspondence is proper and smooth over both factors. We apply Tµ to the
compact object

A = j!c-Ind
G(Qp)
K Z` ∈ Dlis(BunG,Z`)

where j : Bun1
G
∼= [∗/G(Qp)] ↪→ BunG is the open immersion. By Theorem IX.2.2, also Tµ(A) is

compact. By Proposition VII.7.4, it follows that also ib∗Tµ(A) ∈ Dlis(BunbG,Z`) ∼= D(Gb(Qp),Z`)
is compact. But this is, up to shift again, precisely fK\Z`, by the identification ofM(G,b,µ),K,C with
the space of modifications of G-torsors of type µ from the G-bundle Eb to the G-bundle E1, up to
the action of K (cf. [SW20, Lecture 23, 24]).
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Descending to E, note that Tµ can be defined with values in D�(BunG×SpdE/ϕZ,Z`), and
takes values in those sheaves whose pullback to BunG,C lies in Dlis(BunG,Z`). Thus WE , as a

condensed group, acts on ib∗Tµ(A) ∈ Dlis(BunbG,Z`) ∼= D(Gb(Qp),Z`) considered as representations
on condensed Z`-modules. In classical language, this means that the action is continuous. �

In particular, for each admissible representation ρ of Gb(Qp) on a Z`-algebra Λ, the complex

RHomGb(Qp)(RΓc(M(G,b,µ),K,C ,Z`), ρ)

is a perfect complex of Λ-modules. Passing to the colimit over K, one obtains at least on each
cohomology group an admissible G(Qp)-representation. In fact, as Tµ is left adjoint to Tµ∨ , we see
that this is (up to shift) given by

i1∗Tµ∨(Rib∗[ρ]) ∈ Dlis(Bun1
G,Λ) ∼= D(G(Qp),Λ).

Here ib : BunbG ↪→ BunG is the inclusion, and [ρ] ∈ D(Gb(Qp),Λ) ∼= Dlis(BunbG,Λ) can be a complex
of smooth Gb(Qp)-representations. This shows in particular that there is in fact a natural complex
of admissible G(Qp)-representations underlying

RHomGb(Qp)(RΓc(M(G,b,µ),K,C ,Z`), ρ).

Assuming again that ρ is admissible, one can pull through Verdier duality,

i1∗Tµ∨(Rib∗[ρ]) ∼= i1∗Tµ∨(Rib∗D([ρ∨]))

∼= i1∗Tµ∨(D(ib! [ρ
∨]))

∼= i1∗D(Tsw∗µ(ib! [ρ
∨]))

∼= D(i1∗Tsw∗µ(ib! [ρ
∨])).

As Tsw∗µ also preserves compact objects, it follows that [RV14, Remark 6.2 (iii)] has a positive

answer: If Λ = Q` and ρ has finite length, then also each cohomology group of

RHomGb(Qp)(RΓc(M(G,b,µ),K,C ,Z`), ρ)

has finite length. Indeed, with Q`-coefficients, the category of smooth representations has finite
global dimension, and hence being compact is equivalent to each cohomology group being finitely
generated. Compact objects are preserved under the Hecke operators, and so we see that each
cohomology group is finitely generated. Being also admissible, it is then of finite length by Howe’s
theorem [Ren10, VI.6.3].

The same arguments apply to prove Corollary I.7.3. Let us recall the setup. We start with
a general E now. As in [SW20, Lecture XXIII], for any collection {µi}i of conjugacy classes of
cocharacters with fields of definition Ei/E and b ∈ B(G), there is a tower of moduli spaces of local
shtukas

fK : (Sht(G,b,µ•),K)K⊂G(E) →
∏
i∈I

Spd Ĕi

as K ranges over compact open subgroups of G(E), equipped with compatible étale period maps

πK : Sht(G,b,µ•),K → Grtw
G,

∏
i∈I Spd Ĕi,≤µ•

.
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Here, Grtw
G,

∏
i∈I Spd Ĕi

→
∏
i∈I Spd Ĕ is a certain twisted form of the convolution affine Grassman-

nian, cf. [SW20, Section 23.5]. Let W be the exterior tensor product �i∈IVµi of highest weight
representations, and SW the corresponding sheaf on Grtw

G,
∏
i∈I Spd Ĕi

. More precisely, away from

Frobenius-twisted partial diagonals, Grtw
G,

∏
i∈I Spd Ĕi

is isomorphic to the Beilinson–Drinfeld Grass-

mannian GrG,
∏
i∈I Spd Ĕi

, and we have defined SW on this locus. One can uniquely extend over these

Frobenius-twisted partial diagonals to universally locally acyclic, necessarily perverse, sheaves, as in
the discussion of the fusion product. We continue to write SW for its pullback to Sht(G,b,µ•),K . Let
S ′W = D(SW )∨ be the corresponding solid sheaf. By Proposition VII.5.2, with torsion coefficients
fK\S ′W agrees with RfK!SW , but fK\S ′W is well-defined in general.

Proposition IX.3.2. The sheaf

fK\S ′W ∈ D�([∗/Gb(E)]×
∏
i∈I

Spd Ĕi,Λ)

is equipped with partial Frobenii, thus descends to an object of

D�([∗/Gb(E)]×
∏
i∈I

Spd Ĕi/ϕ
Z
i ,Λ).

This object lives in the full ∞-subcategory

D(Gb(E),Λ)B
∏
i∈IWEi ⊂ D�([∗/Gb(E))]×

∏
i∈I

Spd Ĕi/ϕ
Z
i ,Λ),

and its restriction to D(Gb(E),Λ) is compact. In particular, for any admissible representation ρ of
Gb(E), the object

RHomGb(E)(fK\S ′W , ρ) ∈ D(Λ)B
∏
i∈IWEi

is a representation of
∏
i∈IWEi on a perfect complex of Λ-modules. Taking the colimit over K, this

gives rise to a complex of admissible G(E)-representations

lim−→
K

RHomGb(E)(fK\S ′W , ρ)

equipped with a
∏
i∈IWEi-action.

If ρ is compact, then so is
lim−→
K

RHomGb(E)(fK\S ′W , ρ)

as a complex of G(E)-representations.

Proof. The key observation is that fK\S ′W can be identified with TW (j![c-Ind
G(E)
K Λ])|BunbG

. A

priori, for the latter, we have to look at the moduli space M of modifications of type bounded by
µ• from Eb to the trivial vector bundle, up to the action of K, and take the homology of M with
coefficients in S ′W ; more precisely, the relative homology ofM→

∏
i∈I Spd Ĕi/ϕ

Z
i . After pull back

to
∏
i∈I Spd Ĕi, there is a natural map from M to Sht(G,b,µ•,K) that is an isomorphism away from

Frobenius-twisted partial diagonals. Indeed, Sht(G,b,µ•,K) parametrizes G-torsors over YS together
with an isomorphism with their Frobenius pullback away from the given points, together with a
level-K-trivialization of the G-bundle near {π = 0}. This induces two vector bundles on XS , given
by the bundles near {π = 0} and near {[$] = 0}, and these are identified away from the images of
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the punctures in XS . As long as their images in XS are disjoint, one can reverse this procedure.
Now the fusion compatibility of SW (and thus S ′W ) implies the desired result.

In particular, this shows that fK\S ′W admits natural partial Frobenius operators. The rest of
the proof is now as before. �

IX.4. L-parameter

We can now define L-parameter.

Definition/Proposition IX.4.1. Let L be an algebraically closed field over Z`[
√
q], and let

A ∈ Dlis(BunG, L) be a Schur-irreducible object, i.e. End(A) = L as condensed algebras. Then
there is a unique semisimple L-parameter

ϕA : WE → Ĝ(L) oQ

such that for all excursion data (I, V, α, β, (γi)i∈I) consisting of a finite set I, V ∈ Rep((ĜoQ)I),
α : 1→ V |

Ĝ
, β : V |

Ĝ
→ 1 and γi ∈WE for i ∈ I, the endomorphism

A = T1(A)
α−→ TV (A)

(γi)i∈I−−−−→ TV (A)
β−→ T1(A) = A

is given by the scalar

L
α−→ V

(ϕA(γi))i∈I−−−−−−−→ V
β−→ L.

Proof. By the arguments of Section VIII.4, we can build excursion data as required for Propo-
sition VIII.3.8. �

IX.5. The Bernstein center

As before, there is the problem that the stack Z1(WE , Ĝ) of L-parameters is not quasicompact,
but an infinite disjoint union. We can now actually decompose Dlis(BunG,Λ) into a direct product

according to the connected components of Z1(WE , Ĝ). We start with the following observation.

Proposition IX.5.1. Let A ∈ Dlis(BunG,Λ)ω be any compact object. Then there is an open

subgroup P ⊂WE of the wild inertia subgroup such that for all finite sets I and all V ∈ Rep((Ĝo
Q)I), the object

TV (A) ∈ Dlis(BunG,Λ)BW
I
E

lies in the full ∞-subcategory

Dlis(BunG,Λ)B(WE/P )I ⊂ Dlis(BunG,Λ)BW
I
E .

Proof. First, note that indeed the functor

Dlis(BunG,Λ)B(WE/P )I → Dlis(BunG,Λ)BW
I
E .

is fully faithful; this follows from fully faithfulness of the pullback functor

f∗ : D�(BunG×[∗/(WE/P )I ],Λ)→ D�(BunG×[∗/W I
E ],Λ),

which in turn follows from f\Λ ∼= Λ (and the projection formula for f\), which can be deduced

via base change from the case of [∗/W I
E ] → [∗/(WE/P )I ], or after pullback to a v-cover SpaC →
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[∗/(WE/P )I ], for [SpaC/P I ] → SpaC, where it amounts to the vanishing of the Λ-homology of

P I .

Now note that if P I acts trivially on TV (A) and on TW (A) for two V,W ∈ RepZ`((Ĝ o Q)I),

then it also acts trivially on TV⊗W (A) = TV (TW (A)) = TW (TV (A)): Indeed, the W ItI
E -action on

TV (TW (A)) ∼= TV �W (A) ∼= TW (TV (A)) is trivial on P It∅ and P ∅tI , thus on P ItI , and hence the
diagonal W I

E-action is trivial on P I . Using reductions to exterior tensor products, we can also

reduce to I = {∗}. Then if V ∈ RepZ`(Ĝ o Q) is a ⊗-generator, it follows that it suffices that P
acts trivially on TV (A). But

Dlis(BunG,Λ)BWE =
⋃
P

Dlis(BunG,Λ)B(WE/P )

as for any relatively discrete condensed animated Z`-module M with a map WE → Aut(M), the
map factors over WE/P for some P . Indeed, one can reduce to M concentrated in degree 0, and
then to M finitely generated, so that Aut(M) is profinite, and locally pro-`. �

Fix some open subgroup P of the wild inertia subgroup of WE , and let

DPlis(BunG,Λ)ω ⊂ Dlis(BunG,Λ)ω

be the full ∞-subcategory of all A such that P I acts trivially on TV (A) for all V ∈ Rep((ĜoQ)I).
Pick W ⊂ WE/P a discrete dense subgroup, by discretizing the tame inertia, as before. Then
Theorem VIII.4.1 gives a canonical map of algebras

Exc(W, Ĝ)→ Z(DPlis(BunG,Λ)ω) = π0End(idDPlis(BunG,Λ)ω).

As Exc(W, Ĝ) ⊗ Λ → O(Z1(WE/P, Ĝ)Λ)Ĝ is a universal homeomorphism, there are in partic-

ular idempotents corresponding to the connected components of Z1(WE/P, Ĝ)Λ. Their action on
DPlis(BunG,Λ)ω then induces a direct sum decomposition

DPlis(BunG,Λ)ω =
⊕

c∈π0Z1(WE/P,Ĝ)Λ

Dclis(BunG,Λ)ω.

Taking now a union over all P , we get a direct sum decomposition

Dlis(BunG,Λ)ω =
⊕

c∈π0Z1(WE ,Ĝ)Λ

Dclis(BunG,Λ)ω.

On the level of Ind-categories, this gives a direct product

Dlis(BunG,Λ) =
∏

c∈π0Z1(WE ,Ĝ)Λ

Dclis(BunG,Λ).

Note in particular that any Schur-irreducible object A ∈ Dlis(BunG,Λ) necessarily lies in one

of these factors, given by some connected component c of Z1(WE , Ĝ)Λ; and then the L-parameter
ϕA of A necessarily lies in this connected component.
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Using excursion operators, we get the following result on the “Bernstein center”. Note that for
G = GLn, all ` are allowed, so this is a generalization of results of Helm–Moss, [HM18], noting
that by the fully faithful functor D(G(E),Λ) ↪→ Dlis(BunG,Λ), there is a map of algebras

Zgeom(G,Λ)→ Z(G(E),Λ)

to the usual Bernstein center of smooth G(E)-representations on Λ-modules.

Theorem IX.5.2. Assume that ` is invertible in Λ, or that ` is a very good prime for Ĝ. Then
there is a natural map

Zspec(G,Λ)→ Zgeom(G,Λ)

compatible with the above decomposition into connected components. Moreover, for all finite sets I,

all V ∈ RepΛ(ĜI), and all A ∈ Dlis(BunG,Λ), the diagram

Zspec(G,Λ) //

''

End(A)

��
End(TV (A))

commutes, so the map factors over Zgeom
Hecke(G,Λ) ⊂ Zgeom(G,Λ).

Of course, as noted above, in general we still have maps

Exc(W, Ĝ)→ Z(DPlis(BunG,Λ)ω)

and Exc(W, Ĝ) → O(Z1(WE/P, Ĝ))Ĝ is a universal homeomorphism. The commutation with the
Hecke action is true here as well.

Proof. This follows from the decomposition into connected components, the map Exc(W, Ĝ)Λ →
Z(DPlis(BunG,Λ)ω) above, and Theorem VIII.3.6. The statement about commutation with Hecke
operators follows from the construction of excursion operators and the commutation of Hecke op-
erators. �

Before going on, we make the following observation regarding duality. The Bernstein–Zelevinsky
duality functor DBZ on Dlis(BunG,Λ) induces an involution Dgeom of Zgeom(G,Λ). On the other

hand, on Z1(WE , Ĝ), the Cartan involution of Ĝ induces an involution; after passing to the quotient

by the conjugation action of Ĝ, we can also forget about the inner automorphism appearing in
Proposition VI.12.1. Let Dspec be the induced involution of Zspec(G,Λ).

Proposition IX.5.3. Assume that ` is very good for Ĝ, or ` is invertible in Λ. Then the
diagram

Zspec(G,Λ)

Dspec

��

// Zgeom(G,Λ)

Dgeom

��
Zspec(G,Λ) // Zgeom(G,Λ)

commutes.

The formation of L-parameters for irreducible smooth representations of G(E) is compatible
with passage to Bernstein–Zelevinsky duals, and to smooth duals.
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Proof. The commutation follows easily from the construction of excursion operators and
Proposition VI.12.1. For the final part, it now follows that the formation of L-parameters is
compatible with passage to Bernstein–Zelevinsky duals. For supercuspidal representations, this
agrees with the smooth dual. In general, the claim for smooth duals follows from the compatibility
with parabolic induction proved below. �

IX.6. Properties of the correspondence

As usual, we fix an open subgroup P of the wild inertia of WE (mapping trivially to Q), and a
discretization W ⊂WE/P .

IX.6.1. Isogenies.

Theorem IX.6.1. Let G′ → G be a map of reductive groups inducing an isomorphism of adjoint

groups, inducing a dual map Ĝ → Ĝ′, and π : BunG′ → BunG. Then for any A ∈ DP
lis(BunG,Λ)

the diagram

Exc(W, Ĝ′)Λ
//

��

End(π∗A)

Exc(W, Ĝ)Λ
// End(A)

OO

commutes. In particular, if L is an algebraically closed field, A is Schur-irreducible and A′ is a

Schur-irreducible constituent of π∗A, then ϕA′ is the composite of ϕA with Ĝ → Ĝ′. Moreover, if

either ` is invertible in Λ or ` is very good for Ĝ and Ĝ′, the diagram

Zspec(Ĝ′,Λ) //

��

End(π∗A)

Zspec(Ĝ,Λ) // End(A)

OO

commutes.

Proof. Consider any excursion operator for G′, given by some finite set I, a representation

V ′ ∈ RepΛ((Ĝ′ oQ)I), maps α : 1 → V ′|
Ĝ′

, β : V ′|
Ĝ′
→ 1 and elements γi ∈ Γ as usual. Consider

the diagram

BunG′

π

��

HckIG′
h′1oo

πH
��

h′2 // BunG′ ×(Div1)I

π
��

BunG HckIG
h1oo h2 // BunG×(Div1)I .

Then

TV ′(π
∗A) = h′2\(h

′∗
1 π
∗A

�

⊗L
ΛS ′V ′).
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We are interested in computing an endomorphism of π∗A; in particular, it is enough to compute
π\TV ′(π

∗A). But

π\TV ′(π
∗A) = π\h

′
2\(h

′∗
1 π
∗A

�

⊗L
ΛS ′V ′)

∼= h2\πH\(π
∗
Hh
∗
1A

�

⊗L
ΛSV ′)

∼= h2\(h
∗
1A

�

⊗L
ΛπH\S

′
V ′)

∼= h2\(h
∗
1A

�

⊗L
ΛS ′V ) = TV (A).

This identification is functorial in V ′ and I, and is over BunG×(Div1)I , hence implies the desired
equality of excursion operators. Here, to identify πH\SV ′ , we use that the diagram

HckIG′
//

πH
��

HckIG′

��
HckIG

// HckIG

is cartesian, and the compatibility of the geometric Satake equivalence with the map G → G′

inducing isomorphisms of adjoint groups, as in the proof of Theorem VI.11.1. �

IX.6.2. Products.

Proposition IX.6.2. If G = G1 ×G2 is a product of two groups, then the diagram

Exc(W, Ĝ1)Λ ⊗Λ Exc(W, Ĝ2)Λ

∼=
��

// Z(DPlis(BunG1 ,Λ))⊗Λ Z(DPlis(BunG2 ,Λ))

��
Exc(W, Ĝ) // Z(DPlis(BunG,Λ))

commutes.

In particular, if Λ = L is an algebraically closed field and A1, A2 ∈ Dlis(BunG, L) are Schur-
irreducible, and A is a Schur-irreducible constituent of A1 �A2, then

ϕA = (ϕA1 , ϕA2) : WE → Ĝ(L) ∼= Ĝ1(L)× Ĝ2(L).

If ` is invertible in Λ or is very good for Ĝ1 and Ĝ2, then the diagram

Zspec(G1,Λ)⊗Λ Zspec(G2,Λ)

∼=
��

// Zgeom(G1,Λ)⊗Λ Zgeom(G1,Λ)

��
Zspec(G,Λ) // Zgeom(G,Λ)

commutes.

Proof. The statement can be checked using excursion operators, and the proof is a straight-
forward diagram chase, noting that everything decomposes into products. �
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IX.6.3. Weil restriction.

Proposition IX.6.3. If G = ResE′|EG
′ is a Weil restriction of scalars of some reductive group

G′ over some finite separable extension E′ of E. Choose P to be an open subgroup of the wild inertia
of WE′ ⊂ WE, and let W ′ ⊂ WE′/P be the preimage of W ⊂ WE/P . Then there are canonical

identifications BunG′ ∼= BunG, Z1(WE , Ĝ) ∼= Z1(WE′ , Ĝ′) and Exc(W, Ĝ) ∼= Exc(W ′, Ĝ′), and the
diagram

Exc(W ′, Ĝ′)

∼=
��

// Z(DPlis(BunG′ ,Λ))

∼=
��

Exc(W, Ĝ) // Z(DPlis(BunG,Λ))

commutes. In particular, L-parameters are compatible with Weil restriction. If ` is invertible in Λ

or is very good for Ĝ and Ĝ′, then the diagram

Zspec(G′,Λ)

∼=
��

// Zgeom(G′,Λ)

∼=
��

Zspec(G,Λ) // Zgeom(G,Λ)

commutes.

Proof. The most nontrivial of these identifications is the identification

Exc(W, Ĝ) ∼= Exc(W ′, Ĝ′).

One way to understand this is to use the presentation

Exc(W, Ĝ) = colim(n,Fn→W )O(Z1(Fn, Ĝ))Ĝ

(and the similar presentation for Exc(W ′, Ĝ′)) and the natural isomorphism Z1(Fn, Ĝ) � Ĝ ∼=
Z1(Fn ×W W ′, Ĝ′) � Ĝ′ of affine schemes (and then passing to global sections), noting that Fn ×W
W ′ ⊂ Fn is a subgroup of finite index, and thus itself a finitely generated free group. This shows in
fact that restricting to those maps Fn →W factoring over W ′ produces the same colimit, and so

Exc(W, Ĝ) = colim(n,Fn→W )O(Z1(Fn, Ĝ))Ĝ

∼←− colim(n,Fn→W ′)O(Z1(Fn, Ĝ))Ĝ

∼= colim(n,Fn→W ′)O(Z1(Fn, Ĝ′))
Ĝ′

= Exc(W ′, Ĝ′).

Now consider an excursion operator for G′, including a representation V ′ of (Ĝ′oWE′)
I . Note

that ĜoWE contains ĜoWE′ as a subgroup, and this admits a surjection onto Ĝ′oWE′ (noting

that Ĝ =
∏
E′↪→E Ĝ

′, where we picked out an embedding E′ ↪→ E and hence a projection Ĝ→ Ĝ′

when we regarded WE′ ⊂WE as a subgroup). In this way, one can inflate V ′ to a representation of
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(ĜoWE′)
I and then induce to (ĜoWE)I to get a representation V of (ĜoWE)I . Geometrically,

this procedure amounts to the commutative diagram

BunG′

∼=
��

HckIG′
h′1oo

h′2 //

ψ
��

BunG′ ×(Div′1)I

��
BunG HckIG

h1oo h2 // BunG×(Div1)I

and taking ψ∗ on sheaves. More precisely, we note that

HckIG′ → HckIG×(Div1)I (Div′1)I

is a closed immersion (and arises via pullback from a similar closed immersion of local Hecke stacks).
Now the claim follows from a diagram chase. �

IX.6.4. Tori. If G = T is a torus, then

Dlis(BunT ,Λ) ∼=
∏

b∈B(T )=π1(T )Γ

D(T (E),Λ)

and in particular

Zgeom(T,Λ) =
∏

b∈B(T )

Z(T (E),Λ)

where Z(T (E),Λ) is the Bernstein center of T (E); explicitly, this is

Z(T (E),Λ) = lim←−
K⊂T (E)

Λ[T (E)/K]

where K runs over open subgroups of T (E).

For tori, the representation theory of T̂ is semisimple even integrally, so we get a map

Zspec(T,Λ)→ Zgeom(T,Λ).

Proposition IX.6.4. There is a natural isomorphism

Zspec(T,Λ) ∼= lim←−
K⊂T (E)

Λ[T (E)/K].

Proof. One can resolve T by products of induced tori and then reduce to the case that T
is induced, and then by Weil restrictions of scalars to T = Gm. In that case Z1(WE ,Gm) =
Hom(E∗,Gm) by local class field theory, giving the result. �

Proposition IX.6.5. Under the above identifications

Zspec(T,Λ) = lim←−
K⊂T (E)

Λ[T (E)/K]

and
Zgeom(T,Λ) =

∏
b∈B(T )

lim←−
K⊂T (E)

Λ[T (E)/K],

the map
Zspec(T,Λ)→ Zgeom(T,Λ)
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is the diagonal embedding.

Proof. We may resolve T by induced tori and use Theorem IX.6.1, Proposition IX.6.2 and
Proposition IX.6.3 to reduce to the case of T = Gm. It is enough to compute the excursion operators
corresponding to I = {1, 2}, V = std � std∨ and the tautological maps α : 1 → std ⊗ std∨ and
β : std⊗ std∨ → 1. It is then an easy consequence of Section II.2.1. �

Proposition IX.6.5 in particular shows that the L-parameters we construct for tori are the
usual L-parameters, and together with Theorem IX.6.1 and Proposition IX.6.2 implies that L-
parameters are compatible with central characters and twisting, by applying Theorem IX.6.1 to
the maps Z ×G → G and G → G ×D where Z ⊂ G is the center and G → D is the quotient by
the derived group.

IX.7. Applications to representations of G(E)

Finally, we apply the preceding results to representations of G(E). To simplify the statements,

we assume from now on that either ` is invertible in Λ, or that ` is very good for Ĝ; in general,

similar statements hold true up to replacing O(Z1(WE/P, Ĝ))Ĝ by the algebra Exc(W, Ĝ) as above.

We get the following map to the Bernstein center.

Definition IX.7.1. The map

ΨG : Zspec(G,Λ)→ Z(G(E),Λ)

is the composite

Zspec(G,Λ)→ Zgeom(G,Λ)→ Z(G(E),Λ)

induced by the fully faithful functor

j! : D(G(E),Λ) ∼= Dlis(Bun1
G,Λ)→ Dlis(BunG,Λ).

More generally, for any b ∈ B(G), we can define a map

Ψb
G : Zspec(G,Λ)→ Z(Gb(E),Λ)

to the Bernstein center for Gb(E) by using the fully faithful embedding

D(Gb(E),Λ) ∼= Dlis(BunbG,Λ)→ Dlis(BunG,Λ)

determined for example by the left adjoint to ib∗, where ib : BunbG ↪→ BunG is the locally closed
embedding (see Proposition VII.7.2). (Recall that in the Dlis-setting, we do not have a general
ib! -functor, although it can be defined in the present situation. All these maps will induce the same
map to the Bernstein center.)
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IX.7.1. Compatibility with Gb. One can describe the maps Ψb
G for b 6= 1 in terms of the

maps ΨGb . Note that Ĝb is naturally a Levi subgroup of Ĝ, as Gb,Ĕ ⊂ GĔ is the centralizer of the

slope morphism νb : D→ GĔ . This extends naturally to a morphism of L-groups

Ĝb oQ→ ĜoQ

where as usual Q is a finite quotient of WE over which the action on Ĝ factors. However, from
geometric Satake we rather get the natural inclusion

Gb

∧

oWE → G

∧

oWE

where the WE-actions include the cyclotomic twist. The latter induces a map

Z1(WE , Ĝb)→ Z1(WE , Ĝ)

that in terms of the usual WE-action is given by sending a 1-cocycle ϕ : WE → Ĝb(A) to the
1-cocycle

WE → Ĝ(A) : w 7→ (2ρ
Ĝ
− 2ρ

Ĝb
)(
√
q)|w|ϕ(w)

where | · | : WE →WE/IE ∼= Z is normalized as usual by sending a geometric Frobenius to 1.

Theorem IX.7.2. For all G and b ∈ B(G), the diagram

Zspec(G,Λ)
ΨbG //

��

Z(D(Gb(E),Λ))

Zspec(Gb,Λ)

ΨGb

66

commutes.

Proof. We note that to prove the theorem, we can assume that Λ is killed by power of ` (if `

is not very good for Ĝ, replacing the left-hand side with an algebra of excursion operators), as the
result for Λ = Z`[

√
q] implies it in general, and the right-hand side

Z(D(Gb(E),Λ)) = lim←−
K⊂Gb(E)

Z(Λ[Gb(E) �K])

is `-adically separated in that case. This means we can avoid the subtleties of Dlis in place of Dét.

If b is basic, the theorem follows from the identification BunG ∼= BunGb of Corollary III.4.3,
which is equivariant for the Hecke action.

In general, we first reduce to the case that G is quasisplit. Take a z-embedding G ↪→ G′

as in [Kal18, Section 5], with quotient a torus D, so that the center Z(G′) is connected. Then
BunG = BunG′ ×BunD{∗} and the map B(G) → B(G′) is injective. To see the latter, by the
description of the stacks, it suffices to see that for all b ∈ B(G) with image b′ ∈ B(G′), the map
G′b′(E) → D(E) is surjective. But for any b ∈ B(G), the map Gb → G′b′ is a z-embedding with
quotient D, and Z ′(E) → D(E) is surjective by [Kal18, Fact 5.5], where also Z ′ ⊂ G′b′ , so in
particular G′b′(E)→ D(E) is surjective. An element of

Z(D(Gb(E),Λ)) = lim←−
K⊂Gb(E)

Z(Λ[Gb(E) �K])
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of the Bernstein center of Gb(E) is determined by its action on π′|Gb(E) for representations π′ of
G′b′(E). By Theorem IX.6.1, we can thus reduce to G′ in place of G, i.e. that the center of G is
connected. When Z(G) is connected, there is some basic b0 ∈ B(G) such that Gb0 is quasisplit.
Using the Hecke-equivariant isomorphism BunG ∼= BunGb0 we can thus assume that G is quasisplit.

Now if G is quasisplit, fix a Borel B ⊂ G. Any b ∈ B(G) then admits a reduction to a canonical
parabolic P = Pb ⊂ G containing B. Pick a cocharacter µ : Gm → G with dynamical parabolic P .
For any N ≥ 0, let bN = bµ(πN ): This is a sequence of elements of B(G) associated to the same
parabolic P but increasingly instable. Moreover, Gb = GbN . We note that the diagram

Zspec(G,Λ)
ΨbG //

=

��

Z(Gb(E),Λ)

=

��
Zspec(G,Λ)

Ψ
bN
G // Z(GbN (E),Λ)

commutes. For this, take any representation σ of Gb(E) and consider the sheaf AN ∈ Dét(BunG,Λ)

concentrated on BunbNG , corresponding to the representation σ. Let V ∈ Rep Ĝ be the highest

weight representation with weight µN . We claim that TV (AN )|BunbG
is given by the representation

σ. As Hecke operators commute with excursion operators, this implies the desired result. To
compute TV (AN )|BunbG

, we have to analyze the moduli space of modifications of Eb of type bounded

by µN that are isomorphic to EbN . There is in fact precisely one such modification, given by pushout
of the standard modification of line bundles from O to O(1) via µN : Gm → G; its type is exactly
µN . This gives the claim.

Now to prove the theorem, we have to prove the commutativity of the diagram for any excursion
operator, given by excursion data (I, V, α, β, (γi)i∈I). For any such excursion data, we can pick N
large enough so that any modification of EbN to itself, of type bounded by V , is automatically
compatible with the Harder–Narasimhan reduction to P . In that case, for σ and AN as above, to
analyze the excursion operators

AN = T1(AN )
α−→ TV (AN )

(γi)i∈I−−−−→ TV (AN )
β−→ T1(AN ) = AN ,

we have to analyze the moduli space of modifications of EbN , at I varying points, of type bounded
by V , and that are isomorphic to EbN . By assumption on N , this is the same as the moduli
space of such modifications as P -bundles. This maps to the similar moduli space parametrizing
modifications as M -bundles, where M is the Levi of P (and Gb = MbM for a basic bM ∈ B(M)).
We want to compute TV (AN ). Note that AN comes from A′N ∈ Dét(BunP ,Λ) as it is concentrated

on BunbNG
∼= BunbNP ⊂ BunP , by the Harder–Narasimhan reduction.
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Consider the diagram

BunM

ψ

��

HckIM,P

ψH
��

h′′1oo
h′′2 // BunP ×(Div1)I

=

��
BunP

π

��

HckIP
h′1oo

πH
��

h′2 // BunP ×(Div1)I

π
��

BunM HckIM
h1oo h2 // BunM ×(Div1)I

where HckIM,P is defined as the fibre product HckIP ×BunP BunM , and thus parametrizes modifica-
tions from an M -bundle to a P -bundle.

We need to compute TV (AN )|
Bun

bN
G

, which by the above argument that any modification of EbN
to itself of type bounded by V is a modification as P -bundles, can be computed in terms of the
middle diagram, as

Rh′2!(h
′∗
1 A
′
N ⊗L

Λ SV )|
Bun

bN
P

where SV ∈ HckIG is the perverse sheaf determined by V under the geometric Satake equivalence,
and we continue to denote by SV any of its pullbacks.

There is some BN ∈ Dét(BunM ,Λ) such that A′N = Rψ!BN . In fact, one can take BN = Rπ!A
′
N ,

noting that on the support of A′N , the map π : BunP → BunM is (cohomologically) smooth, so
Rπ! is defined on A′N (although π is a stacky map). (Indeed, everything is concentrated on one
stratum, and the relevant categories are all equivalent to D(Gb(E),Λ).) Moreover, to compute the

restriction to BunbNP it is enough to do the computation after applying Rπ!. We compute:

Rπ!Rh
′
2!(h

′∗
1 A
′
N ⊗L

Λ SV ) = Rπ!Rh
′
2!RψH!(h

′′∗
1 BN ⊗L

Λ SV )

= Rh2!(h
∗
1BN ⊗L

Λ Rg!SV )

where g : HckIM,P → HckIM is the projection. But this is the pullback of the map L+M\GrIP →
L+M\GrIM = HckIM under HckIM → HckIM . This means that Rg!SV arises via pullback from

CTP (SV ) ∈ Dét(HckIM ,Λ). Up to the shift [degP ], this agrees with SV |
(M̂oQ)I

, where the restriction

involves a cyclotomic twist, as above. (It is the canonical restriction along M

∧

→ G

∧

for the canonical
WE-actions arising geometrically.) Now the excursion operators, which involve maps from and to
the sheaf corresponding to V = 1, require only the connected component where degP = 0, so we
can ignore the shift.

With these translations, we see that the excursion operators on BunbNG and on BunbNM agree,
giving the desired result. �

IX.7.2. Parabolic induction. A corollary of this result is compatibility with parabolic in-
duction.
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Corollary IX.7.3. Let G be a reductive group with a parabolic P ⊂ G and Levi P →M . Then

for all representations σ of M(E) with (unnormalized) parabolic induction Ind
G(E)
P (E)σ, the diagram

Zspec(G,Λ) //

��

End(Ind
G(E)
P (E)σ)

Zspec(M,Λ) // End(σ)

OO

commutes. In particular, the formation of L-parameters is compatible with parabolic induction:
If Λ = L is an algebraically closed field, σ is irreducible and σ̃ is an irreducible subquotient of

Ind
G(E)
P (E)σ, then ϕσ̃ is conjugate to the composite

WE
ϕσ−−→ M̂(L) oWE → Ĝ(L) oWE

where the map M̂ oWE → ĜoWE is defined as above, involving the cyclotomic twist.

Proof. It suffices to prove the result for σ = c-Ind
M(E)
K Λ for K ⊂ M(E) an open pro-p-

subgroup, and then one can assume Λ = Z`[
√
q], where one can further by `-adic separatedness

reduce to torsion coefficients.

Let µ : Gm → G be a cocharacter with dynamical parabolic P and let b = µ(π) ∈ B(G).
Then Gb = M , and we can build a sheaf A ∈ Dét(BunG,Λ) concentrated on BunbG, given by the

representation σ. Let V ∈ Rep(Ĝ) be a highest weight representation of weight µ. Then TV (A)|Bun1
G

is given by Ind
G(E)
P (E)σ: To see this, we have to understand the moduli space of modification of the

trivial G-torsor of type bounded by µ that are isomorphic to Eb. This is in fact given by G(E)/P (E),

the G(E)-orbit of the pushout of the modification from O to O(1) via µ. All of these modifications
are of type exactly µ. This easily gives the claim on TV (A)|Bun1

G
. Now as Hecke operators commute

with excursion operators, the excursion operators on Ind
G(E)
P (E)σ agree with those on A, and these

are determined by Theorem IX.7.2, giving the result. �

IX.7.3. The case G = GLn. For the group G = GLn, we can identify the L-parameters
with the usual L-parameters of [LRS93], [HT01], [Hen00]. This is the only place of this paper
where we rely on previous work on the local Langlands correspondence, or (implicitly) rely on
global arguments. More precisely, we use the identification of the cohomology of the Lubin–Tate
and Drinfeld tower, see [Boy99], [Har97], [HT01], [Hau05], [Dat07]. In the proof, we use the
translation between Hecke operators and local Shimura varieties as Section IX.3, together with the
description of these as the Lubin–Tate tower and Drinfeld tower in special cases, see [SW13].

Theorem IX.7.4. Let π be any irreducible smooth representation of GLn(E) over some alge-
braically closed field L over Q`(

√
q). Then the L-parameter ϕπ agrees with the usual (semisimplified)

L-parameter.

Proof. By Corollary IX.7.3, we can assume that π is supercuspidal. We only need to evaluate
the excursion operators for the excursion data given by I = {1, 2}, the representation V = std�std∨
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of ĜLn
2
, and the tautological maps α : 1→ std⊗ std∨ and β : std⊗ std∨ → 1, as these excursion

operators determine the trace of the representation (and thus the semisimplified representation).

First, we analyze these excursion operators on the sheaf B which is the sheaf on BunbGLn for

b corresponding to the bundle O(− 1
n), given by the representation σ = JL(π) of D×; here D is

the division algebra of invariant 1
n . The Hecke operator TV is the composite of two operators.

The first Hecke operator, corresponding to std, takes minuscule modifications O(− 1
n) ⊂ E with

cokernel a skyscraper sheaf of rank 1. Such an E is necessarily isomorphic to On, and the Hecke
operator will then produce the σ-isotypic part of the cohomology of the Lubin–Tate tower, which
is π ⊗ ρπ, where ρπ is the irreducible n-dimensional WE-representation associated to π by the
local Langlands correspondence. (Note that the shift [n− 1], as well as the cyclotomic twist (n−1

2 )
that usually appears, is hidden inside the normalization of the perverse sheaf corresponding to the
standard representation.) Now the second Hecke operator, when restricted to BunbGLn , produces
the π-isotypic component of the cohomology of the Drinfeld tower, which is σ⊗ρ∗π. In total, we see
that TV (B)|BunbGLn

is given by π ⊗ ρπ ⊗ ρ∗π as representation of D× ×WE ×WE . By irreducibility

of ρπ, the WE-equivariant map σ → σ⊗ ρπ ⊗ ρ∗π induced by α (and the similar backwards induced
by β) must agree up to scalar with the obvious map. The scalar of the total composite can be
identified by taking both elements of WE to be equal to 1. This shows that B has the correct
L-parameter. Now use that the sheaf corresponding to π appears as a summand of Tstd(B) (after
forgetting the WE-action) to conclude the same for π. �

In particular, it follows that the map

Zspec(GLn,Q`)→ Z(GLn(E),Q`)

to the Bernstein center agrees with the usual map. We recall that we have already proved that this
map refines to a map

Zspec(GLn,Λ)→ Z(GLn(E),Λ)

to the integral Bernstein center (where Λ = Z`[
√
q]), recovering a result of Helm–Moss [HM18].





CHAPTER X

The spectral action

As a final topic, we construct the spectral action. We will first construct it with characteristic
0 coefficients, and then explain refinements with integral coefficients.

Let Λ be the ring of integers in a finite extension of Q`(
√
q). We have the stable ∞-category

C = Dlis(BunG,Λ)ω of compact objects, which is linear over Λ, and functorially in the finite set I

an exact monoidal functor RepΛ(Ĝ o Q)I → EndΛ(C)BW I
E that is linear over RepΛ(QI). A first

version of the following theorem is due to Nadler–Yun [NY19] in the context of Betti geometric
Langlands, and a more general version appeared in the work of Gaitsgory–Kazhdan–Rozenblyum–
Varshavsky [GKRV19]. Both references, however, effectively assume that G is split, work only
with characteristic 0 coefficients, and work with a discrete group in place of WE . At least the
extension to Z`-coefficients is a nontrivial matter.

Note that Z1(WE , Ĝ) is not quasicompact, as it has infinitely many connected components; it

can be written as the increasing union of open and closed quasicompact subschemes Z1(WE/P, Ĝ).

We say that an action of Perf(Z1(WE , Ĝ)/Ĝ) on a stable ∞-category C is compactly supported if

for all X ∈ C the functor Perf(Z1(WE , Ĝ)/Ĝ) → C (induced by acting on X) factors over some

Perf(Z1(WE/P, Ĝ)/Ĝ).

The goal of this chapter is to prove the following theorem. Recall that for G = GLn, all ` are
very good, and for classical groups, all ` 6= 2 are very good.

Theorem X.0.1. Assume that ` is a very good prime for Ĝ. Let C be a small idempotent-
complete Λ-linear stable∞-category. Then giving, functorially in the finite set I, an exact RepΛ(QI)-
linear monoidal functor

RepΛ(ĜoQ)I → EndΛ(C)BW I
E

is equivalent to giving a compactly supported Λ-linear action of

Perf(Z1(WE , Ĝ)Λ/Ĝ).

Here, given a Λ-linear action of Perf(Z1(WE , Ĝ)Λ/Ĝ), one can produce such an exact RepΛ(QI)-
linear monoidal functor

RepΛ(ĜoQ)I → EndΛ(C)BW I
E

functorially in I by composing the exact RepΛ(QI)-linear symmetric monoidal functor

RepΛ(ĜoQ)I → Perf(Z1(WE , Ĝ)Λ/Ĝ)BW
I
E

with the action of Perf(Z1(WE , Ĝ)Λ/Ĝ).

The same result holds true if Λ is a field over Q`(
√
q), for any prime `.

331
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Here, the exact RepΛ(QI)-linear symmetric monoidal functor

RepΛ(ĜoQ)I → Perf(Z1(WE , Ĝ)Λ/Ĝ)BW
I
E

is induced by tensor products and the exact RepΛ(Q)-linear symmetric monoidal functor

RepΛ(ĜoQ)→ Perf(Z1(WE , Ĝ)Λ/Ĝ)BWE

corresponding to the universal ĜoQ-torsor, with the universal WE-equivariance as parametrized

by Z1(WE , Ĝ)/Ĝ.

Before starting the proof, we note that the proof of Proposition IX.5.1 shows that we may
replace WE by WE/P in the statement of Theorem X.0.1. Choosing moreover a discretization
W ⊂WE/P , we reduce to the following variant.

Theorem X.0.2. Assume that ` is a very good prime for Ĝ. Let C be a small idempotent-
complete Λ-linear stable∞-category. Then giving, functorially in the finite set I, an exact RepΛ(QI)-
linear monoidal functor

RepΛ(ĜoQ)I → EndΛ(C)BW I

is equivalent to giving a Λ-linear action of

Perf(Z1(W, Ĝ)Λ/Ĝ),

with the same compatibility as above. The same result holds true if Λ is a field over Q`, for any
prime `.

X.1. Rational coefficients

With rational coefficients, we can prove a much more general result, following [GKRV19].

Consider a reductive group H over a field L of characteristic 0 (like Ĝ over Q`) with an action of
a finite group Q. Let S be any anima over BQ (like BW , where W ⊂WE/P is a discretization of
WE/P for an open subgroup of the wild inertia, as usual). We can then consider the (derived) stack
MapBQ(S,B(H o Q)) over L, whose values in an animated L-algebra A are the maps of anima

S → B(H oQ)(A) over BQ. This recovers the stack [Z1(W, Ĝ)Q`/Ĝ] in the above example, using

Proposition VIII.3.5.

In general, MapBQ(S,B(H o Q)) is the fpqc quotient of an affine derived scheme by a power
of H. Indeed, pick a surjection S′ → S ×BQ ∗ from a set S′. Then MapBQ(S,B(H o Q)) maps

to BHS′ ; we claim that the fibre is an affine derived scheme, i.e. representable by an animated
L-algebra. For this, note that

MapBQ(S,B(H oQ))→ Map(S ×BQ ∗, BH)

is relatively representable, as it is given by the Q-fixed points. To show that the right-hand side
is relatively representable over BHS′ , we can replace S ×BQ ∗ by a connected anima T , and S′

by a point. Then Map(T,BH) ×BH ∗ parametrizes pointed maps T → BH, which are equivalent
to maps of E1-groups Ω(T ) → H. Writing Ω(T ) as a sifted colimit of finite free groups Fn, one
reduces to representability of maps of groups Fn → H, which is representable by Hn.
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Theorem X.1.1. Let C be an idempotent-complete small stable L-linear ∞-category. Giving,
functorially in finite sets I, an exact RepL(QI)-linear monoidal functor

RepL((H oQ)I)→ EndL(C)SI

is equivalent to giving an L-linear action of Perf(MapBQ(S,B(H oQ))) on C. Here, given such an

action of Perf(MapBQ(S,B(H oQ))), one gets exact RepL(QI)-linear monoidal functors

RepL((H oQ)I)→ EndL(C)SI

by precomposing the exact monoidal functor Perf(MapBQ(S,B(H oQ)))→ EndL(C) with the nat-

ural exact RepL(QI)-linear symmetric monoidal functor

RepL((H oQ)I)→ Perf(MapBQ(S,B(H oQ)))S
I

given by I-fold tensor product of the exact RepL(Q)-linear symmetric monoidal functor

RepL(H oQ)→ Perf(MapBQ(S,B(H oQ)))S

assigning to each s ∈ S pullback along evaluation at s, MapBQ(S,B(H oQ))→ B(H oQ).

Proof. Note first that, for any L-linear idempotent-complete small stable∞-category C, giving
an exact L-linear functor RepL((H oQ)I)→ C is equivalent to giving an exact L-linear functor of
stable∞-categories Perf((HoQ)I)→ C, as the∞-category of perfect complexes is freely generated
by the exact category of representations. Indeed, such functors extend to the ∞-category obtained
by inverting quasi-isomorphisms in Chb(RepL(H oQ)I), and this is Perf(B(H oQ)I).

For any S, we have the anima F1(S) of L-linear actions of Perf(MapBQ(S,B(H o Q))) on C,
and the anima F2(S) of functorial exact monoidal functors

RepL((H oQ)I)→ EndL(C)SI

linear over RepL(QI), and a natural map F1(S) → F2(S) functorial in S (where both F1 and F2

are contravariant functors of S). Both functors take sifted colimits in S to limits. This is clear
for F2 (as S 7→ SI commutes with sifted colimits). For F1, it is enough to see that taking S to
Perf(MapBQ(S,B(H o Q))) commutes with sifted colimits (taken in idempotent-complete stable
∞-categories), which is Lemma X.1.2 below.

Therefore it suffices to handle the case that S is a finite set, for which the map S → BQ can
be factored over ∗. Then MapBQ(S,B(H oQ)) ∼= BHS . Similarly, exact monoidal functors

RepL((H oQ)I)→ EndL(C)SI

linear over RepL(QI) are equivalent to exact monoidal functors

RepL(HI)→ EndL(C)SI

linear over L. Here, we use Perf(B(H oQ)I)⊗Perf(BQI) Perf(L) ∼= Perf(BHI), which follows easily
from highest weight theory.

The latter data is equivalent to maps

Hom(I, S) = SI → Funmon
ex,L(RepL(HI),EndL(C))
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functorially in I, where Funmon
ex,L denotes the exact L-linear monoidal functors. Both sides here are

functors in I, and on the left-hand side we have a representable functor. By the Yoneda lemma, it
follows that this data is equivalent to L-linear exact monoidal functors

RepL(HS)→ EndL(C).

Such actions extend uniquely to Perf(BHS), giving the desired result. �

Lemma X.1.2. The functor taking an anima S over BQ to Perf(MapBQ(S,B(HoQ))), regarded
as an idempotent-complete stable ∞-category, commutes with sifted colimits. More precisely, as a
functor into L-linear symmetric monoidal idempotent-complete stable ∞-categories, it commutes
with all colimits.

Proof. We first check that it commutes with filtered colimits. For this, let Si, i ∈ I, be a
filtered diagram of anima over BQ, and choose compatible surjections S′i → Si×BQ ∗ from sets S′i.

Let S = colimi Si and S′ = colimi S
′
i, which is a set surjecting onto S ×BQ ∗. Letting Gi = HS′i

and G = HS′ , we get presentations MapBQ(Si, B(H o Q)) = Xi/Gi as quotients of affine derived
L-schemes Xi by the pro-reductive group Gi, and similarly MapBQ(S,B(H o Q)) = X/G, with
X = lim←−iXi and G = lim←−iGi. We claim that in this generality

lim−→
i

Perf(Xi/Gi)→ Perf(X/G)

is an isomorphism of idempotent-complete stable ∞-categories.

Assume first that all X = SpecL are a point. Then note that Perf(BG) is generated by Rep(G),
which is easily seen to be the filtered colimit lim−→i

Rep(Gi), and (by writing it as limit of reductive

groups) is seen to be semisimple. The claim is easily checked in this case.

In general, Perf(X/G) is generated by Rep(G) as an idempotent complete stable ∞-category.
Indeed, given any perfect complex A ∈ Perf(X/G), we can look at the largest n for which the
cohomology sheaf Hn(A) is nonzero; after shift, n = 0. Pick V ∈ Rep(G) with a map V → H0(A)
such that V ⊗LOX/G → H0(A) is surjective. By semisimplicity of Rep(G), we can lift V → H0(A)
to V → A, and then pass to the cone of V ⊗L OX/G → A to reduce the projective amplitude until
A is a vector bundle. In that case the homotopy fibre B of V ⊗L OX/G → A is again a vector

bundle, and the map V ⊗L OX/G → A splits, as the obstruction is H1(X/G,A∨ ⊗OX/G B), which

vanishes by semisimplicity of Rep(G).

This already proves essential surjectivity. For fully faithfulness, it suffices by passage to
internal Hom’s to show that for all Ai0 ∈ Perf(Xi0/Gi0) (for some chosen i0) with pullbacks
Ai ∈ Perf(Xi/Gi) for i → i0 and A ∈ Perf(X/G), the map lim−→i

RΓ(Xi/Gi, Ai) → RΓ(X/G,A) is

an isomorphism. By semisimplicity of Rep(Gi) and Rep(G), it suffices to see that lim−→i
RΓ(Xi, Ai)→

RΓ(X,A) is an isomorphism, which is clear by affineness.

This handles the case of filtered colimits. For the more precise claim, it is also easy to see that
it commutes with disjoint unions. It is now enough to handle pushouts, so consider a diagram
S1 ← S0 → S2 of anima over BQ, with pushout S. We can assume that the maps S0 → S1 and
S0 → S2 are surjective, as otherwise we can use compatibility with disjoint unions (replacing S2 by
the disjoint union of the image of S0 and its complement). Then choose a surjection S′ → S0×BQ∗,
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which induces similar surjections in the other cases. Thus, we get affine derived L-schemes X1 →
X0 ← X2 with actions by G = HS′ , and X = X1 ×X0 X2, and we want to see that the functor

Perf(X1/G)⊗Perf(X0/G) Perf(X2/G)→ Perf(X1 ×X X2/G)

is an equivalence. On the level of Ind-categories, Ind Perf(Xi/G) is the ∞-category of O(Xi)-
modules in Ind Perf(BG): This is a consequence of Barr–Beck and the fact observed above that
Perf(BG) generates Perf(Xi/G), so that the forgetful functor Ind Perf(Xi/G) → Ind Perf(BG)
is conservative. It follows that the tensor product is the ∞-category of O(X1) ⊗O(X0) O(X2)-
modules in Ind Perf(BG), the tensor product taken in the symmetric monoidal stable ∞-category
Ind Perf(BG). The map O(X1) ⊗O(X0) O(X2) → O(X) is an isomorphism in Ind Perf(BG): This
can be checked after the forgetful functor Ind Perf(BG)→ D(L) as it is conservative (using that G
is pro-reductive, hence Rep(G) is semisimple), and then it amounts to X = X1 ×X0 X2. �

In particular, we get the following corollary.

Corollary X.1.3. Let L be a field over Q`(
√
q). There is a natural compactly supported L-

linear action of Perf(Z1(WE , Ĝ)L/Ĝ) on Dlis(BunG, L)ω, uniquely characterized by the requirement
that by restricting along the RepL(QI)-linear maps

RepL((ĜoQ)I)→ Perf(Z1(WE , Ĝ)L/Ĝ)BW
I
E

it induces the Hecke action, which gives functorially in the finite set I exact RepL(QI)-linear func-
tors

RepL((ĜoQ)I)→ EndL(Dlis(BunG, L)ω)BW
I
E .

Proof. We can reduce to the subcategories DPlis(BunG, L)ω ⊂ Dlis(BunG, L) for open sub-

groups P of the wild inertia of WE , acting trivially on Ĝ. Then we can replace WE by WE/P
throughout. In that case, restricting the given Hecke action to W ⊂ WE/P , Theorem X.1.1 gives

an action of Perf(Z1(W, Ĝ)L/Ĝ), and Z1(W, Ĝ) = Z1(WE/P, Ĝ), so we get the desired action of

Perf(Z1(WE/P, Ĝ)L/Ĝ). �

With this action, we can formulate the main conjecture, “the categorical form of the geometric
Langlands conjecture on the Fargues–Fontaine curve”. Recall that for a quasisplit reductive group
G over E, Whittaker data consist of a choice of a Borel B ⊂ G with unipotent radical U ⊂ B,

together with a generic character ψ : U(E)→ Q×` . As usual, we also fix
√
q ∈ Q`.

Conjecture X.1.4. There is an equivalence of Q`-linear small stable ∞-categories

Dlis(BunG, L)ω ∼= Db,qc
coh (Z1(WE , Ĝ)Q`/Ĝ)

linear over Perf(Z1(WE , Ĝ)Q`/Ĝ), under which the structure sheaf on the right corresponds to

the Whittaker sheaf Wψ, which is the sheaf concentrated on Bun1
G ⊂ BunG corresponding to the

representation c-Ind
G(E)
U(E)ψ of G(E).

To be precise, Db,qc
coh (Z1(WE , Ĝ)Q`/Ĝ) refers here to the∞-category of those bounded complexes

with coherent cohomology that also have quasicompact support, i.e. only live on finitely many
connected components, and the final compatibility statement is really on the level of Ind-objects
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(or after restriction to connected components). The linearity condition over Perf(Z1(WE , Ĝ)Q`/Ĝ)

means that this equivalence is compatible with the spectral action.

Remark X.1.5. There is an orthogonal decomposition

Dlis(BunG,Q`)
ω =

⊕
α∈π1(G)Γ

Dlis(Bunc1=α
G ,Q`)

ω

given by the connected components of BunG. There is a morphism Z(Ĝ)Γ → Id
Z1(WE ,Ĝ)Q`

/Ĝ
, as

Z(Ĝ)Γ ⊂ Ĝ acts trivially on Z1(WE , Ĝ). There is an associated “eigenspace” decomposition

Db,qc
coh (Z1(WE , Ĝ)Q`/Ĝ) =

⊕
χ∈X∗(Z(Ĝ)Γ)

Db,qc
coh (Z1(WE , Ĝ)Q`/Ĝ)χ.

Compatibility with the spectral action implies that via the identification π1(G)Γ = X∗(Z(Ĝ)Γ)
those two decompositions should match.

Another way to phrase the preceding conjecture is to say that, noting ∗ the spectral action, the
“non-abelian Fourier transform”

Perfqc(Z1(WE , Ĝ)Q`/Ĝ) −→ Dlis(BunG,Q`)

M 7−→M ∗Wψ

is fully faithful and extends to an equivalence of Q`-linear small stable ∞-categories

Db,qc
coh (Z1(WE , Ĝ)Q`/Ĝ)

∼−→ Dlis(BunG,Q`)
ω.

Example X.1.6. Fully faithfulness in the categorical conjecture, applied to the structure sheaf,
implies that

Zspec(G,Q`)
∼−→ End(c-Ind

G(E)
U(E)ψ).

Example X.1.7 (Kernel of functoriality). Conjecture X.1.4 implies the existence of a kernel of
functoriality for the local Langlands correspondence in the following way. Let

f : LH → LG

be an L-morphism between the L-groups of two quasi-split reductive groups H and G over E. This
defines a morphism of stacks

Z1(WE , Ĥ)Q`/Ĥ −→ Z1(WE , Ĝ)Q`/Ĝ,

and pushforward along this map induces a functor

IndDb,qc
coh (Z1(WE , Ĥ)Q`/Ĥ)→ IndDb,qc

coh (Z1(WE , Ĝ)Q`/Ĝ).

(There may be slightly different ways of handling the singularities here. One way to argue is to
observe that pushforward is naturally a functor

D≥0
qcoh(Z1(WE , Ĥ)Q`/Ĥ)→ D≥0

qcoh(Z1(WE , Ĝ)Q`/Ĝ),

and D≥0
qcoh = IndDb,qc,≥0

coh , and then extend by shifts.) The categorical equivalence then leads to a

canonical functor
Dlis(BunH ,Q`)→ Dlis(BunG,Q`).
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By the self-duality of Dlis coming from Bernstein–Zelevinsky duality, and Proposition VII.7.10, any
such functor is given by a kernel

Af ∈ Dlis(BunH ×BunG,Q`).

One could, in fact, identify the image of Af under the categorical equivalence for H × G; up

to minor twists, it should be given by the structure sheaf of the graph of Z1(WE , Ĥ)Q`/Ĥ −→
Z1(WE , Ĝ)Q`/Ĝ. It would be very interesting if some examples of such kernels Af can be con-

structed explicitly.

SinceD(H(E),Q`), resp. D(G(E),Q`), are direct factors ofDlis(BunH ,Q`), resp.Dlis(BunG,Q`),
this should give rise to the “classical” Langlands functoriality D(H(E),Q`)→ D(G(E),Q`).

Remark X.1.8. A kernel of functoriality should only exist in the quasi-split case. In fact, as is
well-known, the local Jacquet–Langlands correspondence can not be functorial since any discrete
series representation of GLn(E) is defined over its field of moduli but this is not the case for smooth
irreducible representations of D× if D is a division algebra over E.

Let us now explain how Fargues’s original conjecture fits into this context. Let ϕ : WE → Ĝ(Q`)

be a Langlands parameter. Consider the map i : SpecQ` → Z1(WE , Ĝ)Q`/Ĝ corresponding to ϕ,

and let

Eϕ = i∗Q` ∈ Dqcoh(Z1(WE , Ĝ)Q`/Ĝ) = Ind Perfqc(Z1(WE , Ĝ)Q`/Ĝ).

Factoring the map i via [SpecQ`/Sϕ], one actually sees that Eϕ carries naturally an action of Sϕ.

Moreover, if one acts via tensoring with a representation V of ĜoQ, then by the projection formula
the sheaf Eϕ gets taken to itself, tensored with the WE-representation V ◦ ϕ. Using the spectral
action, we find an Sϕ-equivariant “automorphic complex”

Autϕ = Eϕ ∗Wψ ∈ Dlis(BunG,Q`).

It already follows that Autϕ ∈ Dlis(BunG,Q`) is a Hecke eigensheaf, with eigenvalue ϕ, so the
spectral action produces Hecke eigensheaves. Except, it is not clear whether Autϕ 6= 0. Under the
fully faithfulness part of the categorical conjecture, one sees that it must be nonzero, and moreover
have some of the properties stated in [Far16], in particular regarding the relation to L-packets.
The particular case of elliptic parameters is further spelled out in the next section.

X.2. Elliptic parameters

Let us make explicit what the spectral action, and Conjecture X.1.4, entails in the case of
elliptic parameters. As coefficients, we take L = Q` for simplicity.

Definition X.2.1. An L-parameter ϕ : WE → Ĝ(Q`) is elliptic if it is semisimple and the

centralizer Sϕ ⊂ ĜQ`
has the property that Sϕ/Z(Ĝ)Γ

Q`
is finite.

By deformation theory, it follows that the unramified twists of ϕ define a connected component

Cϕ ↪→ [Z1(WE , Ĝ)Q`/Ĝ].
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Thus, the spectral action (in fact, the excursion operators are enough for this, see the discussion
around Theorem IX.5.2) implies that there is a corresponding direct summand

DCϕlis (BunG,Q`)
ω ⊂ Dlis(BunG,Q`)

ω.

For any Schur-irreducible A ∈ DCϕlis (BunG,Q`)
ω, the excursion operators act via scalars on A,

as determined by an unramified twist of ϕ. In particular, they act in this way on ib∗A for any

b ∈ B(G). By compatibility with parabolic induction, it follows that for any A ∈ DCϕlis (BunG,Q`)
ω,

the restriction ib∗A is equal to 0 if b is not basic (if it was not zero, one could find an irreducible
subquotient to which this argument applies). Thus,

DCϕlis (BunG,Q`)
ω ∼=

⊕
b∈B(G)basic

DCϕ(Gb(E),Q`)
ω.

Moreover, all A ∈ DCϕ(Gb(E),Q`)
ω must lie in only supercuspidal components of the Bernstein

center, again by compatibility with parabolic induction. If Z(Ĝ)Γ is finite (equivalently, if the
connected split center of G is trivial), then Cϕ = [∗/Sϕ] is a point and it follows that all A are
finite direct sums of shifts supercuspidal representations of Gb(E), and so

DCϕlis (BunG,Q`)
ω ∼=

⊕
b∈B(G)basic

⊕
π

Perf(Q`)⊗ π,

where π runs over supercuspidal Q`-representations of Gb(E) with L-parameter ϕπ = ϕ.

In general, acting on DCϕlis (BunG,Q`)
ω, we have the direct summand

Perf(Cϕ)

of

Perf([Z1(WE , Ĝ)Q`/Ĝ]).

If Z(Ĝ)Γ is finite, one has Cϕ = [∗/Sϕ], and hence we get an action of Rep(Sϕ) on DCϕlis (BunG,Q`)
ω.

In general, one can get a similar picture by fixing central characters; let us for simplicity only spell

out the case when Z(Ĝ)Γ is finite, i.e. the connected split center of G is trivial.

If πb is a supercuspidal representation of some Gb(E) with ϕπb = ϕ, and W ∈ Rep(Sϕ) then
acting via W on πb we get some object

ActW (πb) ∈
⊕

b′∈B(G)basic

⊕
π

Perf(Q`)⊗ π.

Assume that W |
Z(Ĝ)Γ is isotypic, given by some character χ : Z(Ĝ)Γ → Q×` . As Z(Ĝ)Γ is the

diagonalizable group with characters π1(G)Γ, it follows that we get an element bχ ∈ π1(G)Γ =
B(G)basic. Then ActW (πb) is concentrated on b′ = b+ bχ, and so

ActW (πb) ∼=
⊕
πb′

Vπb′ ⊗ πb′

for a certain multiplicity space Vπb′ ∈ Perf(Q`), where πb′ runs over supercuspidal representations
of Gb′(E), b′ = b+ bχ, with L-parameter ϕπb′ = ϕ.
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The conjectural description of L-packets [Kal14] then suggests the following conjecture, which
is (up to the added t-exactness) the specialization of Conjecture X.1.4 to the case of elliptic L-
parameters.

Conjecture X.2.2. Assume that G is quasisplit, with a fixed Whittaker datum, and that the
connected split center of G is trivial. Then there is a unique generic supercuspidal representation
π of G(E) with L-parameter ϕπ = ϕ, and the functor

Perf([SpecQ`/Sϕ])→ DCϕlis (BunG,Q`)
ω : W 7→ ActW (π)

is an equivalence. In particular, the set of irreducible supercuspidal representations of some Gb(E)
with L-parameter ϕ is in bijection with the set of irreducible representations of Sϕ.

Moreover, the equivalence is t-exact for the standard t-structures on source and target.

Thus, the conjecture gives an explicit parametrization of L-packets.

Let us explain what the compatibility of the spectral action with Hecke operators entails in this

case. Given V ∈ Rep(ĜoQ), the restriction of V to Sϕ admits a commuting WE-action given by
ϕ. This defines a functor

Rep(ĜoQ)→ Rep(Sϕ)BWE .

Now the diagram of monoidal functors

Rep(ĜoQ) //

��

EndQ`
(DCϕlis (BunG,Q`))

BWE

Rep(Sϕ)BWE

55

commutes; this follows from the compatibility of the spectral action with the Hecke action.

Concretely, given π as above and V ∈ Rep(ĜoQ), decompose the image of V in Rep(Sϕ)BWE

as a direct sum
⊕

i∈IWi ⊗ σi where Wi ∈ Rep(Sϕ) is irreducible and σi is some continuous repre-

sentation of WE on a finite-dimensional Q`-space. Then

TV (π) ∼=
⊕
i∈I

ActWi(π)⊗ σi.

Recall that TV (π) can be calculated concretely through the cohomology of local Shimura va-
rieties, or in general moduli spaces of local shtukas. Noting that the functor ActWi is realizing a
form of the Jacquet–Langlands correspondence relating different inner forms, the formula above is
essentially the conjecture of Kottwitz [RV14, Conjecture 7.3]. In fact, assuming Conjecture X.2.2,
it is an easy exercise to deduce [RV14, Conjecture 7.3], assuming that the parametrization of the
Conjecture X.2.2 agrees with the parametrization implicit in [RV14, Conjecture 7.3].

X.3. Integral coefficients

We want to construct the spectral action with integral coefficients. Unfortunately, the naive
analogue of Theorem X.1.1 is not true, the problem being that the analogue of Lemma X.1.2 fails.
However, the rest of the argument still works, and gives the following result.
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Consider a split reductive group H over a discrete valuation ring R with an action of a finite
group Q. Let S be any anima over BQ. As before, we can define a derived stack MapBQ(S,B(Ho
Q)) over R, whose values in an animated R-algebra A are the maps of anima S → B(H o Q)(A)
over BQ. In general, the functor S 7→ Perf(MapBQ(S,B(H o Q))) does not commute with sifted
colimits in S.

However, we can consider the best approximation to it that does commute with sifted colimits.
Note that the ∞-category of anima over BQ is the animation of the category of sets equipped
with a Q-torsor; it is freely generated under sifted colimits by the category of finite sets equipped
with a Q-torsor. Thus, the sifted-colimit approximation to S 7→ Perf(MapBQ(S,B(H oQ))) is the
animation of its restriction to finite sets with Q-torsors; we denote it by

S 7→ Perf(MapΣ
BQ(S,B(H oQ))),

with the idea in mind that it is like the ∞-category of perfect complexes on some (nonexistent)
derived stack MapΣ

BQ(S,B(HoQ)), gotten as a (co-)sifted limit approximation to MapΣ
BQ(S,B(Ho

Q)). The symbol Σ here is in reference to the notation used in [Lur09, Section 5.5.8] in relation to
sifted colimits. Thus Perf(MapΣ

BQ(S,B(H oQ))) is an R-linear idempotent-complete small stable
∞-category, mapping to Perf(MapBQ(S,B(H oQ))).

Proposition X.3.1. Let C be an R-linear idempotent-complete small stable∞-category. Giving,
functorially in finite sets I, an exact RepR(QI)-linear monoidal functor

RepR((H oQ)I)→ EndR(C)SI

is equivalent to giving an R-linear action of Perf(MapΣ
BQ(S,B(HoQ))) on C. Here, given such an

action of Perf(MapΣ
BQ(S,B(H oQ))), one gets exact RepR(QI)-linear monoidal functors

RepR((H oQ)I)→ EndR(C)SI

by composing the exact monoidal functor Perf(MapΣ
BQ(S,B(H oQ)))→ EndR(C) with the natural

exact RepR(QI)-linear symmetric monoidal functor

RepR((H oQ)I)→ Perf(MapΣ
BQ(S,B(H oQ)))S

I

given by I-fold tensor product of the exact RepR(Q)-linear symmetric monoidal functor

RepR(H oQ)→ Perf(MapΣ
BQ(S,B(H oQ)))S

assigning to each s ∈ S pullback along evaluation at s, MapBQ(S,B(H oQ)) → B(H oQ); more
precisely, it is defined in this way if S is a finite set, and in general by animation.

Proof. This follows from the proof of Theorem X.1.1. �

To make use of Proposition X.3.1, we need to find sufficiently many situations in which the
functor

Perf(MapΣ
BQ(S,B(H oQ)))→ Perf(MapBQ(S,B(H oQ)))

is an equivalence, and specifically we need to prove this for MapBQ(BW,B(ĜoQ)) = Z1(W, Ĝ)/Ĝ.

First, we have the following result.
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Proposition X.3.2. The functor S 7→ Perf(MapΣ
BQ(S,B(H o Q))) from anima over BQ to

symmetric monoidal idempotent-complete stable R-linear ∞-categories commutes with all colimits.

Proof. As the functor commutes with sifted colimits by definition, it suffices to show that
when restricted to finite sets S equipped with Q-torsors, it commutes with disjoint unions. But for
such S, the map S → BQ can be factored over a point, and then MapBQ(S,B(H o Q)) = BHS .
Thus, one has to see that for two finite sets S1, S2, the functor

Perf(BHS1)⊗Perf(R) Perf(BHS2)→ Perf(BHS1tS2)

is an equivalence. But this follows easily from highest weight theory, which for any split reductive
group H filters Perf(BH) in terms of copies of Perf(R) enumerated by highest weights. �

Proposition X.3.3. Assume that S = BFn is the classifying space of a free group. Then the
functor

Perf(MapΣ
BQ(S,B(H oQ)))→ Perf(MapBQ(S,B(H oQ)))

is fully faithful, and the essential image is the idempotent-complete stable ∞-subcategory generated
by the image of RepR(H).

Proof. Represent BFn → BQ by a map Fn → Q, and let σ1, . . . , σn ∈ Q be the images of the
generators. Then MapBQ(S,B(H o Q)) can be identified with [Hn/H], where H acts on Hn via
the (σ1, . . . , σn)-twisted diagonal conjugation action. We claim that

Perf(MapΣ
BQ(S,B(H oQ)))

is the ∞-category of compact objects in the ∞-category of modules over O(Hn) in Ind Perf(BH);
in fact, this is equivalent to the claim, as by Barr–Beck this gives a description of the full ∞-
subcategory of Perf([Hn/H]) generated by Perf(BH).

As O(Hn) = O(H)⊗ . . .⊗O(H) in Ind Perf(BH), one reduces to the case n = 1. In that case
S = BF1 is a circle, which we can present as a pushout of ∗ t ∗⇒ ∗. Thus, we have to compute

Perf(BH)⊗Perf(BH2) Perf(BH)

where the two implicit maps H → H2 are given by the diagonal and the σ-twisted diagonal,
respectively. As the pullback functors Perf(BH2) → Perf(BH) generate the image, we can
write Perf(BH) = Perf(H/H2) as the compact objects in the ∞-category of O(H)-modules in
Ind Perf(BH2). Similarly, the expected answer Perf([H/H]) = Perf([H ×H/H2]) is given by the
compact objects in the ∞-category of modules over O(H ×H) = O(H)⊗O(H) in Ind Perf(BH2),
thus implying the result. �

Proposition X.3.4. Let S = BΓ, where Γ is any discrete group, and lift the map S → BQ to
a map Γ→ Q. Note that one can write

BΓ = colim(n,Fn→Γ)BFn

as a sifted colimit (in anima). Then Perf(MapΣ
BQ(S,B(H o Q))) is the ∞-category of compact

objects in the ∞-category of modules over

colim(n,Fn→Γ)O(Hn)

in Ind Perf(BH), where O(Hn) is equipped with the twisted (via the map Fn → Γ → Q) diagonal
conjugation of H.
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Proof. As E1-groups in anima are equivalent to animated groups, with compact projective
generators the free groups Fn, it follows that BΓ is the sifted colimit colim(n,Fn→Γ)BFn. Now the
result follows from the previous proposition (and its proof), together with the commutation with
sifted colimits. �

Combining this with Theorem VIII.5.1, we have finished the proof of Theorem X.0.2. In par-
ticular, this gives the spectral action on Dlis(BunG).

Let us end by stating again the main conjecture with integral coefficients. Here, we again
presume that the spectral action is defined for all `.

Conjecture X.3.5. Assume that G is quasisplit and choose Whittaker data consisting of a
Borel B ⊂ G and generic character ψ : U(E) → O×L of the unipotent radical U ⊂ B, where L/Q`

is some algebraic extension; also fix
√
q ∈ OL. Then there is an equivalence

D(BunG,OL)ω ∼= Db,qc
coh,Nilp(Z1(WE , Ĝ)OL/Ĝ)

of stable ∞-categories equipped with actions of Perf(Z1(WE , Ĝ)OL/Ĝ). Under this correspondence,

the structure sheaf of Z1(WE , Ĝ)OL/Ĝ maps to the Whittaker sheaf, which is the sheaf concentrated

on Bun1
G corresponding to the Whittaker representations c-Ind

G(E)
U(E)ψ.

The notion of nilpotent singular support here is defined via the results of Section VIII.2.2.
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[Boy99] P. Boyer, Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale, Invent.
Math. 138 (1999), no. 3, 573–629.

[Boy09] , Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples,
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[Dat07] J.-F. Dat, Théorie de Lubin-Tate non-abélienne et représentations elliptiques, Invent. Math. 169 (2007),

no. 1, 75–152.
[DHKM20] J.-F. Dat, D. Helm, R. Kurinczuk, and G. Moss, Moduli of Langlands Parameters, arXiv:2009.06708,

2020.
[dJvdP96] J. de Jong and M. van der Put, Étale cohomology of rigid analytic spaces, Doc. Math. 1 (1996), No. 01,

1–56 (electronic).
[DM82] P. Deligne and J. S. Milne, Tannakian categories, Hodge cycles, motives, and Shimura varieties, Lect.

Notes Math. 900, 101-228 (1982), 1982.
[Dol80] A. Dold, Lectures on algebraic topology, second ed., Grundlehren der Mathematischen Wissenschaften,

vol. 200, Springer-Verlag, Berlin-New York, 1980.
[Don81] Stephen Donkin, A filtration for rational modules, Math. Z. 177 (1981), no. 1, 1–8.
[Don85] , Rational representations of algebraic groups, Lecture Notes in Mathematics, vol. 1140, Springer-

Verlag, Berlin, 1985, Tensor products and filtration.
[Don88] , Skew modules for reductive groups, J. Algebra 113 (1988), no. 2, 465–479.
[Dri80] V. G. Drinfeld, Langlands’ conjecture for GL(2) over functional fields, Proceedings of the International

Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 565–574.
[DS95] V. G. Drinfeld and C. Simpson, B-structures on G-bundles and local triviality, Math. Res. Lett. 2 (1995),

no. 6, 823–829.
[Far04] L. Fargues, Cohomologie des espaces de modules de groupes p-divisibles et correspondances de Langlands

locales, Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales, no. 291,
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[KL16] , Relative p-adic Hodge theory, II: Imperfect period rings, arXiv:1602.06899, 2016.
[Kop84] M. Koppinen, Good bimodule filtrations for coordinate rings, J. London Math. Soc. (2) 30 (1984), no. 2,

244–250.
[Kot85] R. E. Kottwitz, Isocrystals with additional structure, Compositio Math. 56 (1985), no. 2, 201–220.
[Kot97] , Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339.
[KW17] T. Kaletha and J. Weinstein, On the Kottwitz conjecture for local Shimura varieties, arXiv:1709.06651,

2017.
[Lab99] J.-P. Labesse, Cohomologie, stabilisation et changement de base, Astérisque (1999), no. 257, vi+161pp,
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