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 GROUPS OF HOMOTOPY SPHERES: I

 BY MICHEL A. KERVAIRE AND JOHN W. MILNOR

 (Received April 19, 1962)

 1. Introduction

 All manifolds, with or without boundary, are to be compact, oriented,
 and differentiable of class Co. The boundary of M will be denoted by
 bM. The manifold M with orientation reversed is denoted by -M.

 DEFINITION. The manifold M is a homotopy n-sphere if M is closed
 (that is, bM = 0) and has the homotopy type of the sphere Sn.

 DEFINITION. Two closed n-manifolds M, and M2 are h-cobordant1 if the
 disjoint sum M, + (- M2) is the boundary of some manifold W, where
 both M1 and (-M2) are deformation retracts of W. It is clear that this
 is an equivalence relation.

 The connected sum of two connected n-manifolds is obtained by re-
 moving a small n-cell from each, and then pasting together the resulting
 boundaries. Details will be given in ? 2.

 THEOREM 1.1. The h-cobordism classes of homotopy n-spheres form an
 abelian group under the connected sum operation.

 This group will be denoted by Ong and called the nth homotopy sphere
 cobordism group. It is the object of this paper (which is divided into 2
 parts) to investigate the structure of On

 It is clear that @1 =02 -. On the other hand these groups are not
 all zero. For example, it follows easily from Milnor [14] that @7 # 0.

 The main result of the present Part I will be:

 THEOREM 1.2. For n # 3 the group @On is finite.
 (Our methods break down for the case n = 3. However, if one assumes

 the Poincare hypothesis, then it can be shown that @3 0 O.)
 More detailed information about these groups will be given in Part II.

 For example, for n -1, 2, 3, *.., 18, it will be shown that the order of
 the group (On is respectively:

 X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 [@-] 11 ? 1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16.

 Partial summaries of results are given also at the end of ? 4 and of ? 7.

 1 The term "J-equivalent" has previously been used for this relation. Compare [15],

 [16], [17].
 504
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 HOMOTOPY SPHERES: I 505

 REMARK. S. Smale [25] and J. Stallings [27], C. Zeeman [33] have
 proved that every homotopy n-sphere, n # 3, 4, is actually homeomorphic

 to the standard sphere Sn. Furthermore, Smale has proved [26] that two

 homotopy n-spheres, n # 3, 4, are h-cobordant if and only if they are
 diffeomorphic. Thus for n # 3, 4 (and possibly for all n) the group E",
 can be described as the set of all diffeomorphism classes of differentiable

 structures on the topological n-sphere. These facts will not be used in

 the present paper.

 2. Construction of the group On

 First we give a precise definition of the connected sum M1 # M2 of two
 connected n-manifolds M1 and M2. (Compare Seifert [22] and Milnor [15],
 [16].) The notation Dn will be used for the unit disk in euclidean n-space.
 Choose imbeddings

 i n M1 , i 2n )M i~~: D i%: D~ '

 so that i, preserves orientation and i, reverses orientation. Now obtain
 M, # M2 from the disjoint sum

 (Ml - i(O)) + (M2 - i2(0))
 by identifying il(tu) with i2((1 - t)u) for each unit vector u e Sn-' and
 each 0 < t < 1. Choose the orientation for M1 # M2 which is compatible
 with that of M1 and M2. (This makes sense since the correspondence

 i#(tu) ) i2((1 -t)u) preserves orientation.)
 It is clear that the sum of two homotopy n-spheres is a homotopy n-

 sphere.

 LEMMA 2.1. The connected sum operation is well defined, associative,

 and commutative up to orientation preserving diffeomorphism. The
 sphere S" serves as identity element.

 PROOF. The first assertions follow easily from the lemma of Palais [20]
 and Cerf [5] which asserts that any two orientation preserving imbed-
 dings i, i': DI' ) M are related by the equation i' = f o i, for some
 diffeomorphism f: M - M. The proof that M # S" is diffeomorphic to M
 will be left to the reader.

 LEMMA 2.2. Let M1, M1' and M2 be closed and simply connected.2 If
 M1 is h-cobordant to Ml' then M1 # M2 is h-cobordant to Ml'# M 2.

 PROOF. We may assume that the dimension n is ? 3. Let M1 + (-Ml')=
 b W1, where M1 and - M,' are deformation retracts of W1. Choose a differ-
 entiable arc A from a point p e MA to a point p' e -Ml' within W1 so that

 2 This hypothesis is imposed in order to simplify the proof. It could easily be eliminated.
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 506 KERVAIRE AND MILNOR

 a tubular neighborhood of this arc is diffeomorphic to R" x [0, 1]. Thus
 we obtain an imbedding

 i: Rn x [0, 1] W-

 with i(Rn x 0) c M1, i(Rn x 1) c Ml', and i(O x [0, 1]) = A. Now form
 a manifold W from the disjoint sum

 (W1 - A) +(M2 - i2(0)) x [09,1]

 by identifying i(tu, s) with i2((1 - t)u) x s for each 0 < t < 1, 0 ? s ? 1,
 u e Sn-1. Clearly W is a compact manifold bounded by the disjoint sum

 M # M2 + (-(Ml'# M2)).

 We must show that both boundaries are deformation retracts of W.

 First it is necessary to show that the inclusion map

 M1-p ->W1-A

 is a homotopy equivalence. Since n ? 3, it is clear that both of these

 manifolds are simply connected. Mapping the homology exact sequence

 of the pair (M1, M1 - p) into that of the pair (W1, W1 - A), we see that

 j induces isomorphisms of homology groups, and hence is a homotopy
 equivalence. Now it follows easily, using a Mayer-Vietoris sequence,

 that the inclusion

 M1# M2 W

 is a homotopy equivalence; hence that M1 # M2 is a deformation retract

 of W. Similarly M' # M2 is a deformation retract of W, which completes
 the proof of Lemma 2.2.

 LEMMA 2.3. A simply connected manifold M is h-cobordant to the
 sphere SI if and only if M bounds a contractible manifold.

 (Here the hypothesis of simple connectivity cannot be eliminated.)

 PROOF. If M + (-Sn) = bW then filling in a disk D,+' we obtain a
 manifold W' with b W' = M. If SI is a deformation retract of W, then
 it clearly follows that W' is contractible.

 Conversely if M = b W' with W' contractible, then removing the in-
 terior of an imbedded disk we obtain a simply connected manifold W

 with b W = M + (-Sn). Mapping the homology exact sequence of the

 pair (D'+', S,) into that of the pair (W', W), we see that the inclusion
 S-n W W induces a homology isomorphism; hence S? is a deformation
 retract of W. Now applying the Poincare duality isomorphism

 Hk( W M) Hn+1-k( W, Sn)
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 HOMOTOPY SPHERES, I 507

 we see that the inclusion M a W also induces isomorphisms of homology
 groups. Since M is simply connected, this completes the proof.

 LEMMA 2.4. If M is a homotopy sphere, then M# (-M) bounds a con-

 tractible manifold.

 PROOF. Let H2 c D2 denote the half-disk consisting of all (t sin 0, t cos 0)

 with 0? t? 1, 0<O <w, and let ID" c DI denote the disk of radius 2.
 Given an imbedding i: Do - M, form W from the disjoint union

 (M-i (1 DI)) x [0, 7w] + S n- x H2

 by identifying i(tu) x 0 with u x ((2t - 1) sin 0, (2t - 1) cos 0) for each
 2 < t < 1, 0 < ? < ?. (Intuitively we are removing the interior of i(ID1)

 from M and then "rotating" the result through 180? around the resulting

 boundary.) It is easily verified that W is a differentiable manifold with

 b W = M # (- M). Furthermore W contains M- Interior i( D n) as defor-
 mation retract, and therefore is contractible. This proves Lemma 2.4.

 PROOF OF THEOREM 1.1. Let On denote the collection of all h-cobordism
 classes of homotopy n-spheres. By Lemmas 2.1 and 2.2 there is a well

 defined, associative, commutative addition operation in En. The sphere

 SI serves as zero element. By Lemmas 2.3, 2.4, each element of E, has
 an inverse. Therefore En is an additive group.

 Clearly @1 is zero. For n _ 3, Munkres [19] and Whitehead [31] have
 proved that a topological n-manifold has a differentiable structure which

 is unique up to diffeomorphism. It follows that@2 - 0. If the Poincare
 hypothesis were proved, it would follow that 03 is zero; but at present

 the structure of 63 remains unknown. For n > 3 the structure of on
 will be studied in the following sections.

 Addendum. There is a slight modification of the connected sum con-

 struction which is frequently useful. Let W1 and W2 be (n + 1)-manifolds

 with connected boundary. Then the sum b W1 # b W2 is the boundary of a
 manifold W constructed as follows. Let HI+' denote the half-disk con-

 sisting of all x = (x0, x1, ... , xn) with I x I ! 1, x0 - 0 and let Do denote
 the subset x0 = 0. Choose imbeddings

 iq: (Hn+19 DI) ) (Wqg big),9 q = 1, 2,1

 so that i2 a i-1 reverses orientation. Now form W from

 (W - il(O)) + ( W2 -i2(0))

 by identifying i1(tu) with i2((1 -t)u) for each 0 < t < 1, u e Si n Hn+.
 It is clear that W is a differentiable manifold with b W = b W, # b W2.
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 508 KERVAIRE AND MILNOR

 Note that W has the homotopy type of W1 V W2: the union with a single
 point in common.

 W will be called the connected sum along the boundary of W1 and W2.
 The notation (W, b W) = (W1, b W1) # (W2, b W2) will be used for this sum.

 3. Homotopy spheres are S-parallelizable

 Let M be a manifold with tangent bundle z- == z(M), and let s' denote
 a trivial line bundle over M.

 DEFINITION. M will be called s-parallelizable if the Whitney sum
 z QD s' is a trivial bundle.3 The bundle z 0 e' will be called the stable
 tangent bundle of M. It is a stable bundle in the sense of [10]. (The
 expression s-parallelizable stands for stably parallelizable.)

 THEOREM 3.1. Every homotopy sphere is s-parallelizable.
 In the proof, we will use recent results of J. F. Adams [1], [2].
 PROOF. Let X be a homotopy n-sphere. Then the only obstruction to

 the triviality of z- Q 61 is a well defined cohomology class

 oM(X) e HA(Y4; wrn-(SOn+l)) = wrn-1(S0?+l) -

 The coefficient group may be identified with the stable group wn_1(SO).
 But these stable groups have been computed by Bott [4], as follows, for
 n > 2:

 residue class of n mod8: 0 1 2 3 4 5 6 7

 wrn-1(SO) Z -Z2 Z2 0 Z 0 0 0.

 (Here Z, Z2, 0 denote the cyclic groups of order co, 2, 1 respectively.)
 Case 1. n _ 3, 5, 6, or 7 (modulo 8). Then wu1_,(SO) = 0, so that on(X)

 is trivially zero.

 Case 2. n - 0 or 4 (modulo 8). Say that n = 4k. According to [18],
 [10], some non-zero multiple of the obstruction class on(X) can be identi-
 fied with the Pontrjagin class Pk(tr 0 el) = Pjt). But the Hirzebruch
 signature4 theorem implies that Pk[1I is a multiple of the signature a(Y)
 which is zero since H21(X) = 0. Therefore every homotopy 4k-sphere is
 s-parallelizable.

 Case 3. n _ 1 or 2 (modulo 8), so that wu1_,(SO) is cyclic of order 2. For

 3 The authors have previously used the term "r-manifold" for an s-parallelizable
 manifold.

 4 We will substitute the word "signature" for "index" as used in [7; 14; 17; 18; 28]
 since this is more in accord with the usage in other parts of mathematics. The signature
 of the form x1 + *-- + . -x- +1-*x-- +2 is defined to be a = k-l.
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 HOMOTOPY SPHERES: I 509

 each homotopy sphere Y. the residue modulo 2

 MY[5] C 7._1(SO) - Z2,

 is well defined. It follows from an argument of Rohlin that

 4_1(0.) = 0 9

 where J,,, denotes the Hopf-Whitehead homomorphism

 J.-1: f-0l(S0k) 7 n+kk(Sk)

 in the stable range k > n. (Compare [18, Lemma 1].) But J,-, is a mono-
 morphism for n _ 1 or 2 (modulo 8). For the case n = 2 this fact is well

 known, and for n = 9, 10 it has been proved by Kervaire [11]. For n =

 17, 18, it has been verified by Kervaire and by Toda in unpublished compu-

 tations. A proof that J,-1 is infective for all n _ 1 or 2 (modulo 8) has

 recently been given by J. F. Adams [1], [2]. Now the relation J1-,(o,) = 0
 together with the information that J_-, is a monomorphism implies
 that on = 0. This finishes the proof of Theorem 3.1.

 In conclusion, here are two lemmas which clarify the concept of s-

 parallelizability. The first is essentially due to J. H. C. Whitehead [32].

 LEMMA 3.3. Let M be an n-dimensional submanifold of Sn+?, n < k.

 Then M is s-parallelizable if and only if its normal bundle is trivial.

 LEMMA 3.4. A connected manifold with non-vacuous boundary is s-
 parallelizable if and only if it is parallelizable.

 The proofs will be based on the following lemma. (Compare Milnor

 [17, Lemma 4].)

 Let t be a k-dimensional vector space bundle over an n-dimensional

 complex, k > n.

 LEMMA 3.5. If the Whitney sum of t with a trivial bundle sr is trivial

 then e itself is trivial.
 PROOF. We may assume that r = 1, and that t is oriented. An iso-

 morphism ES1 0'Sk+l gives rise to a bundle map f from e to the bundle
 7k of oriented k-planes in (k + 1)-space. Since the base space of e has
 dimension n, and since the base space of y/k is the sphere Sk, k > n, it
 follows that f is null-homotopic; and hence that t is trivial.

 PROOF OF LEMMA 3.3. Let r, denote the tangent and normal bundles

 of M. Then z &D v is trivial hence (zr E s') QD v is trivial. Applying Lemma
 3.5 the conclusion follows.

 PROOF OF LEMMA 3.4. This follows by a similar argument. The hypoth-

 esis on the manifold guarantees that every map into a sphere of the
 same dimension is null-homotopic.
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 510 KERVAIRE AND MILNOR

 4. Which homotopy spheres bound parallelizable manifolds?

 Define a subgroup bP.,1 c @n, as follows. A homotopy n-sphere M
 represents an element of bPn?1 if and only if M is the boundary of a
 parallelizable manifold. We will see that this condition depends only on
 the h-cobordism class of M, and that bPn?1 does form a subgroup. The
 object of this section will be to prove the following

 THEOREM 4.1. The quotient group @n/bP,+1 is finite.
 PROOF. Given an s-parallelizable closed manifold M of dimension n,

 choose an imbedding

 i: M Sn+k
 with k > n + 1. Such an imbedding exists and is unique up to differenti-
 able isotopy. By Lemma 3.3 the normal bundle of M is trivial. Now
 choose a specific field p of normal k-frames. Then the Pontrjagin-Thom
 construction yields a map

 p(M, p): S11+k Sk

 (See Pontrjagin [21, pp. 41-57], Thom [28].) The homotopy class of p(M, 9)
 is a well defined element of the stable homotopy group

 Hn = 7CZn+ (Sk)

 Allowing the normal frame field p to vary, we obtain a set of elements

 p(M) == {p(M, 9)} c un .

 LEMMA 4.2. The subset p(M) c fln contains the zero element of 11n if
 and only if M bounds a parallelizable manifold.

 PROOF. If Mz b W with W parallelizable then the imbedding i: M _Sn+k
 can be extended to an imbedding W - Dn+k+1, and W has a field * of
 normal k-frames. We set 9 = * I M. Now the Pontrjagin-Thom map
 p(M, 9): Sn+k ) Sk extends over Dn+k l, hence is null-homotopic.

 Conversely if p(M, 9) - 0, then M bounds a manifold W c Dn+k+l,
 where 9 extends to a field 4 of normal frames over W. It follows from
 Lemmas 3.3 and 3.4 that W is parallelizable. This completes the proof
 of Lemma 4.2.

 LEMMA 4.3. If M, is h-cobordant to M1, then p(M0) = p(M1).
 PROOF. If M, + (-M1) b W, we choose an imbedding of W in

 Sn+k X [0, 1] so that Mq ) Sn+k x (q) for q = 0, 1. Then a normal frame
 field 9q on M, extends to a normal frame field * on W which restricts to
 some normal frame field 91q on M,-q. Clearly (W, *) gives rise to a
 homotopy between p(M0, 9)J and p(M1, 9).
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 HOMOTOPY SPHERES: I 511

 LEMMA 4.4. If M and M' are s-parallelizable then

 p(M) + p(M') c p(M# M') C fnl.

 PROOF. Start with the disjoint sum

 M x [0, 1] + M' x [0, 1]

 and join the boundary components M x 1 and M' x 1 together, as de-

 scribed in the addendum at the end of ? 2. Thus we obtain a manifold

 W bounded by the disjoint sum

 (M# M') + (-M) + (-M').

 Note that W has the homotopy type of M V M, the union with a single

 point in common.

 Choose an imbedding of W in Sn+k X [0, 1] so that (-M) and (-M')
 go into well separated submanifolds of Sn+k x 0, and so that M # M' goes
 into Sn+k X 1. Given fields p and A' of normal k-frames on (-M) and
 (-M'), it is not hard to see that there exists an extension defined

 throughout W. Let / denote the restriction of this field to M# M'. Then
 clearly p(M, p) + p(M', 9') is homotopic to p(M # M', A). This completes
 the proof.

 LEMMA 4.5. The set p(Sn) C Hn is a subgroup of the stable homotopy
 group Hn. For any homotopy sphere Y, the set p(A) is a coset of this sub-
 group p(Sn). Thus the correspondence ,; - p(Y) defines a homomorphism

 p' from en to the quotient group Iln/P(Sn).
 PROOF. Combining Lemma 4.4 with the identities

 ( 1) Sn # Sn S Sn
 (2)
 (32) Sn X X

 we obtain

 ( 1 ) p(Sn) + p(Sn) C p(Sn)

 which shows that p(Sn) is a subgroup of I1;

 ( 2 ) ~~~p(Sn) + p(5~) C p(y) (2) _)

 which shows that p(Y;) is a union of cosets of this subgroup; and

 (3) p(j) + p(_ ;) c p(S ),

 which shows that p(l) must be a single coset. This completes the proof

 of Lemma 4.5.

 By Lemma 4.2 the kernel of p': On )@IIn/p(Sn) consists exactly of all
 h-cobordism classes of homotopy n-spheres which bound parallelizable
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 512 KERVAIRE AND MILNOR

 manifolds. Thus these elements form a group which we will denote by

 bP,,, c @i. It follows that G)l/bPn?1 is isomorphic to a subgroup of
 flr/p(Sn). Since flJ is finite (Serre [24]), this completes the proof of Theo-

 rem 4.1.

 REMARKS. The subgroup p(Sn) c rl, can be described in more familiar
 terms as the image of the Hopf-Whitehead homomorphism

 J.: 7r(SOk) - 7r.+k(S ) .

 (See Kervaire [9, p. 349].) Hence r1IIf/p(Sn) is the cokernel of J,. The

 actual structure of these groups for n ? 8 is given in the following table.

 For details, and for higher values of n, the reader is referred to Part II

 of this paper.

 n 1 2 3 4 5 6 7 8

 Hin Z2 Z2 Z24 0 0 Z2 Z240 Z2 + Z2

 fl /p(Sn) 0 Z2 0 0 0 Z2 0 Z2

 On/bPn+l 0 0 0 0 0 0 0 Z2

 The prime q > 3 first divides the order of On/bPn+l for n = 2q(q - 1) - 2.
 Using Theorem 4.1, the proof of the main theorem (Theorem 1.2),

 stating that E)n is finite for n # 3, reduces now to proving that bP,+? is
 finite for n # 3.

 We will prove that the group bPn+l is zero for n even (?? 5, 6), and is
 finite cyclic for n odd, n # 3, (see ?? 7, 8). The first few groups can be

 given as follows:

 n 1 3 5 7 9 11 13 15 17 19

 order of 1 ? 1 28 2 992 1 8128 2 130,816.

 (Again see Part II for details.) The cyclic group bPn 1 has order 1 or 2
 for n 1 (mod 4), but the order grows more than exponentially for

 n 3 (mod 4).

 5. Spherical modifications

 This section, and ? 6 which follows, will prove that the groups bP2k,+
 are zero.5 That is:

 THEOREM 5.1. If a homotopy sphere of dimension 2k bounds an s-

 parallelizable manifold M, then it bounds a contractible manifold M1.

 5 An independent proof of this theorem has been given by C.T.C. Wall [29].
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 HOMOTOPY SPHERES: I 513

 For the case k = 1, this assertion is clear since every homotopy 2-sphere

 is actually diffeomorphic to S2. The proof for k > 1 will be based on the

 technique of "spherical modifications." (See Wallace [30], Milnor [15;
 17]6.)

 DEFINITION. Let M be a differentiable manifold of dimension n -

 p + q + 1 and let

 P: SP x Dq+1 >M

 be a differentiable imbedding. Then a new differentiable manifold M' =

 X(M, p) is formed from the disjoint sum

 (M - 9(SP x 0)) + DP+1 x Sq

 by identifying qp(u, tv) with (tu, v) for each u e SP, v E Sq, 0 < t ? 1.
 We will say that M' is obtained from M by the spherical modification

 x(p). Note that the boundary of M' is equal to the boundary of M.
 In order to prove Theorem 5.1 we will show that the homotopy groups

 of M can be completely killed by a sequence of such spherical modifica-

 tions. The effect of a single modification x(9) on the homotopy groups
 of M can be described as follows.

 Let X e wPM denote the homotopy class of the map 9 I SP x 0 from
 SP x 0 to M.

 LEMMA 5.2. The homotopy groups of M' are given by

 ELM', 7wM fori < Min(p, q),

 and

 7rpM' 7rmpMIA ,

 provided that p < q; where A denotes a certain subgroup of wrpM con-
 taining X.

 The proof is straightforward. (Compare [17, Lemma 2].)
 Thus if p < q (that is, if p ? n/2 - 1), the effect of the modification

 x(9) is to kill the homotopy class X.
 Now suppose that some homotopy class X e wrPM is given.

 LEMMA 5.3. If M" is s-parallelizable and if p < n/2, then the class

 X is represented by some imbedding 9: SP x DI-P M.
 PROOF. (Compare [17, Lemma 3].) Since n > 2p + 1 it follows from

 a well known theorem of Whitney that X can be represented by an im-

 bedding

 9o: SP-)M.

 6 The term "surgery" is used for this concept in [15; 17].
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 514 KERVAIRE AND MILNOR

 It follows from Lemma 3.5 that the normal bundle of cpSP in Mis trivial.
 Hence q, can be extended to the required imbedding SP x D- -P M.

 Thus Lemmas 5.2 and 5.3 assert that spherical modifications can be

 used to kill any required element X e rPMn provided that p ? n/2 - 1.
 There is one danger however. If the imbedding q is chosen badly then
 the modified manifold M' = X(M, p) may no longer be s-parallelizable.
 However the following was proven in [17]. Again let n ? 2p + 1.

 LEMMA 5.4. The imbedding p: SP x Dn-p - M can be chosen within
 its homotopy class so that the modified manifold X(M, p) will also be s-
 parallelizable.

 For the proof, the reader may either refer to [17, Theorem 2], or make

 use of the sharper Lemma 6.2 which will be proved below.
 Now combining Lemmas 5.2, 5.3, 5.4, one obtains the following. (Com-

 pare [17, p. 46].)

 THEOREM 5.5. Let M be a compact, connected s-parallelizable mani-

 fold of dimension n > 2k. By a sequence of spherical modifications on

 M one can obtain an s-parallelizable manifold M1 which is (k - 1)-
 connected.

 Recall that bMi = bM.

 PROOF. Choosing a suitable imbedding A: S' x Dn-1 __ M, one can ob-
 tain an s-parallelizable manifold M' = X(M, 9) such that w1M' is generated
 by fewer elements than wr1M. Thus after a finite number of steps, one
 can obtain a manifold M" which is 1-connected. Now, after a finite
 number of steps, one can obtain an s-parallelizable manifold M"' which
 is 2-connected, and so on until we obtain a (k - 1)-connected manifold.
 This proves Theorem 5.5.

 In order to prove 5.1, where dim M = 2k + 1, we must carry this argu-

 ment one step further obtaining a manifold M1 which is k-connected. It

 will then follow from the Poincare duality theorem that M, is contrac-
 tible.

 The difficulty in carrying out this program is that Lemma 5.2 is no

 longer available. Thus if M' X X(M, 9) where 9 imbeds Sk x Dk+l in M,
 the group 7rkM' may actually be larger than WrkM. It is first necessary
 to describe in detail what happens to WrkM under such a modification.

 Since we may assume that M is (k - 1)-connected with k > 1, the homo-
 topy group wrkM may be replaced by the homology group HkM= Hk(M; Z).

 LEMMA 5.6. Let M' = X(M, p) where 9 imbeds Sk x Dk+1 in M, and
 let

 Mo = M - (interior p(Sk x Dk+1))

This content downloaded from 128.192.114.19 on Thu, 16 Apr 2020 15:20:00 UTC
All use subject to https://about.jstor.org/terms



 HOMOTOPY SPHERES: I 515

 Then there is a commutative diagram

 Hk +M'

 .12

 z

 Hk 1M Z HMO kM- 0

 HkM'

 1~
 0

 such that the horizontal and vertical sequences are exact. It follows that
 the quotient group HkM/X(Z) is isomorphic to HkM'/X'(Z).

 Here the following notations are to be understood. The symbol X de-

 notes the element of HkM which corresponds to the homotopy class

 I I Sk x 0, and X also denotes the homomorphism Z-o HkM which carries
 1 into X. On the other hand X: Hk+lM - Z denotes the homomorphism
 which carries each pA e Hk+lM into the intersection number pA 'X. The
 symbols X' and *' are to be interpreted similarly. The element ' e HkM'
 corresponds to the homotopy class q'i 0 x Sk where

 9': Dk+1 x Sk , M

 denotes the canonical imbedding.

 PROOF OF LEMMA 5.6. As horizontal sequences take the exact sequence

 Hk~lM Hkl( 1MM) kMO kM k(M, MO)

 of the pair (M, MO). By excision, the group Hj(M, MO) is isomorphic to

 (Z for j= k + 1

 H3(Sk x D+, Sk x S ) for j < k + 1.
 'Thus we obtain

 Hk+ 1M Z - HkMO - > HkM 0,

 as asserted. Since a generator of Hk+l(M, Mo) clearly has intersection
 number ?+1 with the cycle p(Sk x 0) which represents x, it follows that
 the homomorphism Hk+lM Z can be described as the homomorphism
 ,c a 'X. The element e' = '(1) e HkMO can clearly be described as the
 homology class corresponding to the "meridian" q(x0 x Sk) of the torus
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 p(Sk X Sk), where x0 denotes a base point in Sk.
 The vertical exact sequence is obtained in a similar way. Thus s =

 s(1) e HkMO is the homology class of the "parallel" p(Sk X X0) of the

 torus. Clearly i(s) e HkM is equal to the homology class X of P(Sk X 0).

 Similarly i'(e') = x'.

 From this diagram the isomorphisms

 HkM/X(Z) - HkMo/e(Z) + 's(Z) - HkM'/X'(Z)

 are apparent. This completes the proof of Lemma 5.6.
 As an application, suppose that one chooses an element X e HkM which

 is primitive in the sense that pAct = 1 for some pA e Hk+lM. It follows
 that

 i: HkMO HkM

 is an isomorphism, and hence that

 HkM' HkM/X(Z).

 Thus:

 ASSERTION. Any primitive element of HkM can be killed by a spheri-
 cal modification.

 In order to apply this assertion we assume the following:

 Hypothesis. M is a compact, s-parallelizable manifold of dimension

 2k + 1, k > 1, and is (k - 1)-connected. The boundary bM is either vacu-

 ous or a homology sphere.

 This hypothesis will be assumed for the rest of ? 5 and for ? 6.

 LEMMA 5.7. Subject to this hypothesis, the homology group HkM can

 be reduced to its torsion subgroup by a sequence of spherical modifica-
 tions. The modified manifold M1 will still satisfy the hypothesis.

 PROOF. Suppose that HkM - ZE ... E Z E T where T is the torsion

 subgroup. Let X generate one of the infinite cyclic summands. Using

 the Poincare duality theorem one sees that p,. X = 1 for some element
 A, E Hk+l(M, bM). But the exact sequence

 Hk+lM * Hk+l(M, bM) Hk(bM) = 0

 shows that p1, can be lifted back to Hk+lM. Therefore X is primitive, and
 can be killed by a modification. After finitely many such modifications,

 one obtains a manifold M1 with HkM1 - T c HkM. This completes the
 proof of Lemma 5.7.

 Let us specialize to the case k even. Let M be as above, and let

 9: Sk x D k+1 - M be any imbedding.

 LEMMA 5.8. If k is even then the modification x(9) necessarily changes
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 the kth Betti number of M.

 The proof will be based on the following lemma. (See Kervaire [8,
 Formula (8.8)].)

 Let F be a fixed field and let W be an orientable homology manifold of

 dimension 2r. Define the semi-characteristic e*(b W; F) to be the follow-
 ing residue class modulo 2:

 e*(bW; F)=_J :'rankH,(bW; F) (mod 2)
 LEMMA 5.9. The rank of the bilinear pairing

 Hr(W; F) O Hr(W; F)+ F.

 given by the intersection number, is congruent modulo 2 to e*(b W; F)
 plus the Euler characteristic e(W).

 [For the convenience of the reader, here is a proof. Consider the exact
 sequence

 HWh
 Hr W Hr(W, b W) > Hri(b W) * > Ho(W, b W) -?0,

 where the coefficient group F is to be understood. A counting argument
 shows that the rank of the indicated homomorphism h is equal to the
 alternating sum of the ranks of the vector spaces to the right of h in
 this sequence. Reducing modulo 2 and using the identity

 rank H,( W, b W) - rank H2lr_ W,

 this gives

 rank h _ rank H,(b W) +Elr 0 rank Hi W
 -e*(bW; F) + e(W) (mod 2).

 But the rank of

 h: Hr We Hr(W, b W) _ HomF(Hr WY F)

 is just the rank of the intersection pairing. This completes the proof.]
 PROOF OF LEMMA 5.8. First suppose that Mhas no boundary. As shown

 in [15] or [17] the manifolds M and M' = X(M, Ap), suitably oriented, to-
 gether bound a manifold W = W(M, qi) of dimension 2k + 2. For the
 moment, since no differentiable structure on W is needed, we can simply
 define W to be the union

 (M x [0, 1]) U (Dk+l x Dk+l)

 where it is understood that SI x Dk+1 is to be pasted onto M x 1 by the
 imbedding p. Clearly W is a topological manifold with

 bW = M x 0 + M' x 1.
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 Note that W has the homotopy type of M with a (k + 1)-cell attached.
 Since the dimension 2k + 1 of Mis odd, this means that the Euler charac-
 teristic

 e(W) = e(M) + (_1)k+1 = (_1)k+l

 Since k is even, the intersection pairing

 Hk+l(W; Q) 0 Hk+l(W; Q) Q

 is skew symmetric, hence has even rank. Therefore Lemma 5.9 (with

 rational coefficients) asserts that

 e*(M + M'; Q) + (-1)k+ O (mod 2),

 and hence that

 e*(M; Q) :- e*(M'; Q) .

 But HM H.M' _ 0 for 0 < i < k, so this implies that

 rank Hk(M; Q) - rank Hk(M'; Q) .

 This proves Lemma 5.8 provided that M has no boundary.

 If M is bounded by a homology sphere, then attaching a cone over bM,

 one obtains a homology manifold M* without boundary. The above argu-
 ment now shows that

 rank Hk(M*; Q) - rank Hk(M*; Q) .

 Therefore the modification x(9) changes the rank of Hk(M; Q) in this case
 also. This completes the proof of Lemma 5.8.

 It is convenient at this point to insert an analogue of 5.8 which will

 only be used later. (See the end of ? 6.) Let M be as above, with k even
 or odd, and let W = W(M, p).

 LEMMA 5.10. Suppose that every mod 2 homology class

 e e Hk+l(W; Z2)

 has self-intersection number $ . = 0. Then the modification X(9) neces-
 sarily changes the rank of the mod 2 homology group Hk(M; Z2).

 The proof is completely analogous to that of 5.8. The hypothesis, $ * =
 O for all $, guarantees that the intersection pairing

 Hk 1( W; Z2) 0 Hk 1M(W; Z2) Z2

 will have even rank.

 We now return to the case k even.

 PROOF OF THEOREM 5.1, for k even. According to 5.6, we can assume
 that HkM is a torsion group. Choose
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 9: Sk x Dk + M

 as in 5.4 so as to represent a non-trivial X e HkM. According to 5.6 we
 have

 HkM/X(Z) - HkM'/ X(Z)X

 Since the group X(Z) is finite, it follows from 5.8 that X'(Z) must be

 infinite. Thus the sequence

 0 - > Z HkM - HkM'/X'(Z) - 0

 is exact. It follows that the torsion subgroup of HkM' maps monomor-

 phically into HkM'/X'(Z); and hence is definitely smaller than HkM. Now

 according to 5.7, we can perform a modification on M' so as to obtain a

 new manifold M" with

 HkM" Torsion subgroup of HkM' < HkM.

 Thus in two steps one can replace HkM by a smaller group. Iterating this

 construction a finite number of times, the group HkM can be killed com-
 pletely. This completes the proof of Theorem 5.1 for k even.

 6. Framed spherical modifications

 This section will complete the proof of Theorem 5.1 by taking care of

 the case k odd. This case is somewhat more difficult than the case k even

 (which was handled in ? 5), since it is necessary to choose the imbeddings
 9 more carefully, taking particular care not to lose s-parallelizability in

 the process. Before starting on the proof, it is convenient to sharpen
 the concepts of s-parallelizable manifold, and of spherical modification.

 DEFINITION. A framed manifold (M, f) will mean a differentiable

 manifold M together with a fixed trivialization f of the stable tangent

 bundle zm E s6.
 Now consider a spherical modification x(9) of M. Recall that M and

 Mt = X(M, 9) together bound a manifold

 W = (M x [0, 1]) U (DP+' x Dq+l)

 where the subset SP x Dq+1 of DP+1 x Dq+1 is pasted onto M x 1 by the
 imbedding 9. (Compare Milnor [17].) It is easy to give Wa differentiable
 structure, except along the "corner" Sp x Sq. A neighborhood of this

 corner will be "diffeomorphic" with SP x Sq x Q where

 Q c R2

 denotes the three-quarter disk consisting of all (r cos 0, r sin 0) with

 0 ? r < 1, 0 ? 0 < 3wr/2. In order to "straighten" this corner, map Q onto
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 the half-disk H, consisting of all (r cos 0', r sin 0') with 0 < r < 1,
 0 < 0' < wT; by setting 0' = 20/3. Now carrying the differentiable struc-

 ture of H back to Q, this makes Q into a differentiable manifold. Carry-
 ing out the same transformation on the neighborhood of Sp x Sq, this

 makes W= W(M, 9) into the required differentiable manifold. Note that
 both boundaries of W get the correct differential structures.

 Now identify M with M x 0 c W, and identify the stable tangent
 bundle rZ E &sM with the restriction zw I M. Thus a framing f of M de-
 termines a trivialization of zW I M.

 DEFINITION. A framed spherical modification x(9, F) of the framed
 manifold (M, f) will mean a spherical modification x(9) of M together
 with a trivialization F of the tangent bundle of W, satisfying the con-
 dition

 FI M=f .

 Note that the modified manifold M' = X(M, q)) automatically acquires
 a framing

 f'= FIM' .

 It is only necessary to identify zw I M' with the stable tangent bundle
 er, EMsx,. To do this, we identify the positive direction in sM with the
 outward normal direction in zw I M'.

 The following question evidently arises. Given a modification x(9) of
 M and a framing f of M, does f extend to a trivialization F of zw? The
 obstructions to such an extension lie in the cohomology groups

 Hr+1( W, M; 7r(SO.+l)) {p(S On1) for r = P
 (0 for r #p.

 Thus the only obstruction to extending f is a well defined class

 e(P) E wp(SOn+?) -

 The modification X(9p) can be framed if and only if this obstruction yr(q)
 is zero.

 Now consider the following alteration of the imbedding R. Let

 a: SP S~q+1
 be a differentiable map, and define

 wpa,: SP x Dq+1 M
 by

 J(uIv) = (P(u, v-a(u)),
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 where the dot denotes the usual action of SOq,, on Dq1-. Clearly Gus is an
 imbedding which represents the same homotopy class X e wrM as p.

 LEMMA 6.1. The obstruction y(qs) depends only on y(q) and on the
 homotopy class (a) of a. In fact

 7((a) = 7(p) + s*(a)

 where s*: WUp(SOq+,)+Wp(SOn.+) is induced by the inclusion s: SOq+ SOn+,
 PROOF. (Compare [17], proof of Theorem 2.) Let Was be the manifold

 constructed as W above, now using pak,. There is a natural differentiable

 imbedding

 ia: DP+' x int Dq1 Wa

 and i. I SP x Dq+1 coincides with wpa: SP x D q+- M followed by the in-
 clusion M-a M x 1 c Wa.

 -y('p) is the obstruction to extending f I p,(SP x 0) to a trivialization
 of z(Wa.) restricted to ia,(DP+l x 0) Let tV+ = eP+1 x eq+' be the standard
 framing on DP+1 x Dq+,. Then i'(t"+1) is a trivialization of the tangent

 bundle of Wa. restricted to iaQ(D P+ x Dq+l), and y(a,) is the homotopy
 class of the map g: SP SO,+,, where g(u) is the matrix Kfn+1 i'(tn+1)>
 at qa,(u, 0).

 Since ia. I DP+1 x 0 is independent of a, and ia, I SP x D q+- =pa,,swe have

 - i'(eP+l) x 'p (eq+l)

 at every point (u, 0) E SP x D

 Since

 r' (eq+l) = p'(eq+l) a(u)

 at (u, 0), it follows that

 ia,(tn+]) = il(tn+l) - s(al)

 Hence

 <n+1 it (tno)> = <fn+l, il(tn+l)>. s(a)

 and the lemma follows.

 Now suppose (as usual) that p ? q. Then the homomorphism

 s*: rp(SOq+1) UpS(On+J)

 is onto. Hence a can be chosen so that

 y('pa) = y(p) + s*(a)

 is zero. Thus we obtain:

 LEMMA 6.2. Given p: SP x Dq+l M with p < q, a map a can be chosen
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 so that the modification X(9a) can be framed.

 In particular, it follow that the manifold X(M, ga*) will be s-parallel-

 izable. Thus we have proved Lemma 5.4 in a sharpened form.

 We note however that a is not always uniquely determined. In the

 case p = q = k odd, the homomorphism

 s*: 7rk(SOk+l) 7Zk(SO.+l)

 has an infinite cyclic kernel. This freedom in the choice of a will be the

 basis of the proof of 5.1 for k odd.

 Let us study the homology of the manifold

 M' = X(M, Poa,),

 where p is now chosen, by Lemma 6.1, so that the spherical modification

 x(9) can be framed. Clearly the deleted manifold

 M = M - (interior cp"(Sk x Dk+1))

 does not depend on the choice of a. Furthermore the meridian pa,(xo x Sk)

 of the torus cp"(Sk X Sk) C M, does not depend on the choice of a; hence
 the homology class

 St e HkMO

 does not depend on a. On the other hand the parallel q"(Sk x x0) does
 depend on a. In fact it is clear that the homology class s,' e HkMO of this
 parallel is given by

 s" = s + j(a)e'

 where the homomorphism

 j*: WUk(SOk+l) Z - WUk(S )

 is induced by the canonical map

 p x0. p

 from SOk+1 to Sk.

 The spherical modification X('m) can still be framed provided a is an
 element of the kernel of

 s*: Wk(SOk+l) Wk(SO,+l)

 Identifying the stable group rk(SOn+1) with the stable group 7rk(SOk+2),
 there is an exact sequence

 W+l(S) 8*
 7rkU-+ k(SOk+l) - U Wk(SOk+2)

 associated with the fibration SOk+2/SOk+l - Sk+l. It is well known that
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 the composition

 kl(Sk ) j kSkl * >f(S k)

 carries a generator of wk+l(Sk+l) onto twice a generator of wrk(Sk), provided

 that k is odd. Therefore the integer j*(a) can be any multiple of 2.
 Let us study the effect of replacing s by se, = s + j(a)e' on the homol-

 ogy of the modified manifold. Consider the exact sequence

 0 , Z -f-- HkMO - - HkM - 0

 of 5.6, where i carries s into an element X of order 1 > 1. Evidently le

 must be a multiple of e', say:

 le + 's' = 0 .

 Since a' is not a torsion element, these two elements can satisfy no other

 relation. Since s8c = s + j*(a)e' it follows that

 lew + (1' - lj(a))E' = 0
 Now using the sequence

 Z- )-*Hk MO HkM - 0,

 we see that the inclusion homomorphism i' carries a' into an element

 a, HkMa

 of order I 1' - lj(a) 1. Since HkM./X' (Z) is isomorphic to HkM/X(Z), we
 see that the group HkM' is smaller than HkMc. if and only if

 0 < I I' - lj(a) I < 1

 But j(a) can be any even integer. Thus j(a) can be chosen so that

 -I < I' - lj(a) ' I

 This choice of j(a) will guarantee an improvement except in the special

 case where 1' happens to be divisible by 1.

 Our progress so far can be summarized as follows.

 LEMMA 6.3. Let M be a framed (k - 1)-connected manifold of dimen-

 sion 2k + 1 with k odd, k > 1, such that HkM is finite. Let X(?. F) be a
 framed modification of M which replaces the element X E HkM of order
 1 > 1 by an element V E HkM' of order ?1'. If 1' t 0 mod 1 then it is
 possible to choose (a) G Wk(SOk+l) so that the modification X(q'b) can still
 be framed, and so that the group HkM' is definitely smaller than HkM.

 Thus one must study the residue class of 1' modulo 1. Recall the defini-
 tion of linking numbers. (Compare Seifert-Threlfall [23, ? 77].) Let
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 X G HM, It e HqM be homology classes of finite order, with dim M =
 p + q + 1. Consider the homology sequence

 Hp+,(M; Q/Z) H HPM Hp(M; Q) - *

 associated with the coefficient sequence

 i
 0 oZ- Q >Q/Z O 0

 Since X is of finite order, iX = 0 and X = ,(v) for some v E Hp+,(M; Q/Z).
 The pairing

 Q/Z ( Z >Q/Z

 defined by multiplication induces a pairing

 Hp+l(M; Q/Z) 0 HqM > Q/Z

 defined by the intersection of homology classes. We denote this pairing

 by a dot.

 DEFINITION. The linking number L(X, M) is the rational number modulo
 1 defined by

 L(x, 4a) = 2 c

 This linking number is well defined, and satisfies the symmetry relation

 L(a, X) + (-i)pqL(X, M) = 0.

 (Compare Seifert and Threlfall.)

 LEMMA 6.4. The ratio l'/1 modulo 1 is, up to sign, equal to the self-
 linking number L(X, X).

 PROOF. Since

 le + ls' = 0

 in HkMO, we see that the cycle le + l's' on bM, bounds a chain c in Moe
 Let cl = p(x0 x Dk+l) denote the cycle in p(Sk x Dk+l) C M with bounda-
 ry a'. Then the chain c - 'c1 has boundary le; hence (c - l'c1)/l has
 boundary a, representing the homology class X in HkM. Taking the inter-
 section of this chain with p(Sk x 0), representing X, we obtain +1'/l,

 since c is disjoint and c1 has intersection number +1. Thus L(X, X) =
 ?l'/1 mod 1.

 Now if L(X, X) # 0, then 1' : 0 (mod 1), hence the class X can be re-
 placed by an element of smaller order under a spherical modification.

 Hence, unless L(X, X) = 0 for all X E HkM, this group can be simplified.

 LEMMA 6.5. If HkM is a torsion group, with L(X, X) = 0 for every}
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 X E HkM, and if k is odd, then this group HkM must be a direct sum of
 cyclic groups of order 2.

 PROOF. The relation

 L(22, 5) + (l)VqL(Q, 22) = 0

 with p = q 1 (mod 2) implies that

 L(2, 0) = L(Q, ;) .

 Now if self-linking numbers are all zero, the identity

 L(+ + + 22) = L(Q, e) + L(r, 22) + L(d, 22) + L(2, >

 implies that

 2L(q, 22) = 0

 for all t and 22. But, according to the Poincare duality theorem for tor-

 sion groups (see [23, p. 245]), L defines a completely orthogonal pairing

 TPMO TqM > Q/Z .

 Hence the identity L(2d, 22) = 0 for all ; implies that 25 =: 0. This proves
 Lemma 6.5.

 It follows that, by a sequence of modifications, one can reduce HkM to
 a group of the form Z2 ( ... (0 Z2 = sZ2.

 Now let us apply Lemma 5.10. Since the modification X(pm,) is framed,
 the corresponding manifold W = W(M, p0) is parallelizable. It follows
 from the formulas of Wu that the Steenrod operation

 Sqk'l: HkIl( W, b W; Z2) - H2k+2( W, b W; Z2)

 is zero. (See Kervaire [8, Lemma (7.9)].) Hence every 0 E Hk+l( W; Z2)
 has self-intersection number Ail = 0. Thus, according to 5.10, the modi-
 flcation X(pm,) changes the rank of Hk(M; Z2).

 But the effect of X(9&,) on Hk(M; Z), provided that a is chosen properly,
 will be to replace the element X of order 1 = 2 by an element X' of order
 lo' where

 -2 < 1' < 2, 1' it 0 (mod 2) .

 Thus l' must be 0 or 2. Now using the sequence

 0 Z, -a HkMa > HkM-/IX(Z) 0,
 where the right hand group is isomorphic to (s - 1)Z2, we see that HkM'
 is given by one of the following:
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 (Z + (s -1)Z2

 HkMt ~ (Z2 + (s-1)Z2,
 Z + (s -2)Z2, or

 Z,+ (s -2)Z2
 But the first two possibilities cannot occur, since they do not change the

 rank of Hk(M; Z2). In the remaining two cases, a further modification

 will replace HkM' by a group which is definitely smaller than HkM.
 Thus in all cases HkM can be replaced by a smaller group by a sequence
 of framed modifications.

 This completes the proof of Theorem 5.1. Actually we have proved the

 following result which is slightly sharper.

 THEOREM 6.6. Let M be a compact, framed manifold of dimension
 2k + 1, k > 1, such that bM is either vacuous or a homology sphere. By
 a sequence of framed modifications, M can be reduced to a k-connected

 manifold M1.

 If bM is vacuous then the Poincare duality theorem implies that M1 is

 a homotopy sphere. If bMis a homology sphere, then M1 is contractible.

 The proof of 6.6 is contained in the above discussion, provided that M
 is connected. But using [17, Lemma 2'] it is easily seen that a discon-
 nected manifold can be connected by framed modifications. This com-

 pletes the proof.

 7. The groups bP2k

 The next two sections will prove that the groups bP2k are finite cyclic
 for k + 2. In fact for k odd, the group bP2k has at most two elements.
 For k = 2m # 2 we will see in Part II that bP4m is a cyclic group of order7

 6Sm22m-2(22m7-n_ 1) numerator (4Bmm/) ,

 where Bm denotes the mtl Bernoulli number, and sm equals 1 or 2.
 The proofs will be based on the following.

 LEMMA 7.1. Let M be a (k - l)-connected manifold of dimension 2k,
 k ? 3, and suppose that HkM is free abelian with basis {X1, ., Xr

 A arl} where
 Xi-Xi = 0, XSiPi = . ii

 for all i, j (where aij denotes a Kronecker delta). Suppose further that
 every imbedded sphere in M which represents a homology class in the

 subgroup generated by X1, ***, X, has trivial normal bundle. Then HkM

 I This expression for the order of bP47, relies on recent results of J. F. Adams [11.
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 can be killed by a sequence of spherical modifications.

 PROOF. According to [17, Lemma 6] or Haefliger [6] any homology

 class in HkM can be represented by a differentiably imbedded sphere.

 REMARK. It is at this point that the hypothesis k > 3 is necessary.

 Our methods break down completely for the case k = 2 since a homology

 class in H2(M4) need not be representable by a differentiably imbedded
 sphere. (Compare Kervaire and Milnor [13].)

 Choose an imbedding 9o: Sk > M so as to represent the homology class

 Bra Since the normal bundle is trivial, q0 can be extended to an imbed-
 ding A: Sk x Dk > M. Let M' = X(M, p) denote the modified manifold,
 and let

 M, M - Interior g(Sk x D k) = M' -Interior '(D k+l X Sk-l)

 The argument now proceeds just as in [17, p. 54]. There is a diagram

 z

 { O > Hk~o >HkM Z > H k - >0? 0 )Hk MO -kHM- -*H1M, 0

 HkM'

 0

 where the notation and the proof is similar to that of Lemma 5.6. Since

 Pr4 r =7 1 it follows that HklMo = 0. From this fact one easily proves
 that MA and M' are (k - 1)-connected. The group HkMO is isomorphic to
 the subgroup of HkM generated by X1*, rY le.. p * r-1.} The group
 HkM' is isomorphic to a quotient group of HkMo. It has basis {X1, * ,

 *.. aer} where each xi corresponds to a coset

 Xi + XrZ C HkM ,

 and each pa' corresponds to a coset ,jej + XrZ.
 The manifold M' also satisfies the hypothesis of 7.1. In order to verify

 that

 note that each Xi or Iet can be represented by a sphere imbedded in MO
 and representing the homology class Xi or 4aj of M. Thus the intersection
 numbers in M' are the same as those in M. In order to verify that any

 imbedded sphere with homology class n1xf + *. + nr-lXr-l has trivial
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 normal bundle, note that any such sphere can be pushed off q(O x Sk-l),
 and hence can be deformed into M,. It will then represent a homology class

 (nix, + * * + nr-lir-1) + nr~r G HkM,

 and thus will have trivial normal bundle.

 Iterating this construction r times, the result will be a k-connected

 manifold. This completes the proof of Lemma 7.1.
 Now consider an s-parallelizable manifold Mof dimension 2k, bounded

 by a homology sphere. By Theorem 5.5, we can assume that M is (k - 1)-

 connected. Using the Poincare duality theorem it follows that HkM is
 free abelian, and that the intersection number pairing

 HkMO HkM - Z

 has determinant ?+1. The argument now splits up into three cases.

 Case 1. Let k = 3 or 7. (Compare [17, Theorem 4'].) Since k is odd

 the intersection pairing is skew symmetric. Hence there exists a "sym-

 plectic" basis for HkM; that is, a basis {X1, ...* X,B Pl . .. Ye} with

 Xi * xj = cei * Pej = o, Y i * PCj = bii -

 Since wrk-i(SOk) = 0 for k = 3, 7, any imbedded k-sphere will have trivial
 normal bundle. Thus Lemma 7.1 implies that HkM can be killed. Since
 an analogous result for k = 1 is easily obtained, this proves:

 LEMMA 7.2. The groups bP2, bP,, and bP14 are zero.

 Case 2. k is odd, but k # 1, 3, 7. Again one has a symplectic basis;

 but the normal bundle of an imbedded sphere is not necessarily trivial.
 This case will be studied in ? 8.

 Case 3. k is even, say k = 2m. Then the following is true. (Compare

 [17, Theorem 4].)

 LEMMA 7.3. Let M be a framed manifold of dimension 4m > 4,
 bounded by a homology sphere.' The homotopy groups of Mcan be killed

 by a sequence of framed spherical modifications if and only if the
 signature u(M) is zero.

 Since a proof of 7.3 is essentially given in [17] we will only give an
 outline here.

 In one direction the lemma follows from the assertion that v(M) is
 invariant under spherical modifications. (See [17, p. 41]. The fact that
 M has a boundary does not matter here, since we can adjoin a cone over

 8 This lemma is of course also true if bM is vacuous. In this case the signature a(M)
 is necessarily zero, by Hirzebruch's signature theorem.

This content downloaded from 128.192.114.19 on Thu, 16 Apr 2020 15:20:00 UTC
All use subject to https://about.jstor.org/terms
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 the boundary, thus obtaining a closed homology manifold with the same

 signature.)

 Conversely suppose that v(M) = 0. We may assume that M is (k - 1)-
 connected. Since the quadratic form X - X * X has determinant ?1 and

 signature zero, it is possible to choose a basis {X1, * *, Bra IAU . . . Ir} for

 HkM so that xi * Xj = 0, xi * aj = bij. The proof is analogous to that of
 [17, Lemma 9], but somewhat simpler since we do not put any restric-

 tion on ei - aj* For any imbedded sphere with homology class X=
 n1X, + * + nrXr, the self-intersection number X * X is zero. Therefore,
 according to [17, Lemma 7], the normal bundle is trivial.

 Thus M satisfies the hypothesis of 7.1. It follows that HkM can be
 killed by spherical modifications. Since the homomorphism

 WIk(SOk) - 7Wk(SO2k+l)

 is onto for k even, it follows from Lemma 6.2 that we need use only

 framed spherical modifications. This completes the proof of Lemma 7.3.

 LEMMA 7.4. For each k = 2m there exists a parallelizable manifold

 M, whose boundary bM, is the ordinary (4m - 1)-sphere, such that the
 signature (Mo) is non-zero.

 PROOF. According to Milnor and Kervaire [18, p. 457] there exists a
 closed "almost parallelizable" 4m-manifold whose signature is non-zero.
 Removing the interior of an imbedded 4m-disk from this manifold, we
 obtain the required parallelizable manifold Moo

 Now consider the collection of all 4m-manifolds M, which are s-paral-
 lelizable, and are bounded by the (4m - 1)-sphere. Clearly the cor-

 responding signatures u(Mj) e Z form a group under addition. Let am > 0
 denote the generator of this group.

 THEOREM 7.5. Let I, and y2 be homotopy spheres of dimension 4m - 1,
 m > 1, which bound s-parallelizable manifolds M1 and M2 respectively.
 Then Y, is h-cobordant to -2 if and only if

 U(MJ _U(M2) mod ame

 PROOF. First suppose that

 (M = U(M2) + U(MO) .
 Form the connected sum along the boundary

 (M, bM) = (-M1, -bM1) # (M2, bM2) # (Moy bM0)

 as in ? 2; with boundary

 bM = Y-1 # 52# S4m-1 Y-; 1 # Y2 .
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 Since

 v(M) = -U(M) + U(M2) + U(MO) = 0

 it follows from 7.3 that bM -- Y-15 I belongs to the trivial h-cobordism
 class. Therefore I, is h-cobordant to Y2*

 Conversely let W be an h-cobordism between - ;1 i 52 and the sphere
 S4ml. Pasting W onto (-M, -bMj)#(M2, bM2) along the common boundary
 -'F1 Y -21 we obtain a differentiable manifold M bounded by the sphere
 S4ml. Since M is clearly s-parallelizable, we have

 U(M) 0 (mod am).
 But

 v(M) =-(M1) + U(M2)a

 Therefore

 U(M) Uv(M2) (mod am),

 which completes the proof.

 COROLLARY 7.6. The group bP4m, m > 1, is isomorphic to a subgroup
 of the cyclic group of order am. Hence bP4m is finite cyclic.

 The proof is evident.

 Discussion and computations. In Part II we will see that bP4m is cyclic

 of order precisely cml8. In fact a given integer a occurs as v(M) for some

 s-parallelizable M bounded by a homotopy sphere if and only if

 a 0 0 (modulo 8) .

 The following equality is proved in [18, p. 457]:

 a = 22m-1(22m-1 1)Bnjra./m

 where Bm denotes the mth Bernoulli number, jrn denotes the order of the
 cyclic group

 J(7U4.-1(S0)) C: M;m-l 9

 and am equals 1 or 2 according as m is even or odd. Thus bP4m is cyclic
 of order

 (1) as/8 = 22m-4(22mf-1 -1)Bnjnan/m
 According to recent work of J. F. Adams [1], the integer ji is precisely

 equal to the denominator of BmI4m, at least when m is odd. (Compare
 [18, Theorem 4].) Therefore

 Bnjra./4m = am numerator (Bm/4m) = numerator (4Bm/m)
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 where the last equality holds since the denominator of Bm is divisible by

 2 but not 4. Thus bP4m is cyclic of order

 ( 2) 6m/8 = 22m-2(22m1 - 1) numerator (4Bm/m)

 when m is odd.

 One can also give a formula for the order of the full group 4n4m-l In
 Part II we will see that ?4mj/bP4m is isomorphic to l144m-I/J(Wr4mi-(SO)).
 (Compare ? 4.) Together with formula (1) above this implies that:

 order ?4m1- = (order fl4mi_)22m-4(22m-l- 1)Bmamlm.

 8. A cohomology operation

 Let 2 ? k ? n - 2 be integers and let (K, L) be a cw-pair which satis-
 fies the following:

 Hypothesis. The cohomology groups HI(K, L; G) vanish for k < i < n
 and for all coefficient groups G.

 Then a cohomology operation

 *r: H k(K, L; Z) H"(K, L; 7un-1 (Sk))
 is defined as follows9. Let e0 E Sk denote a base point and let

 s E Hk(Sk, el; Z)

 denote a generator. Then A(c) will denote the first obstruction to the

 existence of a map

 f: (K, L) > (Sk, e')

 satisfying the condition f *(s) = c.

 To be more precise let KT denote the r-skeleton of K. Then given any
 class

 x E Hk(K, L; Z) - Hk(Kn-l U L, L; Z),

 it follows from standard obstruction theory that there exists a map

 fx: (Kn-1 U L, L) > (Sk, e0)

 with fx*s = x; and that the restriction

 f I (Kn-2 U L L)

 is well defined up to homotopy. The obstruction to extending fx over
 Kn U L is the required class

 *(X G HnK LT_ 7r- (S k )A,\

 9 A closely related operation Soo has been studied by Kervaire [12]. The operation (oP
 would serve equally well for our purposes.
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 LEMMA 8.1. The function

 *: f k(K, L; Z) >Hof(K, L; rn-1 (Sk))
 is well defined, and is natural in the following sense. If the cw-pair

 (K', L') also satisfies the hypothesis above, then for any map

 g: (K', L') >(KY L),Y

 and any x E Hk(K, L; Z) the identity

 g**(x) = *g*(x)
 is satisfied.

 The proof is straightforward. It follows that ,' does not depend on
 the particular cell structure of the pair (K, L).

 Now let us specialize to the case n = 2k.

 LEMMA 8.2. The operator * satisfies the identity

 A(x + y) = A(x) + A(y) + [i, i](x -y),

 where the last term stands for the image of the class x - y E H2k(K, L; Z)
 under that coefficient homomorphism

 Z - W2k-1(Sk)

 which carries 1 into the Whitehead product class [i, i].

 PROOF. Let U = el U ek U {eik} u {eUk+l} U ... denote a complex formed
 from the sphere S k by adjoining cells of dimensions > 2k so as to kill the
 homotopy groups in dimensions >2k - 1. Let

 ueHk(U, el; Z)

 be a standard generator. Evidently the functions

 c HkUs H2k( U; 2k1(S k))

 and

 a Hk(U X U) > H2k(U X U; W2kl(S))

 are defined. We will first evaluate /(u x 1 + 1 x u).

 The (2k + 1)-skeleton of U x U consists of the union

 U2k+1 x e0 U e0 x U2k+1 U ek x ek .

 Therefore the cohomology class *(u x 1 + 1 x u) E H2k(U x U; wr2kl(Sk))
 can be expressed uniquely in the form

 a x 1 + 1 x b + y?(u x u)

 with a, b E H2k(U; Wr2k_4(S k)) and _r G w2k_1(Sk). Applying 8.1 to the inclu-
 sion map
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 U x el - U x U

 we see that a must be equal to *r(u). Similarly b is equal to a(u). Ap-
 plying 8.1 to the inclusion

 Sk X Sk Ux U

 we see that '(s x 1 + 1 x s) = 7(s x s). But *(s x 1 + 1 x s) is just
 the obstruction to the existence of a mapping

 f: Sk x Sk > Sk

 satisfying f (e0, x) = f (x, e0) = x. Therefore y must be equal to the White-
 head product class [i, i] G r2kl_(Sk). Thus we obtain the identity

 *(u x 1 + 1 x u) = A(u) x 1 + 1 x A(u) + [i, i](u x u)
 - /(u x 1) + *(1 x u) + [i, i]((u X 1) - (1 X u)) .

 Now consider an arbitrary cw-pair (K, L), and two classes x, y e
 Hk(K, L). Choose a map

 g: (K, L) (U x U, el x el)

 so that g*(u x 1) = x, g*(1 x u) = y. (Such a map can be constructed
 inductively over the skeletons of K since the obstruction groups
 Hi(H, L; ri-.( U x U)) are all zero.) Then by 8.1:

 *(x + y) = g**(u x 1 + 1 x u)
 = g**(u x 1) + g**(1 x u) + [i, i]g*((u x 1) + (1 x u))
 = *(x) + *(y) + [i, i](X -y).

 This completes the proof of Lemma 8.2.
 Now let M be a 2k-manifold which is (k - 1)-connected. Then

 * : Hk(M, bM) H k(M, bM; 72k _J(Sk)) - 72k-l(S k)

 is defined.

 LEMMA 8.3. Let k be odd"0 and let M be s-parallelizable. Then an
 imbedded k-sphere in M has trivial normal bundle if and only if its
 dual cohomology class v e Hk(M, bM) satisfies the condition *r(v) = 0.

 PROOF. Let N be a closed tubular neighborhood of the imbedded
 sphere, and let

 MO = M - Interior N.

 Then there is a commutative diagram

 10 This lemma is actually true for k even also.
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 w E Hk(N, bN) H2k(N, bN; r2k_(Sk))

 H (, M)H(M, MO; 72k_I(Sk))
 v e Hk(M, bM) + H2k(M, bM; 7C2k-(Sk))

 where a generator w of the infinite cyclic group Hk(N, bN) corresponds
 to the cohomology class v under the left hand vertical arrows. Thus"

 *(v)[M] = *(w)[N] e 2kJ(Sk) .

 It is clear that the homotopy class *(w)[N] depends only on the normal
 bundle of the imbedded sphere.

 The normal bundle is determined by an element v of the group wk-A(SOk).
 Since M is s-parallelizable, v must belong to the kernel of the homo-

 morphism

 Irk-0(Sk) Irl(SO).

 But this kernel is zero for k = 1, 3, 7, and is cyclic of order 2 for other

 odd values of k. The unique non-trivial element corresponds to the tan-

 gent bundle of Sk, or equivalently to the normal bundle of the diagonal
 in Sk x Sk.

 Thus if 2v i 0 then N can be identified with a neighborhood of the
 diagonal in Sk x Sk. Then

 *(w)[N] = /(s x 1 + 1 x s)[Sk x Sk] = [i, i] # 0

 (assuming that k # 1, 3, 7). On the other hand if 1v 0 0 then +(w) is
 clearly zero. This completes the proof of Lemma 8.3.

 Henceforth we will assume that k is odd and # 1, 3, 7. The subgroup

 of 7r2kAl(S ) generated by [i, i] will be identified with the standard cyclic
 group Z2. Thus a function

 *%: HkM > Z2

 is defined by the formula

 o(-X) = *(x)[M]

 where x e Hk(M, bM) denotes the Poincare dual of the homology class x.
 Evidently:

 (1) O( x + ) (x) + *o(p) + X * ft (mod 2), and
 11 The symbol [M] denotes the homomorphism H'I(M, bM; G) -> G determined by the

 orientation homology class in Hn(M, bM; Z).
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 (2) *o(X) = 0 if and only if an imbedded sphere representing the homol-
 ogy class X has trivial normal bundle.

 Now assume that bM has no homology in dimensions k, k - 1, so that
 the intersection pairing has determinant + 1. Then one can choose a

 symplectic basis for HkM: that is a basis . ., Bra Ai, .. * fr} such that

 Xi-Xj=o, hli hlj=o, Xi f j=aij.
 DEFINITION. The Arf invariant c(M) is defined to be the residue class"2

 *O(X)*O(p) + . + *O(Xr)*O(/1r) C Z2 .

 (Compare [3].) This residue class modulo 2 does not depend on the choice
 of symplectic basis.

 LEMMA 8.4. If c(M) = 0 then HkM can be killed by a sequence of

 framed spherical modifications.

 The proof will depend on Lemma 7.1. Let {X, . .., ir AP . . .r} be a
 symplectic basis for HkM. By permuting the xi and pi we may assume
 that

 0(Xi)= A%(j1i) = 1 for i < s

 *O(xi) = 0 for i > ,

 where s is an integer between 0 and r. The hypothesis

 c(M) = E *(i)*(i) = 0

 implies that s =0 (mod 2).

 Construct a new basis {X1, * , j4} for HkM by the substitutions

 X2i-1 = X2i-1 + X2i \2i = /2i-1- p2i

 2i-1 = 2i-1 P2'i = X2i

 for 2i <s, with

 Bi= xi,M;=i
 for i > s. This new basis is again symplectic, and satisfies the condition:

 *0(xi') = o(Xr)=?

 For any sphere imbedded in M with homology class x = n1j + * + nr4r
 the invariant *%(X) is zero, and hence the normal bundle is trivial. Thus
 the basis {X1, * , jir} satisfies the hypothesis of Lemma 7.1. Thus HkMcan

 be killed by spherical modifications.
 If M is a framed manifold then it is only necessary to use framed

 modifications for this construction. This follows from Lemma 6.2, since

 12 This coincides with the invariant $D(M) as defined by Kervaire [12].
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 the homomorphism wlk(SOk) - 'Jk(SO2k-l) is onto for k # 1, 3, 7. This
 completes the proof of Lemma 8.4.

 THEOREM 8.5. For k odd the group bP2k is either zero or cyclic of
 order 2.

 According to Lemma 7.2 the groups bP2, bP6 and bPW4 are zero. Thus
 we may assume that k # 1, 3, 7.

 Let M1 and M2 be s-parallelizable and (k - 1)-connected manifolds of
 dimension 2k, bounded by homotopy spheres. If

 C(M1) = C(M2)

 we will prove that bM1 is h-cobordant to bM2. This will clearly prove 8.5.
 Form the connected sum (M, bM) = (M1, bM1) # (M2, bM2) along the

 boundary. Clearly

 C(M) = c(M) + c(M2) = 0

 Therefore, according to 8.4, it follows that the boundary

 bM = bM, # bM2

 bounds a contractible manifold. Hence, according to Theorem 1.1 the
 manifold bM, is h-cobordant to -bM2. Since a similar argument shows
 that bM2 is h-cobordant to -bM2, this completes the proof.

 REMARK. It seems plausible that bP2k 2 Z2 for all odd k other than
 1, 3, 7; but this is known to be true only for k = 5 (compare Kervaire [12])
 and k = 9.
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