valuative criterion of properness

Last modified date: <%+ tp.file.last_modified_date() %>



valuative criterion of properness

A criteria to check if a morphism of schemes is a proper morphism.

Idea: for \(R\in \mathsf{DVR}\) with \(K = \operatorname{ff}(R)\), require 1-dimensional limits to exist.

  • \(\operatorname{Spec}R\to Y\) is like a disc \({\mathbb{D}}\subseteq Y\).
  • \(\operatorname{Spec}K \to Y\) is like a punctured disc \({\mathbb{D}}^\circ \subseteq Y\)
  • There should be one way to lift a disc \({\mathbb{D}}\to X\) to \({\mathbb{D}}^\circ \to Y\) and extend functions over the puncture.

Concretely,

  • \(R = \operatorname{Spec}{\mathbf{C}}{\left[\left[ t \right]\right] }\) is a formal open disc (expansions of analytic functions at \(z=0\) in \({\mathbf{C}}\)) and a DVR.
  • Inverting \(t\) yields \(K = {\mathbf{C}}{\left(\left( t \right)\right) } = \operatorname{ff}(R)\) (formal Laurent series, expansions of meromorphic functions with poles only \(z=0\).)

attachments/Pasted%20image%2020220622000635.png

attachments/Pasted%20image%2020220220140319.png

Link to Diagram attachments/Pasted%20image%2020220527230806.png

attachments/Pasted%20image%2020220716090112.png

Links to this page
#todo/untagged #todo/add-references #todo/create-links