Maximal ideal?
Using a [[valuation.md), \$v(`\pi`{=tex} | valuation.html]], \(v(/pi) = 1\).
Maximal ideal?
Using a [[valuation.md), \$v(`\pi`{=tex} | valuation.html]], \(v(/pi) = 1\).
What is a uniformizer?
Any element \(\pi\) for which \(v(\pi) = 1\) is a uniformizer.
![[attachments/Pasted%20image%2020220120125947.png) - Slogan: If a polynomial \(p(x)\) has a simple root \(r\) modulo a prime \(p\), then \(r\) corresponds to a unique root of \(p(x)\) modulo any \(p^n\) gotten by iteratively “lifting” solutions. - - Setup: let \(K\in \mathsf{Field}\) be Complete ring wrt a normalized discrete valuation where \({\mathcal{O}}_K\) is the ring of integers of \(K\) with a uniformizer \(\pi\) and let \(\kappa(k]] \coloneqq{\mathcal{O}}_K/ \left\langle{\pi}\right\rangle\) be the residue field.