tensor category

Last modified date: <%+ tp.file.last_modified_date() %>



tensor category

  • Many local notions and constructions for ${}_{R}{\mathsf{Mod}} $ over some \(R\in\mathsf{CRing}\) can be carried out in an arbitrary (linear) cocomplete tensor category.

Classification of thick tensor ideals and localizing tensor ideals as the key to capturing the global structure of tensor categories; construction of novel support theories.

Important: the tensor-triangulated category.

attachments/Pasted%20image%2020220213163352.png

Tensor ideals

attachments/Pasted%20image%2020220213163411.png

Stable module categories

attachments/Pasted%20image%2020220213163431.png

Compact and compactly generated

See compact attachments/Pasted%20image%2020220213163449.png

Links to this page
  • unresolved links output
    tensor-triangulated category in Unsorted/tensor category
  • Day convolution

    Equivalently, take the 2-category of cocomplete tensor categories \(\mathsf{Cat}_{c\otimes}\), \begin{align*} \mathsf{Cat}_{c\otimes}( {\mathsf{Fun}}_{\widehat{\otimes}}(\mathsf{C}^{\operatorname{op}}, \mathsf{D}), ?) \cong \mathsf{Cat}_{c\otimes}(\mathsf{C}, ?) \times \mathsf{Cat}_{\otimes}(\mathsf{D}, ?) .\end{align*}

#higher-algebra/monoidal