Last modified date: <%+ tp.file.last_modified_date() %>
- Tags
 - Refs:
 - 
          Links:
    
- vector bundle
 - de Rham cohomology
 - Riemannian metric
 - Hermitian K theory
 
 
tangent bundle
Tangent vectors:
      
    
      Exterior powers: 
    
- 
          \({\mathbf{T}}_X = \mathop{\mathrm{span}}_k\left\{{{\partial}x_1, \cdots, {\partial}x_n}\right\}\) and \({\mathbf{T}}_X {}^{ \vee }= \mathop{\mathrm{span}}_k \left\{{dx_1, \cdots, dx_n}\right\}\).
    
- This uses the identification \({\mathbf{T}}_{X} \cong \mathop{\mathrm{Der}}_k(C^\infty(X; {\mathbf{R}}), {\mathbf{R}})\) as a space of derivations, i.e. \(D(xy) = D(x) y + x D(y)\).
 
 
      
 
    
      
 
    
A vector field on \(M\) is a global section of \({\mathbf{T}}M\).
Cotangent bundle
      
    
There is a pointwise pairing \({{\Gamma}\qty{{\mathbf{T}}M} } \times {{\Gamma}\qty{{\mathbf{T}} {}^{ \vee }M} } \to C^\infty(M; {\mathbf{R}})\) where \(v,\alpha \mapsto \alpha(v)\).
Orientability