solid mathematics

Axiomatic characterization of \({}_{{\mathbf{Z}}}{\mathsf{Mod}}\):

  • There is a unit object \(\one := {\mathbf{Z}}\) such that
    • \(\one\) is a compact object of a category
    • \(\one\) is a projective object
    • \(\one\) generates \(\mathsf{C}\)
    • \({ \operatorname{End} }_{\mathsf{C}}(\one) \cong {\mathbf{Z}}\)