simplicial set



simplicial set

attachments/Pasted%20image%2020220426231231.png

Notes

  • \({\mathsf{sSet}}= {\mathsf{Fun}}({ {\Delta}^{\operatorname{op}}}, {\mathsf{Set}}) = \underset{ \mathsf{pre} } {\mathsf{Sh} }(\Delta, {\mathsf{Set}})\)

  • Functors \(\Delta^{\operatorname{op}}\to{\mathsf{Set}}\) where \(\Delta \leq {\mathsf{FinSet}}\) are totally ordered finite sets \([n] = \left\{{0, 1, 2, \cdots, n}\right\}\) for all \(n\geq 0\), with order-preserving set-maps.

    • I.e. presheaf on \(\Delta\).
    • Morphisms are natural transformations.
  • Used to define quasicategory.

  • The “dual” of geometric realization is totalization? #todo/questions

Pasted image 20211108235121.png

attachments/Pasted%20image%2020220318001815.png

Mapping objects

attachments/Pasted%20image%2020220318001851.png attachments/Pasted%20image%2020220318001938.png attachments/Pasted%20image%2020220318002011.png attachments/Pasted%20image%2020220318002624.png

Joins

attachments/Pasted%20image%2020220318002748.png

Op

attachments/Pasted%20image%2020220318003457.png

Constant objects

attachments/Pasted%20image%2020220329175243.png

Model structure

attachments/Pasted%20image%2020210516140133.png

Links to this page
#homotopy/stable-homotopy #higher-algebra/infty-cats #todo/questions