scheme

Last modified date: <%+ tp.file.last_modified_date() %>



scheme

Definitions

An affine scheme \(X\in {\mathsf{Aff}}{\mathsf{Sch}}\) is a locally ringed space \((X, {\mathcal{O}}_X)\underset{\mathsf{RingSp}}{\cong}(\operatorname{Spec}R, {\mathcal{O}}_{\operatorname{Spec}R})\) for some \(R\in \mathsf{CRing}\).

attachments/Pasted%20image%2020220418115438.png

attachments/Pasted%20image%2020220407223745.png attachments/Pasted%20image%2020220407223800.png

Schemes as Zariski sheaves

attachments/Pasted%20image%2020220320031356.png

Can generalize to define sheaves over an arbitrary symmetric monoidal category \(\mathsf{C}\). Define affine objects \({\mathsf{Aff}}(\mathsf{C}) \coloneqq{ {\mathsf{Comm}\mathsf{Mon}(\mathsf{C})}^{\operatorname{op}}}\) as model categories.

Motivations

attachments/Pasted%20image%2020220405130709.png attachments/Pasted%20image%2020220405130720.png

Commutative Algebra prereqs

Topics

  • smooth scheme
  • finite type
  • sheaf
  • proper morphism
  • separated
  • geometric point
  • closed point
  • reduced scheme
  • regular scheme
  • geometric fiber
  • group scheme
  • geometrically connected scheme
  • quasi-affine
  • locally quasi-finite
  • singular support
  • characteristic cycle

Some other important ideas:

  • derivations and cotangent complexes representing them,
  • formally étale morphisms,
  • flat morphisms,
  • (Zariski) open immersions,
  • formally unramified morphisms,
  • finitely presented morphisms of commutative monoids and modules,
  • projective modules and flat modules,
  • Hochschild cohomology

Notes

  • Gabriel-Rosenberg reconstruction theorem: \(X\) can be recovered from \({\mathsf{QCoh}}(X)\), the category of quasicoherent sheaves.on \(X\). attachments/Pasted%20image%2020220407234500.png

Analytic space

attachments/Pasted image 20210731182717.png

Morphisms of schemes

attachments/Pasted%20image%2020220420095442.png

Links to this page
#MOC #AG #resources/books #resources/notes