Last modified date: <%+ tp.file.last_modified_date() %>
- Tags
-
Refs:
- Eisenbud and Harris, Geometry of Schemes #resources/books
- Szamuely, Galois groups and Fundamental Groups #resources/books
- Contemplating spec: http://www.neverendingbooks.org/mumfords-treasure-map #resources/notes
- Galois theory for schemes: https://websites.math.leidenuniv.nl/algebra/GSchemes.pdf#page=1
-
Links:
- Study project: Algebraic Geometry
- Study project: Commutative Algebra
- properties of morphisms
- variety
- Unsorted/reduction mod p
- GAGA
- Zariski tangent space
- schemes are functors
- Unsorted/diagonal morphism
- fiber of a vector bundle over a scheme
- linear system
-
Common properties:
- reduced
- quasicompact
- quasiseparated
- geometrically connected
scheme
Definitions
An affine scheme \(X\in {\mathsf{Aff}}{\mathsf{Sch}}\) is a locally ringed space \((X, {\mathcal{O}}_X)\underset{\mathsf{RingSp}}{\cong}(\operatorname{Spec}R, {\mathcal{O}}_{\operatorname{Spec}R})\) for some \(R\in \mathsf{CRing}\).
Schemes as Zariski sheaves
Can generalize to define sheaves over an arbitrary symmetric monoidal category \(\mathsf{C}\). Define affine objects \({\mathsf{Aff}}(\mathsf{C}) \coloneqq{ {\mathsf{Comm}\mathsf{Mon}(\mathsf{C})}^{\operatorname{op}}}\) as model categories.
Motivations
Commutative Algebra prereqs
- regular ring
- local ring
- Noetherian ring
- completion
- localization of rings
- integral closure
- reduced ring
- Dedekind domain
- DVR
Topics
- smooth scheme
- finite type
- sheaf
- proper morphism
- separated
- geometric point
- closed point
- reduced scheme
- regular scheme
- geometric fiber
- group scheme
- geometrically connected scheme
- quasi-affine
- locally quasi-finite
- singular support
- characteristic cycle
Some other important ideas:
- derivations and cotangent complexes representing them,
- formally étale morphisms,
- flat morphisms,
- (Zariski) open immersions,
- formally unramified morphisms,
- finitely presented morphisms of commutative monoids and modules,
- projective modules and flat modules,
- Hochschild cohomology
Notes
- Gabriel-Rosenberg reconstruction theorem: \(X\) can be recovered from \({\mathsf{QCoh}}(X)\), the category of quasicoherent sheaves.on \(X\).
Analytic space
Morphisms of schemes