Last modified date: <%+ tp.file.last_modified_date() %>
- Tags
- Refs:
-
Links:
- prism
- tilting
- Faltings almost purity
- semistable reduction
- weight monodromy conjecture
- perfect field
- tilting
- solid mathematics
- condensed sets
perfectoid
Idea: the mixed characteristic analogs of \({{{\mathbb{F}}_p}{\hbox{-}}\mathsf{Alg}}\).
Definition: the perfection or perfect closure of a field: \begin{align*} k^{\mathrm{perf}}\coloneqq\displaystyle\bigcup_{n\geq 1} k^{1\over p^n} \subseteq \mkern 1.5mu\overline{\mkern-1.5muk\mkern-1.5mu}\mkern 1.5mu .\end{align*} # References
- https://www.youtube.com/watch?v=3YF6fCFbymk&list=PLCe-H2N8-ny5O8svc5I4RAhPFj7AmH9Jq
- Lots of notes from a 2015 learning seminar: https://math.stanford.edu/~conrad/Perfseminar/
Topics
- Perfectoid ring
- smooth algebra
- Formal spectrum
- Crystalline cohomology
- Prismatic cohomology
- What does it mean for an algebra over \({ {\mathbb{Q}}_p }\) to be ramified at \(p\)?