perfect field

Last modified date: <%+ tp.file.last_modified_date() %>



perfect field

A field \(k\) is perfect iff

  • Every finite extension \(L/k\) is automatically separable, or
  • Either \(k\) is characteristic zero, or \(k\) is characteristic \(p\) and the Frobenius \(x\mapsto x^p\) is an automorphism.

Examples

  • Of perfect fields:
    • \({\mathbf{Q}}, {\mathbf{R}}, {\mathbf{C}}\), any number field
    • Any finite field \({ \mathbf{F} }_q\)
    • Any algebraically closed field
    • Any algebraic extension of a perfect field.
    • The perfect closure of \({ \mathbf{F} }_p(t)\), i.e. \({ \mathbf{F} }_p(t, t^{1\over p}, t^{1\over p^2}, \cdots)\).
  • Of non-perfect fields:
    • \({ \mathbf{F} }_p(t)\), the rational function field in one variable over a finite field
    • \({ \mathbf{F} }_p{\left(\left( t \right)\right) }\), the completion of \({ \mathbf{F} }_p(t)\).

Pasted image 20210731183508

Links to this page
#todo/untagged #todo/add-references #todo/create-links