Last modified date: <%+ tp.file.last_modified_date() %>
- Tags:
- Refs:
- Links:
perfect field
A field \(k\) is perfect iff
- Every finite extension \(L/k\) is automatically separable, or
- Either \(k\) is characteristic zero, or \(k\) is characteristic \(p\) and the Frobenius \(x\mapsto x^p\) is an automorphism.
Examples
-
Of perfect fields:
- \({\mathbf{Q}}, {\mathbf{R}}, {\mathbf{C}}\), any number field
- Any finite field \({ \mathbf{F} }_q\)
- Any algebraically closed field
- Any algebraic extension of a perfect field.
- The perfect closure of \({ \mathbf{F} }_p(t)\), i.e. \({ \mathbf{F} }_p(t, t^{1\over p}, t^{1\over p^2}, \cdots)\).
-
Of non-perfect fields:
- \({ \mathbf{F} }_p(t)\), the rational function field in one variable over a finite field
- \({ \mathbf{F} }_p{\left(\left( t \right)\right) }\), the completion of \({ \mathbf{F} }_p(t)\).