order

Last modified date: <%+ tp.file.last_modified_date() %>



order

Idea: orders are like lattices!

Order for general rings

An order \({\mathcal{O}}\) is a Noetherian integral domain of dimension one with nonzero conductor. Equivalently, \begin{align*} \operatorname{cl}^{\mathrm{int}} {\mathcal{O}}\in {}_{{\mathcal{O}}}{\mathsf{Mod}} ^{\mathrm{fg}}.\end{align*} attachments/Pasted%20image%2020220224124457.png

Order for k-algebras

Setup: take \(R\) a Noetherian integral domain with \(K\coloneqq\operatorname{ff}(R)\), and let \(\Lambda\in \mathsf{Alg} _{/ {K}} ^{\mathrm{fd}}\). Then an \(R{\hbox{-}}\)order in \(\Lambda\) is a ring \(X\) with the structure of an \(R{\hbox{-}}\)lattice, so \(X\leq \Lambda \in {}_{R}{\mathsf{Mod}} ^{\mathrm{fg}}\) such that \(\mathop{\mathrm{span}}_K X =\Lambda\), i.e. \(X\) is an \(R{\hbox{-}}\)submodule of \(\Lambda\) which spans it as a \(K{\hbox{-}}\)vector space.

Equivalently, if \(K\in \mathsf{Alg} _{/ {{\mathbf{Q}}}} ^{\mathrm{fd}}\) with \(\dim_{\mathbf{Q}}K = n\), an order in \(K\) is a subring \({\mathcal{O}}\leq K\) that is a free \({\mathbf{Z}}{\hbox{-}}\)module of rank \(n\), so \(K = {\mathcal{O}}\otimes_{\mathbf{Z}}{\mathbf{Q}}\).

Must be a lattice and a unital ring, so must contain 1.

Examples

  • Any Dedekind domain which is not a field is an order.
  • \(X\coloneqq{ \operatorname{End} }(E)\) for $E\in \mathrm{Ell} _{/ {{\mathbf{Q}}}} $ an elliptic curve is a \({\mathbf{Z}}{\hbox{-}}\)order in some $\Lambda \in \mathsf{Alg} _{/ {{\mathbf{Q}}}} $ with \(\dim_{\mathbf{Q}}X \in \left\{{1,2,4}\right\}\).
    • In dimensions 1 and 2, \(\Lambda = {\mathbf{Q}}\) or \({\mathbf{Q}}(\sqrt d)\) is an imaginary quadratic field. In dimension 4, \(L\) is a quaternion algebra.
  • \({\mathbf{Z}}\) is the only order in \({\mathbf{Q}}\).
  • \(2{\mathbf{Z}}\leq {\mathbf{Q}}\) is not an order: it is a lattice but not a ring.
  • \(X\coloneqq\left\{{{a\over 2^n} {~\mathrel{\Big\vert}~}a,n \in {\mathbf{Z}}}\right\} \leq {\mathbf{Q}}\) is not an order: it is a ring but not a lattice since it is infinitely generated as a \({\mathbf{Z}}{\hbox{-}}\)module.
  • For number fields $K\in \mathsf{Field}_{/ {{\mathbf{Q}}}} $:
    • \({\mathcal{O}}_K \subseteq K\) is the unique maximal order. Note that generally, maximal orders for arbitrary $K\in \mathsf{Alg} _{/ {{\mathbf{Q}}}} $ need not be unique.
    • Every other order \({\mathcal{O}}\) must be a subset of \({\mathcal{O}}_K\) and \([{\mathcal{O}}_K: {\mathcal{O}}]\) must be finite since \({\mathcal{O}}\) contains a \({\mathbf{Q}}{\hbox{-}}\)basis of \(K\)
    • For \(K\) imaginary quadratic, the orders \({\mathcal{O}}\) are all of the form \({\mathbf{Z}}+ n{\mathcal{O}}_K\) for \(n\in {\mathbf{Z}}_{\geq 0}\). The integer \(n\) here is the conductor of the order, and equals the index \([{\mathcal{O}}_K: {\mathcal{O}}] < \infty\).
    • For \(K = {\mathbf{Q}}(a_1,\cdots, a_n)\), the ring \({\mathcal{O}}\coloneqq{\mathbf{Z}}[a_1,\cdots, a_n]\) is an order.
  • The integral closure of an order is always Dedekind.
  • Not every ring whose integral closure is Dedekind is an order: Nagata constructs Noetherian domains of dimension one whose conductor is zero.
    • In common ANT situation (see AKLB setup), $B_{/ {A}} $ is finitely generated so every intermediate ring is finitely generated, including those whose integral closure is \(B\) – so if \(A[\alpha], B\) have the same fraction field, so \(L = K(\alpha)\), then \(A[\alpha]\) is an order in \(B\).
  • attachments/Pasted%20image%2020220224124659.png

Orders in k-algebras

attachments/Pasted%20image%2020220123190527.png

attachments/Pasted%20image%2020220126093016.png

Orders for elliptic curves

The ring of endomorphisms of an elliptic curve can be of one of three forms: - \({\mathbf{Z}}\) - \({\mathfrak{o}}\subseteq K\) an order in an imaginary quadratic field - ${\mathfrak{o}}\subseteq A \in \mathsf{Alg} _{/ {{\mathbf{Q}}}} $ a quaternion algebra

Conductors

attachments/Pasted%20image%2020220730134641.png Relation to discriminants: attachments/Pasted%20image%2020220730134812.png

Links to this page
  • unresolved links output
    number fields in Unsorted/order
    quadratic field in Unsorted/order
  • ring of integers

    For a number field $K_{/ {{\mathbf{Q}}}} $, define the ring of integers as \begin{align*}{\mathcal{O}}_K \coloneqq \operatorname{cl}^{\mathrm{int}} _K({\mathbf{Z}}).\end{align*} More generally, for \(R\) a ring, \begin{align*} {\mathcal{O}}_R \coloneqq \operatorname{cl}^{\mathrm{int}} _{\operatorname{ff}(R)}(R) \end{align*} or equivalently a maximal order.

  • class group
    For \({\mathcal{O}}\in{ \mathrm{Ord} }(K)\), let \({ \ddot{\operatorname{Id}} }^{\times}({\mathcal{O}})\) be the invertible fractional ideals and \(\mathop{\mathrm{Prin}}{ \ddot{\operatorname{Id}} }^{\times}({\mathcal{O}}) \subseteq { \ddot{\operatorname{Id}} }^{\times}({\mathcal{O}})\) be the principal fractional ideals of \({\mathcal{O}}\). The quotient \(\operatorname{Cl} ({\mathcal{O}}) \coloneqq{ \ddot{\operatorname{Id}} }^{\times}({\mathcal{O}}) / \mathop{\mathrm{Prin}}{ \ddot{\operatorname{Id}} }^{\times}({\mathcal{O}})\) is the ideal class group of the order \({\mathcal{O}}\).
#NT/algebraic #todo/add-references