Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #AG/moduli-spaces - Refs: - #resources/course-notes - Links: - #todo/create-links
moduli space
-
One can say a great deal about the moduli space purely in terms of the moduli functor without even knowing the moduli space exists
- For example, the dual numbers. \(\operatorname{Spec}k{ [{\varepsilon}] / {\varepsilon}^2 }\)
- Prototypical example of a moduli space: the Grassmannian \({\operatorname{Gr}}_k({\mathbf{C}}^n)\).
- Common example: the Hilbert scheme.
- Apparently a fundamental class exists for closed subvarieties? Maybe just closed subvarieties of a moduli space?
-
Prominent example when studying elliptic curves over \({\mathbf{Q}}\): the modular curve \(X_0(n)\).
- level structure: examples are \(\Gamma(N), \Gamma_1(N), \Gamma_0(n)\) for squarefree \(n\).
Fine moduli spaces
Examples
Counterexamples
Examples
- $\mkern 1.5mu\overline{\mkern-1.5mu\mathcal{M}\mkern-1.5mu}\mkern 1.5mu_{0, 4}\cong {\mathbf{P}}^1_{/ {{\mathbf{C}}}} $ using the classical cross-ratio.