Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #arithmetic-geometry/Langlands #NT/analytic - Refs: - Course notes: https://www.math.columbia.edu/~phlee/CourseNotes/ModularForms.pdf#page=1 #resources/course-notes - Apostol, Modular Functions and Dirichlet Series in Number Theory. - See also previous book in series, Introduction to Analytic Number Theory - Harvard summer tutorial: https://people.math.harvard.edu/~smarks/mod-forms-tutorial/index.html - Links: - Hecke operator - Eisenstein series - Weight of a modular form - modular curve - Siegel modular forms - Hecke operator - automorphic form
modular form
-
Ways to think of a modular form:
- Functions (automorphic forms) on \(\operatorname{GL}_2\)
- Functions on \({\mathbb{H}}\)
- Sections of a line bundle over a moduli of curves
-
Related to q series
- Many classical modular forms are generating function for integer partitions in interesting ways
L functions
Examples
- Ramanujan delta: \(\Delta(q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}\), a holomorphic cusp form of weight 12 and level 1.
Notes
- Modularity theorem: If \(E \in \mathrm{Ell} _{{\mathbf{Q}}}\), then \(E\) admits a rational parameterization. Proved by Wiles et al.
Pasted image 20211029131059.png Pasted image 20211029131114.png Pasted image 20211029131212.png
Relation to Weil Conjectures: