modular form

Last modified date: <%+ tp.file.last_modified_date() %>


- Tags: - #arithmetic-geometry/Langlands #NT/analytic - Refs: - Course notes: https://www.math.columbia.edu/~phlee/CourseNotes/ModularForms.pdf#page=1 #resources/course-notes - Apostol, Modular Functions and Dirichlet Series in Number Theory. - See also previous book in series, Introduction to Analytic Number Theory - Harvard summer tutorial: https://people.math.harvard.edu/~smarks/mod-forms-tutorial/index.html - Links: - Hecke operator - Eisenstein series - Weight of a modular form - modular curve - Siegel modular forms - Hecke operator - automorphic form


modular form

attachments/Pasted%20image%2020220430213647.png

  • Ways to think of a modular form:
    • Functions (automorphic forms) on \(\operatorname{GL}_2\)
    • Functions on \({\mathbb{H}}\)
    • Sections of a line bundle over a moduli of curves
  • Related to q series
    • Many classical modular forms are generating function for integer partitions in interesting ways

attachments/Pasted%20image%2020220211002118.png attachments/Pasted%20image%2020220210182831.png attachments/Pasted%20image%2020220211002301.png

L functions

attachments/Pasted%20image%2020220430213719.png

Examples

  • Ramanujan delta: \(\Delta(q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}\), a holomorphic cusp form of weight 12 and level 1.

Notes

  • Modularity theorem: If \(E \in \mathrm{Ell} _{{\mathbf{Q}}}\), then \(E\) admits a rational parameterization. Proved by Wiles et al.

attachments/Pasted%20image%2020220202221424.png Pasted image 20211029131059.png Pasted image 20211029131114.png Pasted image 20211029131212.png

attachments/Pasted%20image%2020220204094501.png

Relation to Weil Conjectures: attachments/Pasted%20image%2020220204094635.png

Links to this page
#arithmetic-geometry/Langlands #NT/analytic #resources/course-notes