examples of fibrations

Last modified date: <%+ tp.file.last_modified_date() %>



Examples

Examples of Fibrations

  • Path-Loop fibration: \(\Omega X\to {\mathcal{P}}X \to X\) involving the Path space.

Covering spaces

  • \({\mathbf{Z}}\to {\mathbf{R}}\to S^1\)
  • \({\mathbf{Z}}^n \to {\mathbf{R}}^n \to T^n\)
  • \({\mathbf{Z}}^{\ast n} \to ??? \to \bigvee_n S^1\)
  • \(C_2 \to S^\infty \to {\mathbf{RP}}^\infty\)
    • \(C_2 \to S^n \to {\mathbf{RP}}^n\)
  • \(C_n \to S^\infty \to L_n^\infty\)
  • \(\pi_1(\Sigma_g) \to \widetilde{\Sigma_g} \to \Sigma_g\)
  • \(C_2 \to {\operatorname{Spin}}_n \to {\operatorname{SO}}_n\)
  • \({\operatorname{U}}_1 \to \mathrm{Spin}^{{ \scriptscriptstyle \mathbf C} }_n \to \mathrm{Spin}^{{ \scriptscriptstyle \mathbf C} }_n/{\operatorname{U}}_1 \cong {\operatorname{SO}}_n\)

Hopf

  • \(S^0 \to S^\infty \to {\mathbf{RP}}^\infty\)

  • \(S^1 \to S^\infty \to {\mathbf{CP}}^\infty\)

  • \(S^3 \to S^\infty \to {\operatorname{HP}}^\infty\)

  • NOT TRUE: \(S^7 \to S^\infty \to {\mathbb{OP}}^\infty\)

  • \(T^n \to ? \to ({\mathbf{CP}}^\infty)^n\)

  • \(SO_n \to ? \to ?\)

  • \(Gr_n({\mathbf{R}}^\infty) \to ? \to Gr_n({\mathbf{R}}^\infty)\)

  • \(S_n \to ??? \to \left\{{U \subset {\mathbf{R}}^\infty,~ |U| = n}\right\}\)

Moduli

  • Involving frame bundles or the Stiefel manifold
    • Taking the linear span: \(V_k({\mathbf{R}}^n) \to {\operatorname{Gr}}_k({\mathbf{R}}^n)\), generalizes \(S^{n-1}\to {\mathbf{RP}}^{n-1}\) for \(k=1\).
    • \(V_k({\mathbf{C}}^n) \to {\operatorname{Gr}}_k({\mathbf{C}}^n)\) generalizing the Hopf bundles for \(n-2,k=1\).
    • \({\operatorname{O}}_{n-k}({\mathbf{R}}) \to {\operatorname{O}}_n({\mathbf{R}}) \to V_k({\mathbf{R}}^n)\).
    • \(O_n \to V_n({\mathbf{R}}^\infty) \to Gr_n({\mathbf{R}}^\infty)\)
  • \(GL_n({\mathbf{R}}) \to V_n({\mathbf{R}}^\infty) \to Gr_n({\mathbf{R}}^\infty)\)

Lie groups

  • For any \(K\leq H \leq G\), the projection \(G/K\to G/H\). attachments/Pasted%20image%2020220401161352.png
  • \({\operatorname{SU}}_{n-1} \to {\operatorname{SU}}_n \to S^{2n-1}\)
  • \({\operatorname{SU}}_n \to {\operatorname{U}}_n \xrightarrow{\operatorname{det}} {\operatorname{U}}_1\)
  • \({\operatorname{U}}_{n-1} \to {\operatorname{U}}_n \to {\operatorname{U}}_{n-1}/{\operatorname{U}}_n\cong S^{2n-1}\)
  • \({\operatorname{O}}_n \to {\operatorname{O}}_{n+1} \to {\operatorname{O}}_{n+1}/{\operatorname{O}}_n \cong S^{n}\)
  • \({\operatorname{SO}}_n \to {\operatorname{SO}}_{n+1} \to {\operatorname{SO}}_{n+1}/{\operatorname{SO}}_n \cong S^n\)

Classifying spaces

  • \(G \to {\mathsf{E} G}\to {\mathbf{B}}G\)
  • \({{\mathbf{B}}{\operatorname{SO}}}_n \rightarrow {{\mathbf{B}}{\operatorname{O}}}_n \rightarrow {\mathbf{RP}}^{\infty}\)
  • \(S^{2 n-1} \to {\mathbf{B}}{\operatorname{U}}_{n-1} \stackrel{p}{\rightarrow} {\mathbf{B}}{\operatorname{U}}_n\)

Examples of principal bundles

attachments/Pasted%20image%2020220403174140.png

#examples #homotopy/bundles #todo/add-references #todo/create-links