limit

Last modified date: <%+ tp.file.last_modified_date() %>



Limits (Categorical)

Modern POV: realize in terms of a Kan extension: attachments/Pasted%20image%2020220320032421.png

attachments/Pasted%20image%2020220531025324.png

Mnemonics to distinguish lims and colims


Inverse/projective limit Direct/colimit


\(\lim\) \(\colim\)

Above: attachments/Pasted%20image%2020220603121253.png Below: attachments/Pasted%20image%2020220603121316.png

terminal cones initial cocones

subobjects of \(\displaystyle\prod\) quotient objects of \(\coprod\) or \(\bigoplus\)

terminal objects initial objects

pullbacks pushouts

products coproducts

kernels cokernels

equalizers coequalizers

commutes with contravariant hom: \(\mathsf{C}(A, \lim B_i) = \lim \mathsf{C}(A, B_i)\) commutes with covariant hom: \(\mathsf{C}(\lim A_i, B) \cong \colim \mathsf{C}(A_i, B)\)

continuous cocontinuous

“impose equations” “glue objects”

\({ {\mathbf{Z}}_{\widehat{p}} }= \lim(\cdots \xrightarrow{\operatorname{mod}p^2} {\mathbf{Z}}/p^2{\mathbf{Z}}\xrightarrow{\operatorname{mod}p} {\mathbf{Z}}/p{\mathbf{Z}})\) \({\mathbf{Z}}(p^\infty) = \colim({\mathbf{Z}}/p{\mathbf{Z}}\xrightarrow{\times p} {\mathbf{Z}}/p^2{\mathbf{Z}}\xrightarrow{\times p} \cdots)\)

Idea: the limit should be the closest object to all of the \(F(X_i)\).

The Calculus of Limits

  • Commuting lims:
    • Self-commuting: lims commute with lims, colims commute with colims.
    • There is a morphism \(\colim \lim A_{i, j} \to \lim \colim A_{i, j}\) which need not be an isomorphism, i.e. limits need not commute with colimits in general.
    • Filtered colimits commute with finite limits in \({\mathsf{Set}}\).
  • Preservation of properties:
    • Limits respect finite group actions, i.e. \((\lim A_i)/G { \, \xrightarrow{\sim}\, }\lim (A_i/G)\).
    • Finite colims of compact objects are compact
  • The acronyms for adjoints:
    • RAPL: right adjoints preserve limits
    • LAPC: left adjoints preserve colimits
    • LARE: Left adjoints are right-exact
    • RALE: right adjoints are left-exact

Definitions

attachments/Pasted%20image%2020220316203247.png

Limits

attachments/Pasted%20image%2020220124120148.png attachments/Pasted%20image%2020220124120203.png attachments/Pasted%20image%2020220124120224.png attachments/Pasted%20image%2020220203235717.png

Colimits

For \(F: \mathsf{I} \to \mathsf{C}\), define \(\chi_X: \mathsf{I}\to \mathsf{C}\) for \(X\in \mathsf{C}\) regarded as a set (groupoid with only identity morphisms) to be the constant functor \(Y\mapsto X\) for all \(Y\) and \(f\mapsto \operatorname{id}_X\) for all \(f\). Then \begin{align*} \lim_I F({-}) \coloneqq{\mathsf{Cat}}(\chi_{({-})}, F): \mathsf{C} \to {\mathsf{Set}} \end{align*} i.e. the limit is the functor sending \(X\) to natural transformations between \(\chi_X\) and \(F\). If this functor is representable, it can be identified with an object in \(\mathsf{C}\).

Definition in terms of cones and cocones:

Pasted image 20211003193342 Pasted image 20211003193427

Examples

  • \(\lim(\bullet \rightrightarrows\bullet)\) is an equalizer
  • For \(I\) an index set regarded as a groupoid with only identities, \(\lim(\bullet, \bullet, \cdots) = \prod_{i\in I} \bullet_i\) . Use that \(\lim_I F(X) = \left\{{X\to X_i}\right\}\) if \(F(i) \coloneqq X_i\).
  • \(\lim(\bullet \to \bullet \leftarrow\bullet) = \bullet \underset{\scriptscriptstyle {\bullet} }{\times} \bullet\) is a fiber product.

attachments/Pasted%20image%2020220316204004.png

Filtered categories and colimits

attachments/Pasted%20image%2020220316203344.png

attachments/Pasted%20image%2020220317232012.png attachments/Pasted%20image%2020220317232039.png attachments/Pasted%20image%2020220317232055.png attachments/Pasted%20image%2020220318002919.png

Links to this page
#higher-algebra/category-theory #todo/add-references #todo/create-links