infinity groupoids

Tags: #higher-algebra/infty-cats

  • An ∞-groupoid is an infinity categories in which all morphisms are invertible.
  • 0-groupoid: A set -1-groupoid: An ordinary groupoid, -Play the role analogous to sets in classical category theory.
    • Have homs that are again infinity groupoids.
  • Pullbacks in \({ \underset{\infty}{ {\mathsf{Grpd}}} }\): limits over morphisms in \({ \underset{\infty}{ {\mathsf{Grpd}}} }\) of \(A_1 \to B \leftarrow A_2\)
  • Fibers in \({ \underset{\infty}{ {\mathsf{Grpd}}} }\): for an object \(b\in B \in { \underset{\infty}{ {\mathsf{Grpd}}} }\), fibers are pullbacks over the morphism \(s_b: \one \to B\) that selects the object \(b\in B\)

% https://q.uiver.app/?q=WzAsNCxbMCwwLCJGX2IiXSxbMiwwLCJFIl0sWzIsMiwiQiJdLFswLDIsIlxcb25lIl0sWzEsMiwicCJdLFswLDEsIiIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDIsInNfYiIsMl0sWzAsMywiIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzAsMiwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV1d

  • See homotopy sum
  • Maps of ∞-groupoids with codomain \(\mathsf{B}\) form the objects of a slice category \({ \underset{\infty}{ {\mathsf{Grpd}}} }_{/B}\)
  • A morphism of ∞-groupoids \(X \to B\) can be interpreted as a family of ∞-groupoids parametrised by \(B\), namely the fibres \(X_b\).
    • Equivalently, a presheaf \(B\to { \underset{\infty}{ {\mathsf{Grpd}}} }\)
  • operads.
  • Simplicial \({ \underset{\infty}{ {\mathsf{Grpd}}} }= {\mathsf{Fun}}(\Delta^{\operatorname{op}}, { \underset{\infty}{ {\mathsf{Grpd}}} })\)
  • ∞-groupoids form a (large) ∞-category denoted \({ \underset{\infty}{ {\mathsf{Grpd}}} }\)
    • It can be described explicitly as the Kan complex.
Links to this page
#higher-algebra/infty-cats