Subjects/Algebraic Topology Subjects/homotopy theory Homotopy Groups of Spheres
Table
```latex
\documentclass[]{article} \usepackage{graphicx} \usepackage{booktabs} \usepackage{amsfonts} \begin{document} \begin{table}[] \centering \resizebox{\textwidth}{!}{% \begin{tabular}{@{}llllllllll@{}} \toprule & $\pi_{1}$ & $\pi_{2}$ & $\pi_{3}$ & $\pi_{4}$ & $\pi_{5}$ & $\pi_{6}$ & $\pi_{7}$ & $\pi_{8}$ & $\pi_{9}$ \\ \midrule $S^0$ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ $S^1$ & $\mathbb{Z}$ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ $S^2$ & 0 & $\mathbb{Z}$ & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{12}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{3}$ \\ $S^3$ & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{12}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{3}$ \\ $S^4$ & 0 & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}$$\times$$\mathbb{Z}_{12}$ & $\mathbb{Z}_{22}$ & $\mathbb{Z}_{22}$ \\ $S^5$ & 0 & 0 & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{24}$ & $\mathbb{Z}_{2}$ \\ $S^6$ & 0 & 0 & 0 & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{24}$ \\ $S^7$ & 0 & 0 & 0 & 0 & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ \\ $S^8$ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ \\ \bottomrule \end{tabular}% } \caption{Higher Homotopy Groups of Spheres} \label{my-label} \end{table} \end{document}