Subjects/Algebraic Topology Subjects/homotopy theory Homotopy Groups of Spheres
Table
```latex
\documentclass[]{article}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{amsfonts}
\begin{document}
\begin{table}[]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{@{}llllllllll@{}}
\toprule
& $\pi_{1}$ & $\pi_{2}$ & $\pi_{3}$ & $\pi_{4}$ & $\pi_{5}$ & $\pi_{6}$ & $\pi_{7}$ & $\pi_{8}$ & $\pi_{9}$ \\ \midrule
$S^0$ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
$S^1$ & $\mathbb{Z}$ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
$S^2$ & 0 & $\mathbb{Z}$ & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{12}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{3}$ \\
$S^3$ & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{12}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{3}$ \\
$S^4$ & 0 & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}$$\times$$\mathbb{Z}_{12}$ & $\mathbb{Z}_{22}$ & $\mathbb{Z}_{22}$ \\
$S^5$ & 0 & 0 & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{24}$ & $\mathbb{Z}_{2}$ \\
$S^6$ & 0 & 0 & 0 & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{24}$ \\
$S^7$ & 0 & 0 & 0 & 0 & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ & $\mathbb{Z}_{2}$ \\
$S^8$ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $\mathbb{Z}$ & $\mathbb{Z}_{2}$ \\ \bottomrule
\end{tabular}%
}
\caption{Higher Homotopy Groups of Spheres}
\label{my-label}
\end{table}
\end{document}