Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - #todo/create-links
group object
-
Unit: \(e: {\operatorname{pt}}\to G\)
-
Inverses: \(({-})^{-1}: G\to G\)
-
Pairing: \(({-})\cdot({-}): G{ {}^{ \scriptscriptstyle\times^{2} } }\to G\)
- Left and right identities: existence of sections % https://q.uiver.app/?q=WzAsMyxbMiwwLCJHIl0sWzQsMiwiR1xcY2FydHBvd2VyezJ9Il0sWzAsMiwiR1xcY2FydHBvd2VyezJ9Il0sWzAsMSwiKFxcaWRfRywgZSkiLDJdLFswLDIsIihlLCBcXGlkX0cpIl0sWzIsMCwibSIsMix7ImN1cnZlIjotNX1dLFsxLDAsIm0iLDAseyJjdXJ2ZSI6NX1dXQ==
An equivalent characterization: \(X\in \co \underset{ \mathsf{pre} } {\mathsf{Sh} }(\mathsf{C}, {\mathsf{Grp}})\) where \(\tilde X\in \co \underset{ \mathsf{pre} } {\mathsf{Sh} }(\mathsf{C}, {\mathsf{Set}})\) is representable.
Equivalently, \(X\in \mathsf{C}\) is a group object if \(\mathop{\mathrm{Mor}}({-}, X): \mathsf{C} \to {\mathsf{Grp}}\) represents a functor to groups.