group actions on categories

Last modified date: <%+ tp.file.last_modified_date() %>



group actions on categories

Categorifying a group action: regard \(G\) as a groupoid with one object, then a functor \(F\in [G, {\mathsf{Top}}]\) is precisely the data of a group action, \(\colim F\cong {\mathrm{Orb}}_G(X)\) is the orbit space, and \(\lim F = \mathrm{Fix} _G(X)\)a are the fixed points. A functor \(F\in [G, { \mathsf{Vect} }_{/ {k}} ]\) is a \(k{\hbox{-}}\)representation of \(G\), i.e. a \(kG{\hbox{-}}\)module.

attachments/Pasted%20image%2020220325203858.png

Equivalently, a categorical fibration over \({\mathbf{B}}G\).

Links to this page
#homotopy/stable-homotopy/equivariant #todo/add-references