Last modified date: <%+ tp.file.last_modified_date() %>
- Tags:
- Refs:
- Links:
global field
       
    
       
    
function fields
- Function field: an extension $F_{/ {k}} $ where \([F: k(x)] < \infty\) for some \(x\) transcendental over \(k\).
global fields
       
  
  
    
Global fields satisfy a product formula: \begin{align*} x\in K\setminus\left\{{0}\right\}\implies \displaystyle\prod_{v\in {\operatorname{Places}}(K)} {\left\lvert {x} \right\rvert}_v = 1 \end{align*}
       # local fields
 # local fields  
  
    
- 
          
    Idea: can arise as the rings of germs of functions, i.e. the local rings on a scheme. 
- 
          
    Arise as the completions of global fields. 
- 
          
    Another defintion: a field complete wrt a topology induced by a discrete valuation with a finite residue field. 
- 
          
    Classification of local fields: - Every local field is the completion of a global field wrt an absolute value.
- An archimedean local field is either \({\mathbf{R}}\) or \({\mathbf{C}}\).
- A nonarchimedean local field is a finite extension \(L/K\) for \(K={ {\mathbf{Q}}_p }\) or \({ \mathbf{F} }_q{\left(\left( t \right)\right) }\)
 
- 
          
    The completion of \(\operatorname{ff}(K)\) with respect to an absolute valueor valuation for \(K\) a global field is a locally compact field, and thus a local field. 
- 
          Examples  
- 
          
    Global fields - \({\mathbf{Q}}\)
- Algebraic number fields $K_{/ {{\mathbf{Q}}}} $
- $L_{/ {K}} $ finite extensions of $K = { \mathbf{F} }_q { \left( {t} \right) } $, i.e. function fields of an algebraic curve over a finite field
 
- 
          
    Local fields: - \({\mathbf{R}}\) and \({ {\mathbf{Q}}_p }\) for \(p\) all primes in \({\mathbf{Z}}\) are local.
- \({ \mathbf{F} }_q{\left(\left( t \right)\right) }\) formal Laurent series over a finite field.
- The completion of a global field at a valuation / absolute value.
- Nonexample: \({\mathbf{C}}{\left(\left( t \right)\right) }\), since its residue field is \({\mathbf{C}}{\left[\left[ t \right]\right] }/\left\langle{t}\right\rangle \cong {\mathbf{C}}\) which is not finite.
 
       
    

 
 
 
  
 