- Tags
- Refs:
- Links:
geometric fiber
Idea: a point of \(X\) with values in an algebraically closed field.
Geometric Fiber
For $X\in {\mathsf{Sch}}_{/ {k}} $ , a geometric point is a morphism \(x: {\operatorname{pt}}\to X\), where \({\operatorname{pt}}\coloneqq\operatorname{Spec}k\) . The geometric fiber of \(x\) is the pullback \(E_x \coloneqq\lim({\operatorname{pt}}\to X \leftarrow E) = E \underset{\scriptscriptstyle {X} }{\times} {\operatorname{pt}}\).
Idea: for any \(U \subseteq Y\) and \(f:X\to Y\), the fiber product \(U \underset{\scriptscriptstyle {Y} }{\times} X\) should be thought of as \(f^{-1}(U)\).
Note that if \(x\) is a finite etale cover , then \({\sharp}E_x < \infty\).