Tags: #todo #todo/stub Refs: ?
Fractional Ideal
Idea: get methods that work for primes \(p\in {\mathbf{Z}}\) to work for ideals \(\left\langle{p}\right\rangle \in \operatorname{Id}({\mathbf{Z}})\), and then generalize to other rings e.g. to get unique factorization. Definitions:
Colon Ideal
Invertibility
Invertibility of fractional ideals:
Fact: in a Dedekind domain every nonzero fractional ideal is invertible.
Example of noninvertible ideals:
Primality
# Exercises
Let \(A\) be an integral domain with fraction field \(K\) and let \(M\) be a nonzero A-submodule of \(K\). Then \(M^{\vee} \simeq(A: M):=\{x \in K: x M \subseteq A\}\); in particular, if \(M\) is an invertible fractional ideal then \(M^{\vee} \simeq M^{-1}\) and \(M^{\vee \vee} \simeq M\).