fractional ideal

Tags: #todo #todo/stub Refs: ?

Fractional Ideal

Idea: get methods that work for primes \(p\in {\mathbf{Z}}\) to work for ideals \(\left\langle{p}\right\rangle \in \operatorname{Id}({\mathbf{Z}})\), and then generalize to other rings e.g. to get unique factorization. attachments/Pasted%20image%2020220123202618.png attachments/Pasted%20image%2020220123202646.png Definitions: attachments/Pasted%20image%2020220123195231.png attachments/Pasted%20image%2020220123195314.png

Colon Ideal

attachments/Pasted%20image%2020220123195354.png

Invertibility

Invertibility of fractional ideals: attachments/Pasted%20image%2020220123195729.png

Fact: in a Dedekind domain every nonzero fractional ideal is invertible.

Example of noninvertible ideals: attachments/Pasted%20image%2020220123195920.png attachments/Pasted%20image%2020220123201959.png

Primality

attachments/Pasted%20image%2020220124114019.png # Exercises

Let \(A\) be an integral domain with fraction field \(K\) and let \(M\) be a nonzero A-submodule of \(K\). Then \(M^{\vee} \simeq(A: M):=\{x \in K: x M \subseteq A\}\); in particular, if \(M\) is an invertible fractional ideal then \(M^{\vee} \simeq M^{-1}\) and \(M^{\vee \vee} \simeq M\).

Links to this page
#todo #todo/stub