Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - #todo/create-links
flat morphism
Constant-dimensional fibers.
-
For ${\mathcal{F}}\in {}_{{\mathcal{O}}_X}{\mathsf{Mod}} $ then \(\mathcal{F}\) is a flat sheaf relative to \(Y\) at a point \(x \in X\) if \({\mathcal{F}}_{x}\in {}_{{\mathcal{O}}_{Y, f(x)}}{\mathsf{Mod}} ^\flat\) is flat as a module.
- A sheaf \(\mathcal{F}\) is a flat sheaf if it is flat at every point of \(X\).
-
A morphism \(X \xrightarrow{f} Y\) is a flat morphism at a point \(x \in X\) if \({\mathcal{O}}_{X, x}\in {}_{{\mathcal{O}}_{Y, f(x)}}{\mathsf{Mod}} ^\flat\) is flat as a module.
- A morphism \(f\) is a flat morphism if \(f\) is flat at every point \(x \in X\).
- A scheme \(X\) is flat if its structure sheaf \({\mathcal{O}}_X\) is a flat sheaf.