Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - examples of homotopy groups of spectra
examples of homotopy groups
- \(\pi_1 S^1 = {\mathbf{Z}}\)
- \(\pi_1 X = C_2\) for \(X ={\mathbf{RP}}^n, n\geq 2\), or \(X={\operatorname{SO}}_n({\mathbf{R}})\) for \(n\geq 3\)
- \(\pi_1 X = 1\) for \(X = {\operatorname{SU}}_n({\mathbf{C}}), {\operatorname{SL}}_n({\mathbf{C}}), \SP_{2n}({\mathbf{C}})\).
- \(\pi^1((S^1){ {}^{ \scriptscriptstyle\times^{n} } }) = {\mathbf{Z}}{ {}^{ \scriptscriptstyle\times^{n} } }\)
- \(\pi_1((S^1)^{\bigvee^n}) = {\mathbf{Z}}^{\ast^n}\)
General properties
- $\pi_1 \bigvee_i X_i = {\mathop{\text{\Large \(\ast\)}}}_n \pi_1 X_i$
- \(\pi_1 \prod_i X_i = \prod_i \pi_1 X_i\)