examples of etale fundamental groups

Last modified date: <%+ tp.file.last_modified_date() %>


- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - profinite completion


examples of etale fundamental groups

  • \(\pi_1 X = 1\) for
    • ${\mathbf{A}}^1_{/ {{\mathbf{C}}}} $
    • ${\mathbf{A}}^1_{/ {{\mathbf{Z}}}} $
    • ${\mathbf{P}}^1_{/ {{\mathbf{Z}}}} $
    • \(\operatorname{Spec}{\mathbf{Z}}\)
    • \(\operatorname{Spec}{\mathbf{Z}}[i]\)
    • \(\operatorname{Spec}k\) for $k= { \mkern 1.5mu\overline{\mkern-1.5muk\mkern-1.5mu}\mkern 1.5mu } $.
    • \(\operatorname{Spec}{\mathbf{C}}[x,y]/\left\langle{y^2-x^3}\right\rangle\),
  • \(\pi_1 X = \widehat{{\mathbf{Z}}}\) for \(X = \cdots\)
    • ${\mathbf{G}}m{}{/ {k}} $
    • \(\operatorname{Spec}{ {\mathbf{Z}}_{\widehat{p}} }\)
    • \(\operatorname{Spec}{\mathbf{Z}}[x]/\left\langle{x^6-1}\right\rangle\),
    • \({\mathbf{C}}{\left(\left( t \right)\right) }\)
    • \(\operatorname{Spec}{\mathbf{C}}[x,y]/\left\langle{y^2-x^3-x^2}\right\rangle\),
    • \(\operatorname{Spec}k\) for \(k= { \mathbf{F} }_q\) any finite field.
  • \(\pi_1 X = C_2\) for
    • \(X = \operatorname{Spec}{\mathbf{Z}}[\sqrt{-3}], \operatorname{Spec}{\mathbf{Z}}[\sqrt{-5}], \operatorname{Spec}{\mathbf{R}}\)
  • For \(X = {\mathbf{G}}_{m}{}_{/ {k}} = \operatorname{Spec}k[x,x^{-1}]\), \begin{align*}\pi_1^\text{ét}(X) = \widehat{{\mathbf{Z}}},\end{align*} the profinite integers.
  • For $E\in \mathrm{Ell} _{/ {{\mathbf{Q}}}} $ an elliptic curve, \begin{align*}\pi_1^\text{ét}(E) = TE \coloneqq\cocolim_{n\in {\mathbf{Z}}_{\geq 0}} E[n]\end{align*} where \({\mathbf{Z}}_{\geq 0}\) is ordered by divisibility. - 1If \(X \rightarrow \operatorname{Spec}(k)\) is an elliptic curve with identity \(\mathcal{O}: \operatorname{Spec}(k) \rightarrow X\) and \(\operatorname{char}(k)=0\), then \(\pi_1 X_{ { \mkern 1.5mu\overline{\mkern-1.5muk\mkern-1.5mu}\mkern 1.5mu } } \cong \widehat{{\mathbf{Z}}}{ {}^{ \scriptscriptstyle\oplus^{2} } }\)
  • \(\pi_1 X = \prod_{m\in \operatorname{Spec}A} \widehat{{\mathbf{Z}}}\) if \(A\) is a finite ring.
  • \(\pi_1 \operatorname{Spec}k = { \mathsf{Gal}} (k^{ {}^{ \operatorname{sep} } }/k)\).
  • \(\pi_1 \operatorname{Spec}{\mathbf{Z}}{ \left[ { \scriptstyle \frac{1}{n} } \right] } = { \mathsf{Gal}} ({\mathbf{Q}}^{{\scriptscriptstyle\mathrm{un}}, n}/ {\mathbf{Q}})\) where \({\mathbf{Q}}^{{\scriptscriptstyle\mathrm{un}}, n}\) is the maximal extension of \({\mathbf{Q}}\) unramified away from \(n\).
  • \(\pi_1 X = \mathrm{Prof}(\pi_1 X({\mathbf{C}}))\), the profinite completion of the usual fundamental group when \(X\) is a finite type scheme over \({\mathbf{C}}\).
  • \(\pi_1 X = \mathrm{Prof}(\mathsf{Free}_2)\) for \(X = {\mathbf{P}}^1{\mathbf{C}}\setminus\left\{{ 0,1,\infty }\right\}\).
  • \(\pi_1 X\) for \(X={\mathbf{P}}^1_{/ {{\mathbf{Q}}}} \setminus\left\{{ 0,1,\infty }\right\}\) is unknown but fits into a SES \begin{align*}1\to \mathrm{Prof}(\mathsf{Free}_2) \to \pi_1 {\mathbf{P}}^1_{/ {{\mathbf{Q}}}} \setminus\left\{{ 0,1,\infty }\right\} \to { \mathsf{Gal}} ({ \mkern 1.5mu\overline{\mkern-1.5mu \mathbf{Q} \mkern-1.5mu}\mkern 1.5mu }/{\mathbf{Q}}) \to 1\end{align*}

General properties

  • $\pi_1 \operatorname{Spec}k = \pi_1 {\mathbf{P}}^1_{/ {k}} $ for \(k\) any field.
#todo/untagged #todo/add-references