etale



etale

New developments: Berkovich integral etale cohomology and rigid analytic motivic cohomology.

In algebra

attachments/Pasted%20image%2020221011190430.png attachments/Pasted%20image%2020221011190458.png

In AG

attachments/Pasted%20image%2020220407233147.png

attachments/Pasted%20image%2020220505161603.png

Note that being etale or unramified is local on the base and local on the target.

attachments/Pasted%20image%2020220420101053.png attachments/Pasted%20image%2020220424124855.png

Explicit examples

  • Any open immersion is etale.
  • A morphism \(X\to \operatorname{Spec}k\) is etale iff \(X\cong {\textstyle\coprod}\operatorname{Spec}K_i\) where each \(K_i/k\) is a finite separable field extension.
  • Any finite separable field extension \(k \hookrightarrow K\) induces an etale cover \(\operatorname{Spec}K\to \operatorname{Spec}k\).
  • The localization cover \(\operatorname{Spec}R \left[ { \scriptstyle { {S}^{-1}} } \right] \to \operatorname{Spec}R\) is etale.
  • \(\operatorname{Spec}\\CC[t] \to \operatorname{Spec}{\mathbf{R}}[t]\) is etale: attachments/Pasted%20image%2020220407234842.png

Motivation

attachments/Pasted%20image%2020220404005403.png attachments/Pasted%20image%2020220404005418.png

attachments/Pasted%20image%2020220220032838.png attachments/Pasted%20image%2020220220032912.png attachments/Pasted%20image%2020220220032922.png

Relation to Galois covers

attachments/Pasted%20image%2020220220033148.png

Etale Morphisms

The idea: like local diffeomorphisms of manifolds, so inducing isomorphisms on tangent spaces at every point: \begin{align*} f:X\to Y \text{ etale} \leadsto df: {\mathbf{T}}_x X { \, \xrightarrow{\sim}\, }{\mathbf{T}}_{f(x)} Y\quad \forall x\in X \end{align*} Thus some version of the implicit function theorem holds in the analytic setting. The analog of a covering space is a finite etale morphism.

attachments/Pasted%20image%2020220209190402.png

attachments/Pasted%20image%2020220404011124.png

Standard etale morphisms and structure theorem

attachments/Pasted%20image%2020220407234729.png attachments/Pasted%20image%2020220407234904.png

Etale cover

An etale cover is a family of morphisms \(\left\{{U_i \to X}\right\}\) which are etale and locally of finite type such that \(X \subseteq \bigcup U_i\).

Etale algebra

Idea: a finite direct product of separable field extensions.

attachments/Pasted%20image%2020220123205031.png attachments/Pasted%20image%2020220123205051.png

Every etale algebra is a semisimple algebra.

Characterization of when an etale algebra is monogenic: attachments/Pasted%20image%2020220123205831.png

Etale cohomology

attachments/Pasted%20image%2020220207120901.png attachments/Pasted%20image%2020220207120912.png # Etale homotopy

#todo

Relation to Galois cohomology

attachments/Pasted%20image%2020220424125128.png attachments/Pasted%20image%2020220424125135.png

🗓️ Timeline
  • 2021-09-14
    For \(f \in \mathop{\mathrm{Mor}}_{\mathsf{Sch}}(X, Y)\) finite type and \(X, Y\) locally Noetherian, \(f\) is etale at \(y\in Y\) if \(f^*: {\mathcal{O}}_{f(y)} \to {\mathcal{O}}_y\) is flat and \({\mathcal{O}}_{f(y)}/{\mathfrak{m}}_{f(y)} \to {\mathcal{O}}_{f(y)}/ f^*({\mathfrak{m}}_{f(y)} {\mathcal{O}}_y)\) is a finite separable extension.
  • 2021-05-25

    See Unsorted/etale and Zariski descent.

  • 2021-05-01
Links to this page
#arithmetic-geometry #resources #todo