curves

Last modified date: <%+ tp.file.last_modified_date() %>


- Tags: - #AG #arithmetic-geometry - Refs: - #todo/add-references - Links: - scheme - elliptic curve - algebraic curve - good reduction - semistable reduction


curves

Definitions

  • Variety: an integral separated scheme of finite type over \(k\).
  • Dimension: dimension as a Noetherian topological space.
  • Curve: a complete variety (proper over \(k\)) of dimension 1.
  • Singular: for \({\mathfrak{m}}{~\trianglelefteq~}{\mathcal{O}}_{X, x}\) the maximal ideal of the local ring at a closed point \(x\), \(X\) is singular if \(\dim_{\kappa(x)} {\mathfrak{m}}/{\mathfrak{m}}^2 \neq 1\) where \(\kappa(x)\) is the residue field at \(x\).
  • valuation : for \(f \in {\mathcal{O}}_{X, x}\), \(v_p(f)\) is the largest \(n\) such that \(f\in {\mathfrak{m}}^n\).
    • Zero: \(v_p(f) > 0\)
    • Pole: \(v_p(f) < 0\)
    • Nonvanishing: \(v_p(f) = 0\).
  • Unsorted/function field : the local ring \(K(X) \coloneqq{\mathcal{O}}_{X, \tilde x}\) for \(\tilde x\) the generic point.
  • Degree: for \(f:X\to Y\), the degree of the field extension \([K(X) : f^* K(Y)]\).
  • Ramification index : \(e_f(x)\) defined as the largest \(n\) such that \(f^* {\mathfrak{m}}_{f(x)} \subseteq {\mathfrak{m}}_x^n\).
  • ramified : \(e_f(x) > 1\).
    • Alternatively: at a closed point \(x\), \(f^* {\mathfrak{m}}_{f(x)} = {\mathfrak{m}}_x\) and the extension \({\mathcal{O}}_x/{\mathfrak{m}}_x\) is a finite separable extension of \({\mathcal{O}}_{f(x)} / {\mathfrak{m}}_{f(x)}\).
  • Structure morphism: for a scheme \(X\) over \(k\), the map \(S: X\to \operatorname{Spec}k\)
  • geometric point : a section to the structure map, \(s: \operatorname{Spec}k \to X\) so that \(\operatorname{Spec}k \xrightarrow{s} X \xrightarrow{S} \operatorname{Spec}k\) is the identity on \(\operatorname{Spec}k\)
  • elliptic curve : genus 1. Coincides with \(y^2 = x^3 + Ax + B\). Exists as a pointed scheme \((E, O)\)
  • isogeny : a pointed map \((E_1, O_1) \xrightarrow{f} (E_2, O_2)\), so \(f(O_1) = O_2\).
  • supersingular : \(\ker\qty{E \xrightarrow{\cdot p} E } = 0\) where \(\operatorname{ch}k = p > 0\).
  • Ordinary: \(\ker\qty{E\xrightarrow{\cdot p} E } = {\mathbf{Z}}/p\)
  • etale morphism : flat and unramified. Supposed to look like a local homeomorphism in a covering space.

attachments/Pasted%20image%2020220407190651.png

Genus formula

attachments/Pasted%20image%2020220214101151.png

Examples

Genus 0

#todo

Genus 1

elliptic curves

Genus 2

hyperellptic

attachments/Pasted%20image%2020220214104026.png

Genus 3

attachments/Pasted%20image%2020220214104810.png attachments/Pasted%20image%2020220214104904.png

Genus 4

attachments/Pasted%20image%2020220214104930.png

Genus 5

attachments/Pasted%20image%2020220214104946.png

Homology

attachments/Pasted%20image%2020220214113837.png

Examples

attachments/Pasted%20image%2020220410185146.png

Links to this page
#AG #arithmetic-geometry #todo/add-references #todo