Last modified date: <%+ tp.file.last_modified_date() %>
- Tags:
- Refs:
- Links:
complex oriented cohomology theory
- A condition on a generalized cohomolology theories involving the Thom class:
Think of this as a factorization of the counit
A ring spectrum \(E\) is complex orientable iff the Atiyah Hirzebruch spectral sequence collapses at \(E_2\): \begin{align*} E_{2}^{p, q}=H^{p}\left(\mathbb{C} P^{\infty} ; \pi_{q}(E)\right) \Longrightarrow E^{p+q}\left(\mathbb{C} P^{\infty}\right) \end{align*}
Motivations