complex oriented cohomology theory

Last modified date: <%+ tp.file.last_modified_date() %>



complex oriented cohomology theory

attachments/Pasted%20image%2020220508195540.png attachments/Pasted image 20210511201541.png

Think of this as a factorization of the counit

https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXFNTIl0sWzIsMCwiWCBcXGRhIFxcU2lnbWFee1xcaW5mdHktMn1cXENQXntcXGluZnR5fSJdLFs0LDAsIkUiXSxbMSwyLCJ4XkUiXSxbMCwyLCJcXGV0YV9FIiwyLHsiY3VydmUiOjV9XSxbMCwxLCJcXGV0YV9YIl1d

A ring spectrum \(E\) is complex orientable iff the Atiyah Hirzebruch spectral sequence collapses at \(E_2\): \begin{align*} E_{2}^{p, q}=H^{p}\left(\mathbb{C} P^{\infty} ; \pi_{q}(E)\right) \Longrightarrow E^{p+q}\left(\mathbb{C} P^{\infty}\right) \end{align*}

Motivations

attachments/Pasted%20image%2020220508195645.png attachments/Pasted%20image%2020220508195655.png attachments/Pasted%20image%2020220508195926.png

#todo/untagged #todo/add-references