classical category theory

Tags: #MOC

Classical Category Theory

References

Topics

  • natural transformation
  • Yoneda embedding
  • Yoneda lemma
  • adjoint (categorical)
  • monad
  • Limit and Colimit
  • Cartesian closed category
  • Monoidal category
  • Symmetric monoidal category
  • Pushout
    • Limit definition
  • pullback
    • Limit definition
  • equivalence of categories
    • Need to state this precisely!
  • equivalence of categories
  • Unsorted/adjoint (categorical)
  • Limits and universal properties
    • coproduct
    • cokernel
    • colimit
    • monomorphism
  • Homological algebra
    • additive functor
    • abelian category
    • additive category
    • monomorphism
    • mapping cone
  • Yoneda lemma
  • isomorphism of functors
  • subfunctor
  • exponential object
  • monads
  • natural transformation
  • Yoneda embedding
  • Yoneda lemma
  • Unsorted/adjoint (categorical)
  • monad
  • Limit and Colimit
  • Cartesian closed category
  • monoidal category
  • Symmetric monoidal category
  • Pushout
    • Limit definition
  • pullback
    • Limit definition
  • equivalence of categories
    • Need to state this precisely!

Notes

| Category | Set | Grp | CRing | Ring | Field | Ab | \({ \mathsf{Vect} }_k\) | R-Mod | \(R{\hbox{-}}\)cAlg | Sch | Top | \({\mathsf{Top}}_*\) | |

————— | ———————– | ————— | ––––––– | ———– | —– | —————– | —————– | —————– | —————— | ———– | —————– | ———— | | Product | \(\prod_i A_i\) | \(\prod_i A_i\) | | | None | | | \(\prod_i A_i\) | | | \(\prod_i A_i\) | | | Coproduct | \(\coprod_i A_i\) | \(A\ast B\) | | \(A\star B\) | None | \(\bigoplus_i A_i\) | \(\bigoplus_i A_i\) | \(\bigoplus_i A_i\) | \(\bigotimes_i A_i\) | | \(\coprod A_i\) | \(\vee_i A_i\) | | Pullback | \(A\times_C B, A \cap B\) | \(A\times_C B\) | \(A\times_C B\) | | | | | \(A\times_C B\) | | | | | | Pushout | \(A \coprod B/\sim\) | \(A \ast B/\sim\) | \(A\otimes_C B\) | | | | | | | | \(A \coprod_{f} B\) | | | Initial Object | \(\emptyset\) | \(\left\{{1}\right\}\) | | \({\mathbf{Z}}\) | None | | | \(\left\{{1}\right\}\) | | \(\operatorname{Spec}(0)\) | \(\emptyset\) | | | Terminal Object | \(\left\{{a_1}\right\}\) | | | \(\left\{{0}\right\}\) | None | | | | | \(\operatorname{Spec}{\mathbf{Z}}\) | \({\operatorname{pt}}\) | | | Zero Object | | \(\left\{{1}\right\}\) | | \(\left\{{0}\right\}\) | None | | | | | | | |

\begin{align*} A\star B \cong A \oplus B \oplus (A \otimes B) \oplus (B \otimes A) \oplus (A \otimes A \otimes B) \oplus (A \oplus B \oplus A) \oplus (B \oplus A \oplus A) \oplus ... \end{align*}

  • One regards a category \(\mathsf{C}\) as an infinity category via its nerve.

    • The nerve lands in simplicial sets, but everything in its image satisfies the Kan extension condition.
  • Categories are special cases of a simplicial set

  • Initial objects: \(\emptyset\).

  • Terminal objects: \(*\).

Links to this page
#MOC