Tags: #MOC
Classical Category Theory
References
Topics
- natural transformation
- Yoneda embedding
- Yoneda lemma
- adjoint (categorical)
- monad
- Limit and Colimit
- Cartesian closed category
- Monoidal category
- Symmetric monoidal category
-
Pushout
- Limit definition
-
pullback
- Limit definition
-
equivalence of categories
- Need to state this precisely!
- equivalence of categories
- Unsorted/adjoint (categorical)
-
Limits and universal properties
- coproduct
- cokernel
- colimit
- monomorphism
-
Homological algebra
- additive functor
- abelian category
- additive category
- monomorphism
- mapping cone
- Yoneda lemma
- isomorphism of functors
- subfunctor
- exponential object
- monads
- natural transformation
- Yoneda embedding
- Yoneda lemma
- Unsorted/adjoint (categorical)
- monad
- Limit and Colimit
- Cartesian closed category
- monoidal category
- Symmetric monoidal category
-
Pushout
- Limit definition
-
pullback
- Limit definition
-
equivalence of categories
- Need to state this precisely!
Notes
| Category | Set | Grp | CRing | Ring | Field | Ab | \({ \mathsf{Vect} }_k\) | R-Mod | \(R{\hbox{-}}\)cAlg | Sch | Top | \({\mathsf{Top}}_*\) | |
————— | ———————– | ————— | ––––––– | ———– | —– | —————– | —————– | —————– | —————— | ———– | —————– | ———— | | Product | \(\prod_i A_i\) | \(\prod_i A_i\) | | | None | | | \(\prod_i A_i\) | | | \(\prod_i A_i\) | | | Coproduct | \(\coprod_i A_i\) | \(A\ast B\) | | \(A\star B\) | None | \(\bigoplus_i A_i\) | \(\bigoplus_i A_i\) | \(\bigoplus_i A_i\) | \(\bigotimes_i A_i\) | | \(\coprod A_i\) | \(\vee_i A_i\) | | Pullback | \(A\times_C B, A \cap B\) | \(A\times_C B\) | \(A\times_C B\) | | | | | \(A\times_C B\) | | | | | | Pushout | \(A \coprod B/\sim\) | \(A \ast B/\sim\) | \(A\otimes_C B\) | | | | | | | | \(A \coprod_{f} B\) | | | Initial Object | \(\emptyset\) | \(\left\{{1}\right\}\) | | \({\mathbf{Z}}\) | None | | | \(\left\{{1}\right\}\) | | \(\operatorname{Spec}(0)\) | \(\emptyset\) | | | Terminal Object | \(\left\{{a_1}\right\}\) | | | \(\left\{{0}\right\}\) | None | | | | | \(\operatorname{Spec}{\mathbf{Z}}\) | \({\operatorname{pt}}\) | | | Zero Object | | \(\left\{{1}\right\}\) | | \(\left\{{0}\right\}\) | None | | | | | | | |
\begin{align*} A\star B \cong A \oplus B \oplus (A \otimes B) \oplus (B \otimes A) \oplus (A \otimes A \otimes B) \oplus (A \oplus B \oplus A) \oplus (B \oplus A \oplus A) \oplus ... \end{align*}
-
One regards a category \(\mathsf{C}\) as an infinity category via its nerve.
- The nerve lands in simplicial sets, but everything in its image satisfies the Kan extension condition.
-
Categories are special cases of a simplicial set
-
Initial objects: \(\emptyset\).
-
Terminal objects: \(*\).