canonical bundle

Links to this page
  • projective
    For a smooth projective variety, the canonical sheaf can be identified with the dualizing sheaf.
  • dualizing sheaf
    If \(X\in{\mathsf{sm}}\mathop{\mathrm{Proj}}{\mathsf{Var}}\), then \(\omega\) is a representative of the canonical sheaf.
  • dominant weight

    There is a special weight \begin{align*} \rho \coloneqq\varpi_{1}+\cdots+\varpi_{\ell} \in \Lambda^{+} = {1\over 2}\sum_{\alpha\in \Phi^+} \alpha ,\end{align*} i.e. the sum of fundamental weights or the half-sum of positive roots. It satisfies \begin{align*} \left\langle\rho, \alpha^{\vee}\right\rangle=1 \qquad\text{ and }\qquad s_{\alpha} \rho=\rho-\alpha \qquad \forall \alpha\in \Delta .\end{align*} It is the smallest regular dominant weight fixed by no nontrivial element of \(W\), and the associated line bundle on the flag variety \(G/B\) is ample, and is in fact a square root of the canonical bundle.

  • Calabi-Yau
    A smooth proper variety $X\in {\mathsf{Var}}_{/ {k}} $ with trivial canonical bundle, so \(\omega_X \coloneqq\bigwedge\nolimits^{\dim X}\Omega^1_{X_{/ {k}} } \cong{\mathcal{O}}_X\). When \(k={\mathbf{C}}\), the trivialization must be holomorphic and not just topological!
#todo/untagged #todo/add-references