bicategory

Last modified date: <%+ tp.file.last_modified_date() %>



bicategory

attachments/Pasted%20image%2020220325203554.png

Lax functors

Definition A.123. Let \(\mathcal{C}\) and \(\mathcal{D}\) be bicategories. \(A\) lax functor \(F: \mathcal{C} \rightarrow \mathcal{D}\) consists of the following data:

  • A function \(F: \operatorname{ob}(\mathcal{C}) \rightarrow \mathrm{ob}(\mathcal{D})\).
  • For every \(x, y \in \mathrm{ob}(\mathcal{C})\), a functor \(F_{x y}: \mathcal{C}(x, y) \rightarrow \mathcal{D}(F x, F y)\).
  • For 1-cells \(f: x \rightarrow y\) and \(g: y \rightarrow z\), natural transformations (i.e., 2-cells) \(F g \circ F f \rightarrow F(g \circ f) .\)
  • For 0 -cells \(x \in \mathrm{ob}(\mathcal{C})\), natural transformations (i.e., 2 -cells) \(\mathrm{id}_{F x} \rightarrow F\left(\mathrm{id}_{x}\right)\).
  • Associativity and unitality diagrams for the 2 -cells described in the preceding items.

attachments/Pasted%20image%2020220325203808.png

#higher-algebra #homotopy/stable-homotopy/equivariant #todo/add-references