aspherical space

Last modified date: <%+ tp.file.last_modified_date() %>


- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - #todo/create-links


aspherical space

Definition: An aspherical space \(X\) is anything of the homotopy type \(K(\pi_1 X, 1)\), i.e. \(\pi_k(X) = 0\) for \(k\geq 2\).

attachments/Pasted%20image%2020220408005710.png attachments/Pasted%20image%2020220408005727.png

Links to this page
  • group cohomology

    If \(X\) is an aspherical space, then \(H^k_{\mathrm{sing}}(X;{\mathcal{F}}) \cong H^k_{\mathsf{Grp}}(\pi_1 X; {\mathcal{F}}_x)\) where \({\mathcal{F}}\) is a local system.

#todo/untagged #todo/add-references #todo/create-links