Last modified date: <%+ tp.file.last_modified_date() %>
- Tags:
- Refs:
- Links:
algebraic curve
Notes
-
Encode points on a smooth projective curve as valuations measuring orders of poles/zeros.
- Bounded valuations: points on the variety
- Unbounded: points “at infinity”, like puncture points on a Riemann surface
-
Compactifications are not unique. Example:
- \({\mathbf{A}}^2 \subseteq {\mathbf{P}}^2\)
- \({\mathbf{A}}^2 \subseteq ({\mathbf{P}}^1)^{\times 2}\)
- But \({\mathbf{P}}^2 \neq ({\mathbf{P}}^1)^{\times 2}\)!
The algebraic analogues of a compact proper complex algebraic curve of genus \(g\).
Prym varieties