adic completion

Last modified date: <%+ tp.file.last_modified_date() %>



adic completion

The ur-example: p-adic integers.

attachments/Pasted%20image%2020220508184210.png

Idea: for schemes, completion at a point is a formal neighborhood.

Completion wrt a filtration

For \((M, {\operatorname{Fil}}^*)\) a (descending) filetered module, one forms the completion as \begin{align*} M = {\operatorname{Fil}}^0 M \supseteq {\operatorname{Fil}}^1 M \supseteq \cdots \implies \widehat{M} \coloneqq M{ {}_{ \widehat{{\operatorname{Fil}}^*} } } \coloneqq\varprojlim_{n}\, {M \over {\operatorname{Fil}}^n M} \end{align*} If \({\operatorname{Fil}}^*\) is a terminating filtration, the result is a topological module. # adic completion attachments/Pasted%20image%2020220124120838.png

So \begin{align*} R{ {}_{ \widehat{I} } } = \varprojlim_n R/I^n \end{align*}

Usually involves localizing first: attachments/Pasted%20image%2020220124225812.png attachments/Pasted%20image%2020220407235134.png

Results

Examples

  • \({\mathbf{Z}}{ {}_{ \widehat{\left\langle{p}\right\rangle} } } = {\mathbf{Z}}{ {}^{ \wedge }_{p} }\) is the p-adic integers.

  • \(k[x_1,\cdots, x_n]{ {}_{ \widehat{\left\langle{x_1,\cdots, x_n}\right\rangle} } } = k{\left[\left[ x_1, \cdots, x_n \right]\right] }\) are multivariate formal power series. # Exercises

  • Show that the completion of a Noetherian ring \(R\) is flat as an \(R{\hbox{-}}\)module.

  • Show that completion can be computed by extension of scalars as \begin{align*} M { {}_{ \widehat{I} } } \cong M \otimes_R R{ {}_{ \widehat{I} } } \end{align*}

  • Use this to show \((R/J){ {}_{ \widehat{I} } } \cong R{ {}_{ \widehat{I} } }/J{ {}_{ \widehat{I} } }\).

  • attachments/Pasted%20image%2020220407235059.png

Links to this page
#todo/untagged #todo/add-references #todo/create-links