Tags: #NT/algebraic Refs: valuation
Overview of Fields
- Archimedean fields: \({\mathbf{Q}}, {\mathbf{R}}, {\mathbf{C}}\).
- Nonarchimedean fields: everything else.
-
Global fields:
-
Finite extension of \({\mathbf{Q}}\) or \({ \mathbf{F} }_p(t)\), or the function field of a geometrically integral curve over \({ \mathbf{F} }_{p^n}\)
- Equivalently: \(\operatorname{ff}(A)\) for \(A\in \mathsf{Alg} _{/ {{\mathbf{Z}}}} ^{{\mathrm{fg}}}\) with \(A\) an integral domain and \(\operatorname{krulldim}(A) = 1\).
-
Finite extension of \({\mathbf{Q}}\) or \({ \mathbf{F} }_p(t)\), or the function field of a geometrically integral curve over \({ \mathbf{F} }_{p^n}\)
-
Local fields:
- Finite extension of \({\mathbf{R}}, {\mathbf{Q}}, { {\mathbf{Q}}_p }, { \mathbf{F} }_p((t))\).
- \({\mathbf{R}}, {\mathbf{C}}, { \mathbf{F} }_{p^n}((t))\), or a finite extension of \({ {\mathbf{Q}}_p }\).
- \({\mathbf{R}}, {\mathbf{C}}, \operatorname{ff}(R)\) for \(R\) a complete DVR with finite residue field
- \(k\) a nondiscrete locally compact Hausdorff topological ring.
- \(k\) the completion of a global field with respect to a nontrivial absolute value.
Archimedean and nonarchimedean
Idea: an ordered group \(K\) is archimedean if it does not admit any infinitesimals or infinites: pairs \((x, y)\) such that \(nx < y\) for all \(n\), resp. \(y\) such that \(n1 < y\) for all \(n\).
In the presence of an absolute value, \(K\) is archimedean iff \begin{align*}x\in K \implies \exists n\text{ such that } {\left\lvert {nx} \right\rvert} > 1\end{align*} # Absolute values
An absolute value on a field \(k\) is a map \({\left\lvert {{-}} \right\rvert}: k \rightarrow \mathbb{R}_{\geq 0}\) such that for all \(x, y \in k\) the following hold:
- \(|x|=0\) if and only if \(x=0\);
- \(|x y|=|x||y|\);
- \(|x+y| \leq|x|+|y|\).
If in addition the stronger ultrametric triangle inequality holds, \begin{align*}|x+y| \leq \max (|x|,|y|),\end{align*} then the absolute value is nonarchimedean; otherwise it is archimedean.
Two absolute values \({\left\lvert {{-}} \right\rvert}_1\) and \({\left\lvert {{-}} \right\rvert}_2\) on \(K\) are equivalent if there exists an \(\alpha \in \mathbb{R}_{>0}\) for which \(|x|_2=|x|_1^{\alpha}\) for all \(x \in k\).
Results
- Every absolute value induces a metric \(d(x, y) \coloneqq{\left\lvert {x-y} \right\rvert}\), but not every metric is induced this way.
- Absolute values only exist for integral domains, and extend to fraction fields.
- If \(\operatorname{ch}K > 0\), every absolute value is nonarchimedean.
- If \({ \mathbf{F} }_q\) is a finite field, there is only a trivial absolute value.
- Get an absolute value from a valuation: \begin{align*}{\left\lvert {x} \right\rvert}_p \coloneqq p^{-v_p(x)},\qquad {\left\lvert {0} \right\rvert}_p \coloneqq p^{-\infty} = 0\end{align*}
- If an integral domain is Cauchy complete with respect to an absolute value it is Cauchy complete with respect to all equivalent absolute values.
Topological Results
- Weak approximation implies that two absolute values on the same field induce the same topology if and only if they are equivalent.
- Translation is a homeomorphism. Thus in order to understand the topology of a topological group, we can focus on neighborhoods of the identity; a base of open neighborhoods about the identity determines the entire topology.
Examples
-
\({\mathbf{C}},{\mathbf{R}},{\mathbf{Q}}\) with the Euclidean absolute value are archimedean.
-
Rational function fields $K { \left( {x} \right) } $ and formal Laurent series fields \(K{\left(\left( x \right)\right) }\) are nonarchimedean.
-
\({ {\mathbf{Z}}_{\widehat{p}} }\) and finite extensions of \({ {\mathbf{Q}}_p }\) are nonarchimedean.
-
The map \({\left\lvert {{-}} \right\rvert}: k \rightarrow \mathbb{R}_{\geq 0}\) defined by \begin{align*} |x|= \begin{cases}1 & \text { if } x \neq 0, \\ 0 & \text { if } x=0,\end{cases} \end{align*} is the trivial absolute value on \(k\). It is nonarchimedean.
-
p-adic as an adic completion and a Cauchy completion
-
valuation ring of the adic completion of a rational Unsorted/function field over \(K = { \mathbf{F} }_q\):