absolute value

Tags: #NT/algebraic Refs: valuation

Overview of Fields

  • Archimedean fields: \({\mathbf{Q}}, {\mathbf{R}}, {\mathbf{C}}\).
  • Nonarchimedean fields: everything else.
  • Global fields:
    • Finite extension of \({\mathbf{Q}}\) or \({ \mathbf{F} }_p(t)\), or the function field of a geometrically integral curve over \({ \mathbf{F} }_{p^n}\)
      • Equivalently: \(\operatorname{ff}(A)\) for \(A\in \mathsf{Alg} _{/ {{\mathbf{Z}}}} ^{{\mathrm{fg}}}\) with \(A\) an integral domain and \(\operatorname{krulldim}(A) = 1\).
  • Local fields:
    • Finite extension of \({\mathbf{R}}, {\mathbf{Q}}, { {\mathbf{Q}}_p }, { \mathbf{F} }_p((t))\).
    • \({\mathbf{R}}, {\mathbf{C}}, { \mathbf{F} }_{p^n}((t))\), or a finite extension of \({ {\mathbf{Q}}_p }\).
    • \({\mathbf{R}}, {\mathbf{C}}, \operatorname{ff}(R)\) for \(R\) a complete DVR with finite residue field
    • \(k\) a nondiscrete locally compact Hausdorff topological ring.
    • \(k\) the completion of a global field with respect to a nontrivial absolute value.

Archimedean and nonarchimedean

Idea: an ordered group \(K\) is archimedean if it does not admit any infinitesimals or infinites: pairs \((x, y)\) such that \(nx < y\) for all \(n\), resp. \(y\) such that \(n1 < y\) for all \(n\).

In the presence of an absolute value, \(K\) is archimedean iff \begin{align*}x\in K \implies \exists n\text{ such that } {\left\lvert {nx} \right\rvert} > 1\end{align*} # Absolute values

An absolute value on a field \(k\) is a map \({\left\lvert {{-}} \right\rvert}: k \rightarrow \mathbb{R}_{\geq 0}\) such that for all \(x, y \in k\) the following hold:

  • \(|x|=0\) if and only if \(x=0\);
  • \(|x y|=|x||y|\);
  • \(|x+y| \leq|x|+|y|\).

If in addition the stronger ultrametric triangle inequality holds, \begin{align*}|x+y| \leq \max (|x|,|y|),\end{align*} then the absolute value is nonarchimedean; otherwise it is archimedean.

Two absolute values \({\left\lvert {{-}} \right\rvert}_1\) and \({\left\lvert {{-}} \right\rvert}_2\) on \(K\) are equivalent if there exists an \(\alpha \in \mathbb{R}_{>0}\) for which \(|x|_2=|x|_1^{\alpha}\) for all \(x \in k\).

Results

  • Every absolute value induces a metric \(d(x, y) \coloneqq{\left\lvert {x-y} \right\rvert}\), but not every metric is induced this way.
  • Absolute values only exist for integral domains, and extend to fraction fields.
  • If \(\operatorname{ch}K > 0\), every absolute value is nonarchimedean.
  • If \({ \mathbf{F} }_q\) is a finite field, there is only a trivial absolute value.
  • Get an absolute value from a valuation: \begin{align*}{\left\lvert {x} \right\rvert}_p \coloneqq p^{-v_p(x)},\qquad {\left\lvert {0} \right\rvert}_p \coloneqq p^{-\infty} = 0\end{align*}
  • If an integral domain is Cauchy complete with respect to an absolute value it is Cauchy complete with respect to all equivalent absolute values.

Topological Results

  • Weak approximation implies that two absolute values on the same field induce the same topology if and only if they are equivalent.
  • attachments/Pasted%20image%2020220124115854.png
  • Translation is a homeomorphism. Thus in order to understand the topology of a topological group, we can focus on neighborhoods of the identity; a base of open neighborhoods about the identity determines the entire topology. attachments/Pasted%20image%2020220124120329.png attachments/Pasted%20image%2020220124225131.png

Examples

  • \({\mathbf{C}},{\mathbf{R}},{\mathbf{Q}}\) with the Euclidean absolute value are archimedean.

  • Rational function fields $K { \left( {x} \right) } $ and formal Laurent series fields \(K{\left(\left( x \right)\right) }\) are nonarchimedean.

  • \({ {\mathbf{Z}}_{\widehat{p}} }\) and finite extensions of \({ {\mathbf{Q}}_p }\) are nonarchimedean.

  • The map \({\left\lvert {{-}} \right\rvert}: k \rightarrow \mathbb{R}_{\geq 0}\) defined by \begin{align*} |x|= \begin{cases}1 & \text { if } x \neq 0, \\ 0 & \text { if } x=0,\end{cases} \end{align*} is the trivial absolute value on \(k\). It is nonarchimedean.

  • p-adic as an adic completion and a Cauchy completion attachments/Pasted%20image%2020220124120916.png

  • valuation ring of the adic completion of a rational Unsorted/function field over \(K = { \mathbf{F} }_q\): attachments/Pasted%20image%2020220124121057.png

Links to this page
  • unresolved links output
  • ring of integers

    For a nonarchimedean field with an absolute value \({\left\lvert {{-}} \right\rvert}\), say induced by a valuation, the ring of integers is given by the valuation ring, i.e. the closed disc: \begin{align*} {\mathcal{O}}_K \coloneqq\left\{{ x\in K {~\mathrel{\Big\vert}~}{\left\lvert {x} \right\rvert} \leq 1}\right\} = \left\{{x\in K {~\mathrel{\Big\vert}~}v(x) \geq 0}\right\} = \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu_K \subseteq K \end{align*} Its units are given by the boundary sphere: \begin{align*} {\mathcal{O}}_K^{\times}\coloneqq\left\{{x\in K {~\mathrel{\Big\vert}~}{\left\lvert {x} \right\rvert} = 1}\right\} = \left\{{x\in K {~\mathrel{\Big\vert}~}v(x) = 0}\right\} = {{\partial}}\mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu_K \end{align*} This is a local ring with maximal ideal the open disc: \begin{align*} {\mathfrak{m}}\coloneqq\left\{{x\in K {~\mathrel{\Big\vert}~}{\left\lvert {x} \right\rvert} < 1 }\right\}= {\mathbb{D}}_K \end{align*}

  • number field

    Has archimedean places and nonarchimedean places.

  • adic completion
    Coincides with Cauchy completion when \(R\) has a metric induced by a nonarchimedean absolute value.
  • Global field
    The completion of a global field at a valuation / absolute value.

    The completion of \(\operatorname{ff}(K)\) with respect to an absolute valueor valuation for \(K\) a global field is a locally compact field, and thus a local field.

  • Cauchy completion

    Tags: #todo #todo/stub Refs: absolute value

  • Archimedean place

    Can then define an associated absolute value \begin{align*}{\left\lvert {x} \right\rvert}_v := \exp(v(x))\end{align*} where \(e\) can be replaced with \(c\) another constant.

    The \(p{\hbox{-}}\)adic valuation \(v_p: {\mathbf{Q}}\to {\mathbf{Z}}\) is defined using unique factorization in \({\mathbf{Q}}^{\times}\): \begin{align*} v_p(x) = v_p\left( \pm 1 \prod_{p_i\in \operatorname{Spec}{\mathbf{Z}}} p_i^{e_i} \right) \coloneqq e_i, \quad v_p(0) \coloneqq\infty \end{align*} with an associated nonarchimedean absolute value \begin{align*} {\left\lvert {x} \right\rvert}_p \coloneqq C^{-v_p(x)}, \quad c \in (0, 1),\quad {\left\lvert {0} \right\rvert}_p \coloneqq p^{-\infty}\coloneqq 0 \end{align*}

#NT/algebraic