Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #arithmetic-geometry - Refs: - #todo/add-references - Links: - #todo/create-links
absolute Galois group
-
Definition: For \(k\in \mathsf{Field}\), the absolute Galois group is
\begin{align*} G_k \coloneqq{ \mathsf{Gal}} (k_s/k) \cong \mathop{\mathrm{Aut}}(\mkern 1.5mu\overline{\mkern-1.5muk\mkern-1.5mu}\mkern 1.5mu/k) .\end{align*}- Warning: \(\mkern 1.5mu\overline{\mkern-1.5muk\mkern-1.5mu}\mkern 1.5mu/k\) may not be Galois! Hence the need for a separable closure.
- #why-care: \({ \mathsf{Gal}} ({ \mkern 1.5mu\overline{\mkern-1.5mu \mathbf{Q} \mkern-1.5mu}\mkern 1.5mu }/{\mathbf{Q}})\) generalizes class field theory and packages together all finite extensions of \({\mathbf{Q}}\).
- For \(K^{\operatorname{ab}}\) the maximal abelian extension of \(K\), finite abelian extensions of \(K\) correspond to open subgroups of \({ \mathsf{Gal}} (K^{\operatorname{ab}}/K)\), which are finite index since this group is compact.