Archimedean place

Tags: #todo #NT/algebraic Refs: DVR

Valuation

Motivation: attachments/Pasted%20image%2020220509002411.png

For divisors in schemes

See divisor. attachments/Pasted%20image%2020220830181052.png Order of vanishing: attachments/Pasted%20image%2020220830181126.png

Valuations (Definitions)

  • Definition of a valuation:

    • Start with any group morphism \begin{align*}v^{\times}: {\mathbf{G}}_a(K^{\times})\to {\mathbf{G}}_a({\mathbf{R}}),\end{align*} so \(v(x + y) = v(x) + v(y)\), satisfying an ultrametric-type inequality \begin{align*} v(x+y) \geq \min (v(x), v(y)) \end{align*}
  • Extend to \begin{align*} v: {\mathbf{G}}_a(K)\to {\mathbf{G}}_a({\mathbf{R}}) \cup\left\{{\infty}\right\} \qquad v(x) \coloneqq\begin{cases}v^{\times}(x) & x\neq 0 \\ \infty & x=0 \end{cases} \end{align*} so that \(v(x) = \infty \iff x=0\).

  • Can then define an associated absolute value \begin{align*}{\left\lvert {x} \right\rvert}_v := \exp(v(x))\end{align*} where \(e\) can be replaced with \(c\) another constant.

  • See also valuation ring, unit groups, and the integral subring at ring of integers of a nonarchimedean field.

  • The \(p{\hbox{-}}\)adic valuation \(v_p: {\mathbf{Q}}\to {\mathbf{Z}}\) is defined using unique factorization in \({\mathbf{Q}}^{\times}\): \begin{align*} v_p(x) = v_p\left( \pm 1 \prod_{p_i\in \operatorname{Spec}{\mathbf{Z}}} p_i^{e_i} \right) \coloneqq e_i, \quad v_p(0) \coloneqq\infty \end{align*} with an associated nonarchimedean absolute value \begin{align*} {\left\lvert {x} \right\rvert}_p \coloneqq C^{-v_p(x)}, \quad c \in (0, 1),\quad {\left\lvert {0} \right\rvert}_p \coloneqq p^{-\infty}\coloneqq 0 \end{align*}

  • A place is an equivalence class of valuations.

  • The value group of \(v\) is the image \(v(K) \leq {\mathbf{R}}\).

  • \(v\) is a discrete valuation if \(v(K) \cong {\mathbf{Z}}\leq {\mathbf{R}}\). See also DVR.

  • If \(x\in K^{\times}\), use that \(v(x^{-1}) = v(1) - v(x) = -v(x)\), so either \(v(x)\geq 0\) or \(v(x^{-1})\geq 0\). This forces the unit group of \(A \coloneqq\left\{{v(x)\leq 1}\right\}\) to be \(A^{\times}= \left\{{v(x) = 0}\right\}\). Use this to partition \(A\):

    • Positive valuation: non-units in \(A\)
    • Zero valuation: units in \(A\)
    • Negative valuation: \(x\not \in A\) but \(x^{-1}\in A\)

Places

  • For function fields, maximal ideals \(p\) of some valuations rings \({\mathcal{O}}\). If \(p = \left\langle{t}\right\rangle = t{\mathcal{O}}\), then \(t\) is a uniformizer.

  • Equivalence classes of valuations.

attachments/Pasted%20image%2020220126093310.png attachments/Pasted%20image%2020220126093333.png attachments/Pasted%20image%2020220126093359.png attachments/Pasted%20image%2020220126110633.png

Infinite places

Infinite places are those not arising from a prime in \({\mathcal{O}}_K\).

attachments/Pasted%20image%2020220211133915.png

attachments/Pasted%20image%2020220316133354.png

Embeddings

  • For \(L/K\), real places of \(K\) are embeddings \(K\hookrightarrow{\mathbf{C}}\) with image in \({\mathbf{R}}\), complex places are embeddings which intersect \({\mathbf{C}}\setminus{\mathbf{R}}\).
  • A real place \(v\) of \(K\) is unramified in this situation if all of the extensions of \(v\) to \(L\) are again totally real, and is ramified otherwise. Complex places are always unramified.
  • Example: in the extension \(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)\), where \(\zeta_{p}\) is a primitive \(p\)-th root of unity for some odd prime \(p\), the base field is totally real (all its Archimedean places are real) while the top field is totally imaginary, so all real places ramify in the extension. # Uniformizers
  • Any element \(\pi\) for which \(v(\pi) = 1\) is a uniformizer, so \(\pi \in v_p({{\partial}}{\mathbb{D}})\). attachments/Pasted%20image%2020220214091425.png

attachments/Pasted%20image%2020220123185220.png

Norms

attachments/Pasted%20image%2020220126094524.png attachments/Pasted%20image%2020220126094541.png

See Adeles.

Degrees and rational places

attachments/Pasted%20image%2020220316133013.png

Results

  • Ostrowski’s Theorem: attachments/Pasted image 20210511104707.png
  • Valuation rings are integrally closed: attachments/Pasted%20image%2020220123190306.png

attachments/Pasted%20image%2020220124120608.png attachments/Pasted%20image%2020220124120616.png

See adic completion

🗓️ Timeline
  • 2021-04-15

    I should also review what a placereally is. Definitely what it means to be an Unsorted/Valuations. Also double-check the \(v\divides \infty\) notation.

Links to this page
#todo #NT/algebraic