Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - #todo/create-links
Tamagawa numbers
Definition: for $G\in \mathsf{Alg} {\mathsf{Grp}}_{/ {k}} $ with \(G(k)\) its \(k{\hbox{-}}\)points and \(G({\mathbf{A}}_k)\) its adelic points, \(\tau = \mu(G({\mathbf{A}}_k) / G(k))\). Local Tamagawa number for elliptic curve : equals 1 when the curve has good reduction.. Show up in Birch and Swinnerton-Dyer conjecture.
Pasted image 20211106015658.png