Talbot Talk 2

Tags: #my/talks #geomtop/symplectic-topology

Talbot Talk 2: Hiro

Part 1

  • Assign to a symplectic manifold a Fukaya category

  • Replace with a functor \({\mathsf{Fuk}}\) that takes a category of symplectic manifolds to a stable infty-category over \({\mathbf{Z}}\).

  • Analogies:

    • The “take modules” functor $(\mathsf{Ring})^{\operatorname{op}}\to {\operatorname{Stab}}{ \underset{\infty}{ \mathsf{Cat}} }{}{/ {{\mathbf{Z}}}} $ given by $R\mapsto {}{R}{\mathsf{Mod}} $
    • ${\mathsf{Sch}}^{\operatorname{op}}\to {\operatorname{Stab}}{ \underset{\infty}{ \mathsf{Cat}} }{}_{/ {{\mathbf{Z}}}} $ where \(X\mapsto { \mathsf{D} }^b{\mathsf{Coh}}(X)\).
  • Recent #open/conjectures: for certain \(M\), make an \({\mathbb{S}}{\hbox{-}}\)linear functor \({\mathsf{Fuk}}({-}, {\mathbb{S}})\) where \({\mathsf{Fuk}}(M, {\mathbb{S}})\) is a stable infty category

    • Can get stable infty categories out of very geometric things: symplectic manifolds
    • Hope to get an equivalence of categories between some infty category of symplectic manifolds and the infty category of stable infty categories
  • Morse theory recap

    • Index: write \(f\) locally as \(\sum x_i^2 - \sum y_i^2\) and the number of negative components is the index of the critical point
  • Weinstein manifolds and sectors: special types of symplectic manifolds obtained from handle attachment (sectors: allowing boundaries)

    • Allows some mild but controlled singularities making them non-manifolds
    • Can construct interesting cosheaves of categories
  • Defining a symplectic manifold:

    • \(\omega^{\wedge 2}\) defines a volume form, or use \(v\mapsto \omega(v, {-})\) is a non-degenerate 1-form, thinking of \(\omega: TM \xrightarrow{\sim}{\mathbf{T}} {}^{ \vee }M\).
    • The latter definition is useful in derived geometry.
    • \(d\omega = 0\), a flatness condition.
  • The most important example: for \(Q\) any smooth manifold, the total cotangent space \(T {}^{ \vee }Q, dp \wedge dq)\) is symplectic.

    • Locally write coordinates \({ {q}_1, {q}_2, \cdots, {q}_{n}}\), get \({ {dq}_1, {dq}_2, \cdots, {dq}_{n}}\), then \(\sum p_i dq_i\in{\mathbf{T}} {}^{ \vee }{\mathbf{R}}^n\). Take de Rham derivative to get \(\sum dp_i \wedge dq_i \in \Omega^2({\mathbf{R}}^n)\).
  • Can make some symplectic manifolds out of Weinstein cells.

  • Taking a one form \(\alpha = \omega({-}, X)\), it turns out \(d\alpha = \omega\) so \(\alpha\) is an antiderivative.

  • Fact: if \(M\) is compact of dimension \(d\geq 2\) then \(M\) can not be Weinstein.

  • Some kind of “symplectic Pontryagin Thom” theorem

  • Note: need to distinguish between actual boundaries and “boundaries at infinity”

Part 2

  • Constructing the (wrapped) Fukaya category

  • A half-dimensional submanifold \(L\) of a symplectic manifold is Lagrangian iff \(\omega{ \left.{{}} \right|_{{L}} } = 0\).

    • Example: any curve in \(M\), since a two-form restricted to a one-manifold is trivial - \(Q \hookrightarrow{\mathbf{T}} {}^{ \vee }Q\) - Any cotangent fiber \(T_q {}^{ \vee }Q\)
  • Almost complex structure used to define a differential equation

  • Informal definition of \({\mathsf{Fuk}}(M)\): it’s like a DG category

    • Objects are Lagrangians
    • \(\mathop{\mathrm{Hom}}(L_0, L_1)\) is like a chain complex: a graded abelian group \(\bigoplus_{z\in L_2 \pitchfork L_1} {\mathbf{Z}}/2[d]\) for some shift \(d\) with differential \({\partial}\) whose coefficients are given by counting holomorphic discs from \(x\) to \(y\).
    • Composition is given by \(y\otimes x\mapsto \sum ? z\) where the count is given by counting holomorphic discs mapping to the triangle \(x,y,z\). Note: non-associative, need to consider discs filling in punctured \(n{\hbox{-}}\)gons for all \(n\)
    • Can recover presentation of Stasheff associahedra.
  • There is an equivalence \({\mathsf{Fuk}}(M) \xrightarrow{\sim} {\mathsf{Fuk}}(M \times{\mathbf{T}} {}^{ \vee }{\mathbf{R}}^N)\) where \(L\mapsto L \times T_0 {}^{ \vee }{\mathbf{R}}^N\), take colim to replace \(N\) with \(\infty\).

  • Need to do wrapping, but we won’t get into it.

  • In the category of Weinstein manifolds, a morphism is a codimension 0 embedding \(j: M\hookrightarrow(N, X_N)\) where we convert \(X_N\) to a one-form \(\theta_N\) using \(\omega\), such that \(j^* \Theta_N = \Theta_M + df\) for \(f\) some compactly supported function.

  • Theorem: the wrapped Fukaya category defines a functor from the category of Weinstein manifolds to $A_\infty{\hbox{-}}\mathsf{Cat}_{/ {{\mathbf{Z}}}} $ which factors through taking \(M\times{\mathbf{T}} {}^{ \vee }{\mathbf{R}}^N\).

    • The target has an infinity category structure.
  • Ways to improve this to an \({\mathbb{S}}{\hbox{-}}\)linear category:

    • Reformulate \({\mathsf{Fuk}}(M)\) as the solution to a deformation problem. Very difficult!!
    • From \(M\) construct a stable \(\infty{\hbox{-}}\)category of Lagrangian cobordisms \({\mathsf{Lag}}(M)\) (already enriched in spectra). Conjecturally: \({\mathsf{Lag}}(M) \otimes_{\mathbb{S}}{H{\mathbf{Z}}}= {\mathsf{Fuk}}(M)\)
    • Microlocal special sheaves.
  • All three are conjecturally thought to work.

  • Question: can one symplectically construct certain \(E_\infty\) maps, e.g. \({\mathbb{S}}, {\mathbb{S}}{ \left[ { \scriptstyle \frac{1}{p} } \right] }\).? See E_infty.

    • Yes, if we localize \({\mathsf{Wein}}\) in a certain way
  • There is a known class of maps \(W\) where \(M\to N\) induces \({\mathsf{Fuk}}(M) \xrightarrow{\sim} {\mathsf{Fuk}}(N)\).

  • Theorem: \({\mathsf{Wein}}{ \left[ { \scriptstyle \frac{1}{W} } \right] }\) is symmetric monoidal

    • Can construct a symplectic manifold \(D_p\) which is an \(E_\infty\) algebra in \({\mathsf{Wein}}{ \left[ { \scriptstyle \frac{1}{W} } \right] }\) where \({\mathsf{Fuk}}(D_p)^\otimes\xrightarrow{\sim} {}_{{\mathbf{Z}}{ \left[ { \scriptstyle \frac{1}{p} } \right] }}{\mathsf{Mod}}^\otimes\).
  • First case of a purely symplectic construction of an \(E_\infty{\hbox{-}}\)algebra! See E_infty algebra

    • Which ones can we construct?
  • #open/conjectures: \(\mathop{\mathrm{Hom}}_{{\mathsf{Wein}}{ \left[ { \scriptstyle \frac{1}{W} } \right] }}({\operatorname{pt}}, {\operatorname{pt}}) \simeq\) to the groupoid of finite spectra, or equivalently the space of functors from finite spectra to itself (since all are given by smash against a specific spectrum)

    • Here \({\operatorname{pt}}\cong{\mathbf{T}} {}^{ \vee }{\mathbf{R}}^{\infty}\).
  • A way to make “functors are bimodules” concrete in this category.

Links to this page
#my/talks #geomtop/symplectic-topology #open/conjectures