Last modified date: <%+ tp.file.last_modified_date() %>
- Tags
- Refs:
- Links:
TQFT
- Relates mathematical QFTs to actual uses in physics
Last modified date: <%+ tp.file.last_modified_date() %>
See TQFT:
- Tags: - #todo/untagged - Refs: - Recommendations from Akram: Milnor-Stasheff p.148 12-b and Section 12 - Links: - parallelizable spheres - cobordism - TQFT - cobordism hypothesis
Motivations: factorization homology forms an important class of topological field theories: the ones in which the global observables are determined by the local observables. It can be modeled using labeled configuration spaces; in fact, it originates from configuration space models for mapping spaces.
See TQFT.
- Tags: - #AG #symplectic #todo/too-long - Refs: - https://www.mathi.uni-heidelberg.de/~geodyn/teaching/Theses/MA_2020_Lukas%20D.%20Sauer%20(Albers).pdf#page=3 - Brice Loustau.The complex symplectic geometry of the deformation space of complex projective structures: https://arxiv.org/abs/1406.1821 - Equipped with TQFTs: - https://arxiv.org/pdf/2201.08699.pdf#page=1 - William M. Goldman, The modular group action on real SL(2)-characters of a one-holed torus, Geom. Topol. 7 (2003), 443–486. MR 2026539 - William M Goldman, An exposition of results of fricke, arXiv preprint math/0402103 (2004). - Links: - nonabelian Hodge correspondence - group cohomology - Higgs bundle - Fricke-Vogt theorem - semistable
Somehow give rise to TQFTs.