Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - ADE classification - simply laced - loop algebra - Heisenberg algebra - Fock space
SL2
- Subgroups \(G\subseteq {\operatorname{SL}}_2({\mathbf{C}})\) are conjugate to subgroups of \({\operatorname{SU}}_2({\mathbf{C}})\).
-
There is a one-to-one correspondence between non-trivial finite subgroups \(G\) of \(S U(2)\) and the Dynkin diagrams \(Q\) of types containing no double or triple edges:
- \(A_{n}(n \geq 1)\),
- \(D_{n}(n \geq 4)\),
- \(E_{6}\),
- \(E_{7}\),\
- \(E_{8}\)