SL2

Last modified date: <%+ tp.file.last_modified_date() %>


- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - ADE classification - simply laced - loop algebra - Heisenberg algebra - Fock space


SL2

attachments/Pasted%20image%2020220424201006.png

  • Subgroups \(G\subseteq {\operatorname{SL}}_2({\mathbf{C}})\) are conjugate to subgroups of \({\operatorname{SU}}_2({\mathbf{C}})\).
  • There is a one-to-one correspondence between non-trivial finite subgroups \(G\) of \(S U(2)\) and the Dynkin diagrams \(Q\) of types containing no double or triple edges:
    • \(A_{n}(n \geq 1)\),
    • \(D_{n}(n \geq 4)\),
    • \(E_{6}\),
    • \(E_{7}\),\
    • \(E_{8}\)

attachments/Pasted%20image%2020220410181022.png

Links to this page
#todo/untagged #todo/add-references