Poincare homology sphere

Last modified date: <%+ tp.file.last_modified_date() %>



Poincare homology sphere

  • A 3-manifold and is the only \(X\in {\mathbf{Z}}\operatorname{HS}^n\) with finite \(\pi_1\).

  • Its fundamental group is order 120

  • Proves that there exist \(X\ni {\mathbf{Z}}\operatorname{HS}^n\) where \(X\not\cong_{\mathsf{Top}}S^n\).

  • Constructions:

    • Glue faces of a dodecahedron
    • \({\operatorname{SO}}_3({\mathbf{R}})/I\), for \(I\cong A_5\) the symmetries of an isocashedron
    • \(+1\) trefoil

attachments/Pasted%20image%2020220401212947.png

Links to this page
#todo/untagged #todo/add-references #todo/create-links